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Ahstract

Let M be an n-vertex combinatorial triangulation of a Fy-homology d-sphere. In this paper we
prove that if n=d + & then M must be a combinatorial sphere. Further, if n = d + 9 and M is not
a combinatorial sphere then M cannot admit any proper bistellar move. Existence of a 12-vertex
triangulation of the lens space L3, 1) shows that the first result is sharp in dimension three.

In the course of the proof we also show that any Fz-acvelic simplicial complex on =7 vertices
is necessarily collapsible. This result is best possible since there exist 8-vertex triangulations of the
Dunce Hat which are not collapsible.
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1. Introduction and results

All the simplicial complexes considered in this paper are finite. We say that a simpli-
cial complex K triangufares o topological space X {or K is a triangulation of X) if X is
homeomorphic o the geometric carrier | K| of K.

The vertex set of a simplicial complex K is denoted by V{K). If K, L are two simplicial
complexes, then a simplicial isomorphism from K to L is a bijection = : V(K) — V(L)
such that for & € V(K), 7 is a face of Kif and only if mi{g) is a face of L. The complexes K,
L are called (simplicially) isomorphic when such an isomorphism exists. We identify two
simplicial complexes if they are isomorphic.
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A simplicial complex K is called pure if all the maximal faces of K have the same
dimension. A maximal face in a pure simplicial complex is also called a facer.

If 7 is a face of a simplicial complex K then the fink of 7 in K, denoted by Lkg (o) (or
simply by Lk{a)), is by definition the simplicial complex whose faces are the faces 7 of K
such that 7 is disjoint from 7 and & U 7 is a face of K.

A subcomplex L of a simplicial complex K is called an induced (or full) subcomplex of
Kifoe K ande © V(L) imply & € L. The induced subcomplex of K on the vertex set U
15 denoted by K[L7].

For a commutative ring K. a simplicial complex K is called R-acyclic if [K| 1s R-acyelic,
1.e., H,J.{ K|, B)=0for all g =0 (where H‘f{ K|, R) denotes the reduced homology).

By asubdivision of asimplicial complex K we mean a simplicial complex K together with
# homeomorphism from | K| onto | K| which is facewise linear. Two simplicial complexes
Kand L are called combinatovially equivalent (denoted by £ == L) if they have somorphic
subdivisions. So, K == L il and only if | K| and | L] are piecewise-linear (pl) homeomorphic
(see[11])

For a set U with o 4+ 1 elements, let K be the simplicial complex whose faces are all
the non-empty subsets of U Then K triangulates the d-dimensional closed unit ball. This
complex is called the standard d-ball and is denoted by AJ_L[{U}I or simply by .:I‘H_l A
polyhedron is called a pf d-baff if it is pl homeomorphic 1o Ed"r_HE A Hlll'lpllL,Hil complex

X is called a combinatorial d-ball if it is combinatorially equivalent to A9 ey S0, X s a
combinatorial d-ball if and only if | X| is a pl d-ball.

Fora set V with d + 2 elements, let 8 be the simplicial complex whose faces are all the
non-emply proper subsets of V. Then S triangulates the d-sphere. This complex is called
the standard d-sphere and is denoted by 8 "'r -.{'Ir"}l or simply by .:}r__q. A polyhedron is
called a pl d-sphere if it is pl hnmm‘}mm‘phu_ o |59, 5. A aimpliuiul complex X is called a
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combinatorial d-sphere if it is combinatorially equivalent to 59 ea- 30, X1s a combinatorial
d-sphere if and only if | X is a pl d-sphere.

A simplicial complex K is called a combinatorial d-manifold if the link of each vertex is
a combinatorial (d — 1)-sphere. A simplicial complex K is a combinatorial d-manifold if
and only if | K| is a closed pl d-manifold (see [11]).

If a triangulation K of a space X is a combinatorial manifold then K is called a combi-
natorial triangufation of X. If K is a wiangulation of a 3-manifold then the link of a verex
is o tiangulation of the 2-sphere and all triangulations of the 2-sphere are combinatorial
2-spheres. So, any trisngulation of a 3-manifold is a combinatorial tangulation.

Let 7 < o be two faces of a simplicial complex K We say that © is a fiee faceof g if o is
the only face of K which properly contains 7. (It follows that dim{e) —dimit) =l and 7 is a
maximal simplex in K) If 7 is a free face of o then K := K\ {1, o} is a simplicial complex.
We say that there is an elementary collapse of K10 K. We say K coflapsesto L and wrile
KL if there exists a sequence K = Ky, Ky, ..., K, = L of simplicial complexes such
that there is an elementary collapse of K;_ ) to K; for 1 <i <n (see [3]). If L consists of
a O-simplex (o point) we say that K is collapsible and write K30, Clearly, if £ L then
| K| ™y | L] as polyhedra and hence |K| and | L] have the same homotopy type (see [11]).
So, if a simplicial complex K is collapsible then | K| is contractible and hence, in particular,
Kis #3-acyclic. Here we prove:
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Theorem 1. Ifa £3-acvelic simplicial complex has <7 vertices then it iv collapsible.

As an application of Theorem 1, we prove our main resull—a recognition theorem for
combinatonal spheres:

Theorem 2. Let M be an n-vertex combinatorial triangulation of a £a2-homology d-sphere.
Suppose M has an m-vertex combinatorial d-ball as an induced subcomplex, where
n=m 4+ 7. Then M is a combinatorial sphere.

In consequence we get the following.

Corollary 3. Let M be an n-vertex combinatorial d-manifold. If M| is a £2-homology
sphere and n = d 4+ 8 then M ix a combinatorial sphere.

Corollary 4. Let M be a (d + 9)-vertex combinatorial triangwlation of a £a-homology

d-sphere. [f M is not a combinatorial sphere then M cannot admit any bistellar i-move for
=0

Since by the universal coefficient theorem any integral homology sphereisa £3-homology
sphere, Theorem 2, Corollary 3 and Corollary 4 remain true ift we replace £2-homology by
integral homology in the hypothesis. In particular, we have:

Corollary 5. Let M be an n-vertex combinatorial triangulation of an integraf homology
d-sphere.

(a) Ifn<=d 4 8 then M is a combinatorial sphere.
(b) If n =d + 9 and M ix not a combinatorial sphere then M cannot admit any bisteflar
i-move for i = ().

Remark 1. Corollary 3 is cleardy trivial for « 2. In [5], Brehm and Kiithnel proved that
any n-vertex combinatonal d-manifold is a combinatonial d-sphere if n < 3[d /2] + 3 and
it is either a combinatorial d-sphere or a cohomology projective plane if n =34 /2 + 3. So,
Corollary 3 has new content only for 3< 4 < 8.

Remark 2. Another resultin [3] says that any n-vertex combinatorial d-manifold is simply
connectled forn < 24 + 2. Since a simply connected integral homology sphere is a sphere for
d # 3, and since for d £ 4 all combinatorial triangulations of d-spheres are combinatorial
spheres, this result implies that all combinatorial tdangulations of integral homology d-
spheres (d £ 3, 4) with < 2d + 2 vertices are combinatorial spheres. This is stronger than
Corollary 5 (a) for d = 6. Thus Corollary 5(a) has new content only ford =3, 4, 5.

Remark 3. In [5, p. 35|, Lutz presented & 12-vertex combinatorial wriangulation of the lens
space L{3, 1) (It is mentoned in [7, p. 79] that Brehm obtained a 12-vertex combinatorial
triangulation of L3, 1) carlier.) Since L(3, 1) isa £>-homology 3-sphere (H (L(3, 1), &)=
F1, Ha(L(3, 1), £) =0, Corollary 3 is sharp for d = 3.
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It follows from Corollary 3 that 12 18 the least number of vertices required 1o tnangulate
Li3, 1). 1t follows from Corollary 4 that a 12-vertex combinatorial riangulation of L{3, 1)
cannot admit any bistellar -move for 1 <7< 3.

Remark 4. Recall that the Dunce Hat is the topological space obtained from the solid
tiangle abe by identifying the oriented edges ab, be and are. The following is a triangulation
of the Dunce Hal using 8 vertices.

| i

Ly

1 2 3 | ¥l i

Since this example 15 contractible but not collapsible, 1t follows that the bound 7 in
Theorem 1 is best possible.

Remark 5. Let H7 be the non-orientable 3-manifold obtained from 57 = [0, 1] by 1den-
tfying (v, ) with (—x, 1). It follows from works of Walkup [14, Theorems 3, 4] that
if K is a combinatorial 3-manifold and | K| is not homeomorphic to .".-'3', 52 % §'or H?
then fi(K)=4fu(K) + 8 and hence fo(K)=11. Thus if M (£ §7) is a £2-homology 3-
sphere then at keast 11 vertices are needed for any combinatorial wiangulation of M. Now,
Corollary 3 implies that at least 12 vertices are needed. In [4], Bjdrner and Lutz have
presented a 16-vertex combinatorial triangulation of the Poincaré homology 3-sphere.

In [2], we have shown that all combinatorial triangulations of §* with at most 10 vertices
are combinatorial 4-spheres. Now, Corollary 3 implies that all combinatorial inangulations
of §* with at most 12 vertices are combinatorial spheres. So, any combinatorial triangulation
(if it exists) of §* which is not a combinatorial sphere requires at least 13 vertices.

Remark 6. The conclusion in Corollary 4 (namely, that certain combinatorial manifolds
do not admit any proper bistellar move) appears 0 be a strong structural restriction. We
owe o F. H. Lutz the information that the smallest known combinatorial sphere (other than
a standard sphere) not admitting any proper bistellar move is a 16-vertex 3-sphere.

2. Preliminaries and definitions

For asimplicial complex K, the maximum k such that K has ak-face is called the dimension
of K. An one-dimensional simplicial complex is called a graph. A simplicial complex K is
called connected if | K| 15 connected.

Fori=1,2, 3, thei-faces of a simplicial complex are also called the edges, triangles and
tetrahedra of the complex, respectively. For a face o in a simplicial complex K, the number
of vertices in Lkg (7) is called the degree of o in K and is denoted by deg - (7).
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If the number of i-simplices of a d-dimensional simplicial complex K is f;{K), then the
vector f={fo, ..., Jariscalled the f~vectorol K and the number 3(K) = Z:Lc]{_ 1 }l’..f}{ K)
is called the Euler characteristic of K I fi ) = -f“

For two simphlicial complexes K, L with digjoint vertex sets, the join K« L s the simplicial
complex KU LU{gUt:ee K, tel}

If K is a d-dimensional simplicial complex then define the pure part of K as the simplicial
complex whose simplices are the subsimplices of the d-simplices of K.

A d-dimensional pure simplicial complex K is called a weak pseudomanifold if each
{d — 1)-face is contained inexactly two facets of K. A d-dimensional weak pseudomanifold

) then K 1s called k-neighbourly.

K is called a pseudomanifold if for any pair 7, o of facets, there exists a sequence 7 =
1) P 7y = o of facets of K, such that 7;_y Mg is a {d — 1)-simplex of K for 1 <i<n.
In other words, a weak pseudomanifold is a psendomanifold if and only if 1t does not have
any weak pseudomanifold of the same dimension as a proper subcomplex. Clearly, any
connecled combinatorial manifold is & pseudomanifold.

For n 2 3, the n-vertex combinatorial one-sphere (n-cvele) 15 the unigque n-veriex one-
dimensional pseudomanifold and i denoted by S”' ;

A d-dimensional pure simplicial complex K is called a weak pseudomanifold with bownd-
aryif each {d — 1)-face is contained in 1 or 2 facets of K and there exists a {d — 1)-face of
degree 1. The boundary @K of K is by definition the pure simplicial complex whose facets
are the degree one (d — 1)-faces of K.

A simplicial complex K is called a combinatorial d-manifold with boundary 1l the link
of each vertex is either a combinatorial {(d — 1)-sphere or a combinatorial {d — 1)-ball and
there exists a vertex whose ink 8 a combmatorial (6 — 1)-ball. A simplicial complex K is
a combinatorial d-manifold with boundary if and only if |K| is a compact pl d-manifold
with non-empty boundary. Clearly, if Kis a combinatorial d-manifold with boundary then
OK # Wand Lkggiv) = 8{Lkg(v)), for v € V(@K). Therefore, 2K is a combinatorial
{d — 1)-manifold. Cleary, if K is a combinatonial d-ball {d = 0) then K is a combinatorial
d-manifold with boundary and 2K is a combinatoral {d — 1)-sphere.

Example 1. Some weak pseudomanifolds on 6 or 7 vertices.
4
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R T L5 are combinatorial spheres. IEP& triangulates the real projecuve plane. 1, 12
are the smallest examples of weak pseudomanifolds which are not pseadomanifolds.

The following results (which we need later) follow from the classification of all two-
dimensional weak psendomanifolds on <7 vertices (e.g., see [1,6]).

Proposition 2.1. Let K be an n-vertex two-dimensional weak pseudomanifold. Ifn < 6 then
K is isomorphic to 341, ’:-{ * S'.f_,], .’:-{I] * .’:-{2] * S‘,_E, IRPE or Xy above.

Proposition 2.2. Let K be a T-vertex two-dimensional weak pyeudomanifold. If the nionber
of facets of K is < 10 then K is isomorphic o ’:-,t #* ’:-%' o e Yz, T oor T2 above.

Let X be a pure simplicial complex of dimension o = 1. Let A be a set of size d 4 2 such
that A contains at least one and at most d + 1 facets of X. (It follows that all except at
most one element of A are vertices of X.) Define the pure d-dimensional simplicial complex
wa(X) as follows. The facets of x40 X) are (i) the facets of X not contained in A and (i)
the (d + 1)-subsets of A which are not facets of X, w4 is said 1o be a generalized bistellar
maove, Clearly ka(ua (X)) =X Letfi={re A: A\Jx} e Xlanda = A\S Thenzx € X
and i € wa{ X). The set f§is called the core of A Il 2 is a (d — i)-simplex of X then w4 is
also called a generalized bistellar i-move. Observe that if o is even and & 4 is a generalized
bistellar (¢ /2)-move then fi{ka (X)) = falX).

Now suppose X is o weak pseudomanifold, and A, x and J§ are as above. Notice that (a)
either ais ad-simplexin X or V(LK x (2)) 2 fand (b)if f € X then LKy, o ) =Lkyx (iU
8§52 # 8.5 (2) (and therefore x4 (X) is not a combinatorial manifold even if X is so).
We shall say that x4 is a bistellar move if (bsl) § & X and (bs2) either # is a d-simplex
in X or V(Lk y(2)) = (and hence Lky(z) is the standard sphere on the vertex set §). If
l<i=d — 1 then a bistellar i-move is called a proper bistellar move. Observe that if X
is a combinatonal d-manifold then (bs2) holds for any (4 + 2)-subset A, If a generalized
bistellar move is not a bistellar move then it is called singular.

Twoweak pseudomanifolds are called bistellar equivalent if there exists a finite sequence
of bistellar moves leading from one to the other. Let 14 be a proper bistellar move on X,
If Xy is obined from X by staring [ 1] a new vertex in 2 and X7 is obtained from x4 (X)
by starring a new vertex in § then X and X7 are isomorphic. Thus, if X and ¥ are bistellar
equivalent then X = ¥ . In[10], Pachner proved the following: two combinatorial manifolcds
are bistellar equivalent if and only if they are combinatorially equivalent.

Example 2. Let the notations be as in Example 1.

(a) LetA={1,2.5.6} C V(R Pf;'r}l. Put R=x4([ Pf;'r}l.ThunRis nol a weak pseudomanifold.
Observe that (bsl) is not satisfied here and hence « 4 is a singular bistellar move. Note
that the automomhism group As of I]'%Pﬁ: 15 transitive on the d-subsets of s vertex
set. In consequence, all singular bistellar 1-moves on I}}’.Pf;-' yield isomorphic simplicial
complexes.

(b) Let B ={2,3,6,7} © Vi{X:). Then wg{Xsz) 15 the umon of two sphemes with one
common edge 67. Here (bsl) is not satisfied.
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(c) LetC =1{1,2, 3.6} € ViTy). Then k0 (T7) = T2 Here also (bsl) 1s not satisfied and
k(1) 5% 1 but ke (17) is & weak pseudomanifold.

(d) Let D ={1,2,3,6} € V(T32). Then kp(T2) = 1. Here (bs2) is not satisfied.

(e) IFE =123 4 6} C V(Z,)then kp(Xy) is a T-vertex pseudomanifold with 12 facets.
In this case, (bsl) is not satisfied.

() Let F=1{2,3,4,6} € V(X)) Then k15 a bistellar move and k p{22) = X 3.

Let L © K be simplicial complexes. The simplicial neighbourhood of L in K is the
subcomplex V(L. K) of K whose maximal simplices are those maximal simplices of K
which intersect V{L). Cleady, Ni{L, K) is the smallest subcomplex of K whose geometric
carrier is & wpological neighbourhood of | L] in | K |. The induced subcomplex C{L, K) on
the verex-set V(K )\ V(L) is called the simplicial complement of L in K.

Suppose P° C P are polyhedra and P= P*U B, where B is a pl k-ball (for some & = 1). If
P'riBisapl ik —1)-ball then we say that there is an elementary colfapse of Plo P'.We say
that P collapses to @ and write P ~, () if there exists a sequence P =Py, P, ..., =
of polyhedra such that there is an elementary collapse of Pi_jto B for 1 <i<n If Qisa
point we say that Pis collapsible and write P ™, 0. For two simphicial complexes K and
L, if K~ L then clearly |K| ~, |L|. A regular neighbourfood of a polyhedron P in a pl
d-manifold M is a d-dimensional submanifold W with boundary such that W ™, P and
Wis a neighbourhood of P in M. The following is a direct consequence of the Simplicial
Neighbourhood Theorem [11, Theorem 3.11].

Proposition 23, Let K be a combinatorial d-manifold with boundary. Suppose CK is an
induced subcomplex of K. Let L be the simplicial complement of 0K in K. Then |K| ™~ |L].

Proofl. Let M be a pl d-manifold such that | K| is in the interior of M (we can always find
such M, e.g., one such M can be obtained from |K| U (8K = [0, 1]) by identifying {x, ()
with x £ |2K]).

Since L=C{2K, K),|L| € |K|"\JeK|and hence | K| is aneighbourhood of |L| inint{ M ).
Again, since L is the simplicial complement of 8K in K and 8K s an induced subcomplex
of K,C{L, K)=0K.Finally, since 8K is an induced subcomplex of dimension « — 1, each
d-simplex of K intersects ViL). This implies that N(L, K) =K.

Let P=|L|. A= |K|and J = &K. Then &A = |0K| and P:’{L,K}I = NL K}
C(L, K)=J. Thus (i) P is a compact polyhedron in the intedor of the pl manifold M. (ii)
A is a neighbourhood of P in int(M), (iii) A is a compact pl manifold with boundary and
(iv) (K, L, J) are trisngulations of (A, P, 2A) where L is an induced subcomplex of K,
K=N(L,K)and J = P:"{L, K). Then, by the Simplicial Neighbourhood Theorem, A isa
regular neighbourhood of P. Hence A ~, P. O

We need the following well-known results (see [ 11, Lemma 1. 10, Corollaries 3.13, 3.28])
later.

Proposition 24. Let B, D be pl d-balls and h: 08 — 2D a pl homeomorphism. Then h
extends toa pl homeomophism h: B — D,
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Proposition 2.5. Let S be a pl d-sphere If B C § is a pl d-ball then the closure of 58 ix
a pl d-ball.

Proposition 2.6. A collapsible pl manifold with boundary is a pl ball.

Question. 1s it true that under the hypothesis of Proposition 2.3, we have KL 7

3. Fz-acyclic simplicial complexes
In this section we prove Theorem 1.

Lemma 3.1. Let X be a T-vertex simplicial complex. Suppose (8) X is £a-acvelic, (b) X ix
notcellapsible, and (€) X is minimal subject to(a) and (b) (i.e.. X has no proper subcomplex
satisfving (a) and (b)) Then X is pure of dimension d = 2 or 3 and each (d — 1)-face of X
occurs in at least two facets.

Proof. Notice that, because of the minimality assumption, X has no free face. Clearly,
dim{ X )< 3, since otherwise X is & combinatorial ball. Suppose dim{ X ) = 3. By minimality,
each 4-face of X is in 0 or =2 facets. Since X has 7 vertices, it follows that each 4-face
is in 0 or 2 faces. Therefore, the pure part ¥ of X is a 7-vertex five-dimensional weak
pseudomanifold and hence ¥ = SFS C X. Then Hs(X,#2) #£ 0, a contradiction. Thus
dim{X)=4.

Suppose, if possible, dim(X) = 4. Let ¥ be the pure part of X. Then, each 3-face of
¥ occurs in at least two facets. IE#(V(¥)) =6, then ¥ = .’:‘; and hence Hi(X, #2) # 0,
a contradiction. Thus V{¥) = V{X) has size 7. Define a binary relation ~ on V(YY) by
vi ~ y2if V(¥ ) {y, v2}is not a facet of ¥. Since each 3-face of ¥is in at least two facets,
it follows that ~ is an equivalence relation with at least two equivalence classes. Therefore,
either there is an equivalence class W of size 6 or else we can write Vi ¥) =V, U Vo, where
Vi, Vo are unions of ~-classes and #({ V) =2, #(V52) =2, In consequence ¥ (and hence X)
contains a 4-sphere as a subcomplex: the standard sphere on Woor the join of the standard
spheres on V) and Va. Therefore Hy (X, £2) £ 0, a contradiction. Thus, dim(X) = 3.

If dim{X) =1 then X is a £3-acyclic connected graph and hence is a tree. Bul any tree
has end vertices and hence is collapsible, a contradiction. So, dim{X) =2 or 3.

Since ﬁ;]{X, F2) =0, X 15 connected. Since X has no free vertex, it follows that each
vertex of X is in at least two edges.

MNext we show that X has no maximal edge. Suppose, on the contrary, X has a maximal
edge e. Then ¥ := X'\ {e} is a subcomplex of X. We claim that ¥ is disconnected. If not, then
there is a subcomplex K = §) of X containing the edge e. The formal sum of the edges in K
isan l-cycle over £2 which is not a boundary since it involves the maximal edge ¢. Hence
H (X, £2) # 0, a contradiction. So, ¥ is disconnected. Since each vertex of X is in at least
two edges, it follows that each component of Yhas = 3 vertices. Since X has seven vertices, il
follows that some component of ¥ has exactly three vertices and contains an ’:-{ .If these three
vertices span a 2-face then its edges are free in X, contradicting minimality. In the remaining
case X has an induced ’:-,E whose edges are maximal, contradicting #a-acyelicity of X.
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In case dim{ X) = 2, this shows that X 1s pure. In case dim{ X) = 3, we proceed o show
that X has no maximal 2-face, proving that it is pure in thal case Loo.

Suppose, on the contrary, that dim(X) = 3 and X has a maximal 2-face 4 = abe. Let
us say that an edge of X is good if it is in a tetrahedron of X, and call it bad otherwise.
First, suppose that all three edges in A are good. Since X has no free wiangle, each ver-
tex in the link of an edge has degree 0 or =2 and hence there are at least three vertices
of degree =2 in the link of a good edge. Since A is maximal, it follows that the link
of each of the three edges in A has =3 vertices outside A. Since, there are only four
vertices outside A, it follows from the pigeonhole principle that there is a common ver-
tex x outside A which occurs in the link of all three edges in A. Hence .’:-'_:'f{d L xh
is a subcomplex of X. The sum of the four triangles in this §7 is a 2-cycle (with 7
coefficients) which cannot be the boundary of a 3-chain since one of these triangles is
maximal. Therefore, H2(X, £2) % 0, a contradiction. Thus, A contains at least one bad
edge.

We claim that A cannot have more than one bad edges. Suppose, on the contrmry, that ab
and ae are bad edges in X. Notice that (arguing as in the proof of the case dim{X) = 4),
if a three-dimensional simplicial complex on <6 vertices has =2 tetrahedra through each
triangle then it contains a combinatorial 57, Therefore, the pure part ¥ of X must have seven
vertices. In particular @ € ¥, Since ab and ac are bad edges, b, c € Lky(a) and hence
degpla)=4 Therefore, Lky{a) = ’:-i Henee we can apply an improper bistellar mmE
to ¥ to remove the vertex a, yielding a 6-verex three-dimensional simplicial complex ¥
with =2 tetrahedra through each triangle. Hence ¥ has an 5% as a subcomplex, so that
Hil¥, £2) = H_:.{F, £3) £ 0. Therefore, Hi(X, £2) £ 0, a contradiction. Thus, A contains
exactly one bad edge, say ab. Hence ac and be are good edges.

Since X has no free edge, there is a second triangle, say abd, through ab. Since ab is a bad
edee, abd ismaximal. By the above argument, ad and bd are good edges. If both acd and bed
are triangles of X then X has Sf{ﬂ Lb, e d) as asubcomplex, and at least one of the tangles
of this ’:-_:'f is maximal in X, yielding the contradiction H2( X, £2) # 0 as before. Therefore,
without loss of generality, we may assume bed & X. Note thal a is an isolated vertex in
Lky(be) and & does not oceur in Lky (be). Since be is a good edge, it follows that all three
vertices outside {a, b, o, d} (say x, vand z) oceurin Lk x (be). Similarly, v, v, z € Lk yibd).
Again, the good edges ac and ad have al most one non-isolated vertex from {a, b, ¢, d} in
their links, hence each of them has at least two of x, v, £ in their links. Therefore, there
is one verlex, say x, which occurs in the link of all the four edges ac, be, ad, bd. Hence
SE__,]{C, d) * ’:-{ {a, b, x) is a subcomplex of X. Since one of the tiangles in this 2-sphere is
maximal, it follows that H2(X, £3) % 0, a contradiction. Thus, X has no maximal triangles
nor maximal edges, so X is pure.

Finally, the last assertion follows from purity and minimality of X. O

Lemma 3.2, Let X be a T-vertex two-dimensional Fa-acvelic simplicial complex. Then X
ix collapsible.

Proof. Let X be a minimal counter example. Let f;, 0=i< 2, be the number of i-faces in
X. Since X is £z-acyclic, y(X) =1. Thus, fy=7and fi = f» 4+ 6.
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For i =0, let ¢; be the number of edges of degree iin X. By Lemma 3.1, ¢ =0 fori= 1.
Two-way counting yields

5 5
doei=fi=fr+6, ) ia=3f.
i=2 i=2
Hence
1+ 3esxer+2e4 4+ 3es= fr — 12, (1)

Let us say that an edge of X is odd (respectively even) if it lies in an odd (respectively even)
number of tiangles. Note that each graph has an even number of vertices of odd degree.
Applying this wivial observation o the vertex links of X, we conclude that each vertex of X
is in an even number of odd edges. Thus, the total number 3 + e5 of odd edges is =0 or
=3 If there is no odd edge then the sum of all the triangles gives a non-zero element of
H:( X, £32), a contradiction. So, e1 + 52 3. Combining this with (1), we get f2 = 15 and
hence f) 221 = (;) Hence fi=21, =15, e3=3, e4=e5=0.

Since each vertex is in an even number of odd edges, it follows that the three odd edges
form a tangle A, which may or may not be in X.

If Ais in X, then the sumof the remaining triangles gives anon-zero element of Ha (X, £2),
a contradiction. If A is not in X then (as each of the three edges in A has three vertices in
its link and there are four vertices outside A) by the pigeonhole principle there is a verex
x & A such that x oceurs in the link of each of the three edges in A. Then the sum of all the
tiangles excepting the three triangles in A U {x} gives a non-zero element of Ha(X, #3), a
contradiction. [

Lemma 3.3. Let U be a two-dimensional pure simplicial complex on <7 vertices. Suppose
the number of triangles in U is < 10 and each edge of U is in an even number of triangles.
Then either Uis the union of wo combinatorial spheres (ond or 5 vertices) with no commaon
triangle, or U is isomorphic o one qf'.’:-'i, ’:-{ * S':I], ’:-5__,] * ’:-5_,] * S'-f_,], ’:-.-[ * S'-f_,], RP'-?‘ I P Zs
or R{of Example 1 and Example 2(a)).

Proof. Let % be the list of simplicial complexes in the statement of this kemma. We find
by inspection that % is closed under generalized bistellar 1-moves.

If fuil/y< 5 then U is a weak pseudomanifold and hence, by Proposition 2.1, U7 € %,
So assume fiy(L' )= 60r 7. The proof is by induction on the number r{U7) of degree 4 edges
in U 1 n(L7) =0then I7is a weak pseudomanifold and hence, by Propositions 2.1 and 2.2,
I €% Soletn(l) =0 and suppose that we have the result for all smaller values of n (7).

By the assumption, all the edges of [7 are of degree 2 or 4. Therefore, a two-way counting
yields 4n (L) 4+ 2({ {7} —n(l7)) =3 H(L )< 30, Thus, nil7) 4+ fi{L7 )< 15, Therefore,

Sty <15, (2)

showing that [7 has at least one non-edge. Fix an edge ab of degree 4 in U. Let W be the
link of ab. If each pair of vertices in W formed an edge in 7 then f{U7) would be = 15,
contradicting (2). So, there exist ¢, d € W such that cd is a non-edge in IV
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Let A ={a, b, o, d). Then w4 15 a generalized bistellar 1-move and hence x4(07) also
satisfies the hypothesis of the lemma, and n ik (7)) =n{L7) — 1. Therefore, by the induction
hypothesis, x4(07) € %, Since 5 15 closed under generalized bastellar 1-moves, U =
kKalkalUn e . O

Lemma 34. Let X bea T-vertex three-dimensional simpficial complex. Suppose (a) Xiy £2-
acyclic, (0 X iv not collapsible, and (¢) X iy minimal subject to(a) and (b). Then the f-vector
of X ix (7,20, 30, 16), (7,21,32,17), (7,21, 33, 18),(7,21, 34, 19 or (7,21, 35,20).

Proof. For 0<i =3, let f; be the number of i-faces of X. For i =0, let #; be the number of
triangles of degree i in X. By Lemma 3.1, we have 5 =0 fori < 1. Two way counting yields
4 4
=/ Y iti=4f3

i=2

i=2 =7
and hence
hEh+2y=4f—-2f. (3

Say that a tmangle of X is odd (respectively even) if it is in an odd (respectively even)
number of tetrahedra of X, By the same argument as in Lemma 3.2, each edge is in an even
number of odd triangles, so that the number 1 of odd triangles is 0 or =4,

If there is no odd trangle then the sum of all the tetrahedra gives a non-zero element of
H( X, £5), acontradiction. So, 11 =4, Combining this with (3) we get

2fs— 222 (4)

Since X is £o-acyclic, by aresultof Stanley [ 13], X has a two-dimensional subcomplex ¥
such that the f~vector of X equals the f~vector of a cone over ¥. (In [13], the author uses the
vanishing of the reduced cohomology groups as his definition of acyclicity, while we have
used the homology definition. However, since the coefficient ring used is a field, these two
definitions coincide. ) Let (gg, g1, g2) be the Fvector of ¥. Thus, gy = 6 and

h=g+6, fai=g1+g. fr=g. (5
Hence (4) yields
BEn+2 ()

Let m = ({’_.) — gL = (?) — g2 be the number of non-edges and non-triangles of ¥,
respectively. Since each non-edge is in exactly four non-triangles and any two non-edges
are shared by at most one non-tnangle, we have nZz4m — {J.': ). Also, from (6) we get
n=m-+ 3 Hencem + 3=dm — {‘._',"} or (m— Liim —6)=(. 5{_’}, citherm =1 orm=6.

First suppose m =6, ie., g <9 If each edge of ¥ was in <3 wiangles then we would
have g = g, contradicting (6). S0, there is an edge of ¥ contained in four triangles, together
covering all the nine edges of ¥. But, apart from the four triangles already seen, no three of
these nine edges form a triangle of ¥. Thus g = 4, gy = 9—contradicting (6). S0, m< 1,
e, g =14 or 15



12 B. Bagchi, B. Darta / Discrete Mathematics 305 (2005) [ -17

If gy = 14 then the four triangles through the missing edge are missing from ¥, so that
g% 16. Thus, by (6). (g1, g2)=(14, 16), (15, 17),(15, 18), (15, 19 or (15, 20). The lemma
now follows from (5). O

Lemma 3.5. Let X be a T-vertex three-dimensional £a-acvelic simplicial complex. Then X
ix collapsible.

Proof. Let X be a minimal counter example. As before, each edge is in an even number
of odd tdangles. Let fi's and ;s be as in the proof of Lemma 3.4, Then, by Lemma 3.4,
t1+ 2ty =4 f2 — 2 f5= 10 and hence the number 13 of odd wiangles is = 10.

Let U7 denote the pure two-dimensional simplicial complex whose facets are the odd
triangles of X. Then each edge of I7 is in an even number of triangles of U, Therefore, by
Lemma 3.3, we get the following cases:

Case 1: U is the union of two combinatorial spheres with no common tdangle (on 4 or 3
vertices ), say on vertex sets A and B,

First suppose #(A) =#(B) =4. If both A and B are 3-faces in X then the pure simpli-
cial complex X whose facets are those of X other than A, B is a three-dimensional weak
pseudomanifold. This implies that the sum of all the wirahedra, excepting A and B, gives a
non-zero element of Hi(X, £2), a contradiction. So, without loss of generality A ¢ X,

Since each of the four triangles inside A is of degree 3 in X, the three vertices (say x, v, )
outside A occur in the link of all the four triangles. Then the 3-sphere Sf{ri}l #* .’:-';E]{.r, ¥
ocecurs as a subcomplex of X, forcing H1(X, £2) # 0, a contradiction.

Inthe remaining case #(A) =4, #( 8 ) =5 (since has at most 10 mangles, thecase #{A4) =
#(B) = 5 does not arise). Write B = {by, bz, b3, x, y} and U = S§7(A) U (S, (by. ba. b3) #
S.E]{.r, ¥i) As above, we must have A £ X

"If both bbby and bibabay are in X, then the sum of the 3-faces otherthan A, by babax
and by babay gives a non-zero element of H1(X, £3), a contradiction. So, without loss of
generality, bibabax & X. Since the triangles of (51(by, b2, b3) * §2(x, ¥)) are degree 3
tdangles in X, it follows that bybaxy, bibaxy, b:a-’n.r_v £ X. Then the sum of the tetra-
hedra other than A and these three erahedra gives a non-zero element of Hy(X, £5), a
contradiction.

Case 2: U = §. We get a contradiction as in Case 1.

Case 3: U = S_,__l #* ’:-1“ We pet a contradiction as in Case 1.

Observation 1. As 1,8 in the remaining cases, we have 2 f; — f3 =4 and hence only the
following two possibilities survive for the f-vectorof X - (7,21, 34, 19) and (7, 21, 35, 20).
Therefore, X has at most one missing tiangle and at most one triangle of degree 4, and these
two cases are exclusive. It follows that, if x 15 a vertex not covered by the odd tnangles,
then Lky{x) is a 6-vertex two-dimensional neighbourly weak pseudomanifold. But, from
Proposition 2.1, we see Ihii[ﬂ-ipﬁl 15 the only possibility. Thus, Lk (x) =IEPﬁ2.Thi5 tmplies
that if V| © V(L) is a 3-set then exactly one of Vi and V(L) V) is a simplex in Lky (x).
In particular, any two triangles m LK y (x) intersect.

Case 4: U = Sf{m,a:} #* Sé]{bl,bz} # Sé]{c'l,c'z}l. Then the odd triangles of X are
aibjog, 120, L E<2 If {aazbjer @ 1<, k<2} € X, then the sum of the remaining
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tetrahedra gives a non-zero element of H1(X, £2), a contradiction. So, without loss of
generality, ajazbic) & X Asabycy, azbc) are degree 3 tiangles, it follows thata b bacy,
azb by € X, IMboth ay b bz and azbpbaez are in X then X 2 {ajb by 0 150,k =2},
hence we get a contradiction as before. So, without loss of generality, azbybaca & X,

Since ayazbicy, azbybaca & X and aybyey, azbacs are degree 3 tangles, it follows
that these two disjoint tdangles occur in the link of x. But this contradicts
Observation 1.

Case 5: U = X of Example 1. Thus, the odd triangles are 125, 126, 156, 235, 236, 345,
346 and 456. If 1256, 3456 ¢ X then, since 125 and 346 are degree 3 tiangles, they are
disjoint triangles in Lk x (x), contradicting Observation 1. So, without loss of generality,
1256 € X.

13456 ¢ X then, since 3435, 346, 456 are degree 3 tnangles, 2345, 2346, 2456 € X. Then
the sum of all the tetrahedra, excepting 1256, 2345, 2346, 2456, gives a non-zero element
of Hi(X, £2). 80,3456 € X.

If 2356 = X, then the sum of all the tetrahedra, excepting 1256, 2356, 3456, gives a
non-zero clement of H3(X, £2). Therefore 2356 € X,

Since 235 and 236 are degree 3 riangles, 2345, 2346 € X First, suppose that at least
one of 1356, 2456 is in X. Without loss, say 2456 € X. Then the sum of all the tetrahedra,
excepting 1256, 2456, 2345, 2346, gives a non-zero element of Hx(X, £2). Thus 1356,
2456¢ X. Then, since 156, 456 are degree 3 tnangles, 156x, 456 € X,

Since 2356,2456¢ X, x € Lkyx(256), ie, 256x € X. Similarly, looking at 356, we
conclude that 356x € X Thus, 56x is a degree 4 triangle in X. But this is not possible since,
by Observation 1, Lky{x) 18 I]?.Pﬁ:.

Observation 2. Inthe remaining cases, ri= 10 and hence the fvectorof Xis (7, 21, 35, 20).

In consequence, 4 = 0. Thus, all triangles are of degree 2 or 3. Since fi = (3), each edge

in X has degree 5. Thus, if e is an edge outside 7 then the link of ¢ is a pentagon fS; X

Case6: U = IF&PE. In this case, all the 4-sets of vertices not containing x contain exactly
two odd wiangles each. In particular, all the tetrahedra of X not containing x contain exactly
two odd triangles each. Trivially, each tetrahedron through x contains at most one odd
triangle. Thus, letting %;, { =0, denote the number of tetrahedra of X containing exactly i
odd mangles, we have o2 =20 — 10 = 10 and 2 + 2 = 10. But two way counting yields
ap + 222 = 10 % 3 = 30, Henee o = 10, 2g = 0. Thus, x occurs in the link of cach odd
triangle and hence LK y(x) = U. Therefore, the 10 tetrahedra of X not passing through x
add up to a non-zero element of Hi(X, £2), a contradiction.

Case 7: U = R of Example 2(a). Thus, the odd tnangles are 123, 124, 125,126, 135, 146,

236,245, 345 and 346. We claim that Lk x(12) 2 'T T2 If, forinstance, 1236 ¢ X then, as
123, 126, 236 are degree 3 triangles, x belongs o the link of each of these triangles. Then
Lky(Zx) 2> J_-::j:I _r'i, contradictmg Observation 2. This proves the claim.
Since 3,4,5,6 are of degree 3 and x is of degree 2 in Lky(12), it follows that
O S S da 6

Lky(12) = M50 or =080,

Ei'{: n i....
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In the first case, 125,126 € Lky(x). Hence, by Observation 1, 345, 346 ¢ Lk y (x). Since
these two are degree 3 triangles, it follows that Lky(345) = {1, 2,6} and Lk x(346) =

L 3
[
{1,2, 5}. Since 1, 2 are of degree 2 in Lk x (34), this forces Lk x (34) = »——m 2t and hence

R
x & LK x(34). This 1 a contradiction since X 15 3-neighbourdy.
In the second case, 125, 126 # Lky (x) and hence, by Observation 1, 345, 346 € Lky (x).
That is, 5x, 6x € Lky(34). Also, as 34 ¢ Lk x(12), we have 12 Lky(34). Since 5, 6 are

»

5 3 . . .--""l"“'a:.---. i’
of degree 3 and 1,2, x are of degree 2 in Lk x(34), it follows that Lk y(34) = f-a,,"h—?::-_‘l--:"‘.
3]

Henee 1345, 2345 345x € X Also, as 123 15 a degree 3 tnangle and 1234 £ X, we have
dg g
1235 ¢ X.Thusﬂ'i;"l C Lk x(35). Since 1, 4 are of degree 3 while 2, 6, x are of degree 2

AR A R B AL
in this link. it follows that Lk x (35) = $ 1| g Hence 356x € X.Then &7 € Lkx(3x),
contradicting Observation 2.

Claim. In the remaining cases, if F is a set of four vertices af U containing at least two
add triangles, then either F € X or F C V(Lky (x)) for some vertex x.

In these cases, V(I7) = V(X)) . If F & X contains two odd triangles, then on the average,
a vertex outside F occurs in the links (in X)of 23 x 2 4+ 2 x 2/3 = 3 of the four triangles
inside F. Thus, there is a vertex x inthe link of all these riangles. If FEV(Lky (x)) for this
x.thenchoosea vertex v € Fsuchthat xy & U ThenLkx {xy) 2 S{{F"-..{_v}},uunlmdiuting
Observaton 2. This proves the claim. .

Case 8: U= S5M{Z5)# SE__,]{H, v). In this case, the above claim implies that X contains the
five tetrahedra {u, v, i, i + 1}, i € Z5. Then the sum of the remaining 15 tetrahedra gives a
non-zero element of Hi(X, £2), a contradiction.

Case9: U = X7 of Example 1. Thus, the odd tnangles are 126, 127, 167, 236, 237, 346,
347, 456, 457 and 567. By the above claim, 1267, 2367, 3467, 4567 € X. Then the sum of
the remaining 16 tetrabedra gives a non-zero element of H1(X, £7), a contradiction.

Case 10: I = £y of Example 1. Thus, the odd triangles are 126, 127, 167,234, 237, 246,
347,456, 457 and 567. By the claim, 1267, 2347, 4567 € X.

If 2467 £ X then the sum of all the tetrahedra, excepting 1267, 2347, 4567, 2467, givesa
non-zero element of Ha1( X, £2), a contradiction. So, 2467 ¢ X . Then, Lk x (246)={1, 3, 5}.

Since deg(247) =2 and 2347 € X, assume without loss of generality, that 2457 £ X and
1247 ¢ X. Then Lkx (127) = {3, 5, 6}.

S0, 2456, 2457 € X and deg(245) =2. Hence 2345 ¢ X Then Lkx{234) ={1,6, 7}

Now, 1234, 1237 € X anddeg(123)=2.Therefore, 1236 ¢ X Then Lk (126)={4, 5, 7}.
This implies that 1" | € Lkx(25), a contradiction to Observation 2.

Case 11: ' = £ 4 of Example 1. Thus, the odd tniangles are 124, 127, 145, 156, 167, 234,
237, 347, 457 and 567. By the claim, 1247, 1457, 1567, 2347 € X. Then the sum of the
remaining 16 erahedra gives a non-zero element of Hy(X, £5), a contradiction.

Case 12: U = £ 5 of Example 1. Thus, the odd tiangles are 123, 126, 135, 156, 234, 246,
345, 457, 467, 567. By the claim, 1234, 1235, 1246, 1256, 1345, 2345, 3457, 4567 € X.

Thus Lk x (14) 2 2" ] Jand LK x(25) 2 77 1. Since 14 and 25 are not in U, Observation
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s a2 Ga al )
2 implies that Lk y{14) :Tq:j:_ 5L and Lk x (25) = _=7 4 Thus 1457, 2457 € X. Then
the tiangle 457 is of degree 4 in X, a contradiction. This completes the proof. O

Proof of Theorem 1. Let ¥ be a minimal counter example. So, ¥ is an n-vertex (for
some n<7) Fz-acyclic simplicial complex which is not collapsible 1o any proper
subcomplex.

If n = 7 then choose a facet o of ¥ and an element v ¢ V(¥). Let ¥ be obtained from ¥
by the bistellar O-move #yupg. Then Y isan in+ 1)-vertex Fa-acyclic simplicial complex.

Since ¥ has no free face, ¥ has no free face and hence ¥ is not collapsible to any proper sub-
complex. Repeating this construction (if necessary) we get a 7-vertex £z-acyelic simplicial
complex X which is not collapsible to any proper subcomplex. Then, by Lemma 3.1, X is
of dimension 2 or 3. But, this is not possible by Lemmas 3.2 and 3.5, This completes the
proof. [

4. Homology spheres

Lemma 4.1. Let ¥ be a pseudomanifold of dimension d. Let Y| be a proper induced sub-
complex af ¥ which is pure of dimensiond. Put L= C(Y), ¥)and Y2 = N{L, ¥). Then (a)
Y1, ¥2 are weak psendomanifolds with boundary, (b) 02 is an induced subcomplex of ¥a
and (c) @Y2=aY =¥ N ¥a.

Proof. Since ¥ is a psendomanifold and ¥y < ¥ is pure of maximum dimension, ¥ is a
weak pseudomanifold with boundary. Since the maximal simplices of ¥z are those maximal
simplices of ¥ which intersect V{L), ¥5 is pure of dimension d and each d-simplex. of ¥ is
either in ¥ orin ¥z but not in both. This implies that ¥3 is a weak pseudomanifold with
boundary. This proves (a).

LetVi=ViF ) Vo= V(L) . Then ¥V(¥) =V, u V2. Now, T is a facet of ¥z < there exists
a unigue d-face o2 € ¥z containing t < there exists a unigue d-face o) € ¥ conlaining t
« 1 154 lfacet of &¥). Therefore, &Yz =0¥; C ¥ N Ya.

Since 8> = 0¥, &Y € ¥a[V (| = ¥2[ V) N V(¥2) | Conversely, let © be a maximal face
in ¥a[ Vi ]. Since ¥z 15 pure, there exists a d-simplex o2 € ¥z such that © © 2. Since
¥i =¥Vl r € ¥ and hence there exists a d-simplex o € ¥ such that © © . This
implies that © € €Y. Thus, ¥2[V|| € &F) =TFa. So, ¥2[ V|| = &¥>. This proves (b).

Since r € ¥ N ¥z implies 1 € ¥a[ V(]| =&Y, ¥ N Y2 C 8Y5. Therefore, ¥y MYz =20Ya.
This completes the proof. O

Lemma 42, Let X be a connected combinatorial d-manifold. Let X\ be an induced
subcomplex of X which is a combinatorial d-ball. Put L = C(X |, X) and X2 = N(L, X).
Then

(a) X2 is a connected combinatorial d-manifold with boundary.
(b) [Xz] > L]
(c) If., firther, L is collapsible then X is a combinatovial sphere.
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Proof. Let Vi = V(X), V2 = V(L). Then V(X) = ¥V, U V2. As in the proof of
Lemmad. 1, X7 is pure of dimension o and each d-simplex of Xis either in X orin X3 but not
in both.

Let v be a vertex of X2, Notice that v € X \0X | = Lky,{v) € Lky(v) are (d — 1)-
spheres = Lky, (v) = Lkx{v) = v £ X2, a contradiction. So, ¢itherv € Vaorv € X,

If v & V5 then each d-simplex of X containing v is in X2 and henee LKy, (v) = Lkx (v)
is a combinatorial (d — 1)-sphere.

If v e ©X then (¥, ¥y, Ya) := (Lky(v), Lky, (v}, LK x,(v)) satisfies the hypothesis of
Lemma 4.1, Therefore, by Lemma 4.1, Lk x, (v) M Lk x,(v) = S{LK x»(v)). This implies
that the closure of LKy (u)| LK x (vl in |LKx (v)] 15 |LK x,(v)]. Smee LKy (v)] is a pl
{d — 1)-sphere and |Lky (v)|1s a pl {d — 1)-ball, by Proposition 2.5, LK x. (v} is a pl
{d — 1)-ball. Thus, Lky,{v) is a combinatonial {d — 1)-ball.

Thus X7 is a combinatorial d-manifold with boundary such that 22X (=0X |, by Lemma
4.1} 1s connected. Therefore, if X2 were disconnected, it would have a d-dimensional weak
pseudomanifold as a component. This is not possible since X is a d-dimensional pseudo-
manifold. Therefore, X7 is comected. This proves (a).

As L=X[Va], wehave L € X5 and hence L = X3[ Va]. Since, by Lemma 4.1, 82X is the
induced subcomplex of X7 on V) M V{X3), this implies that L is the simplicial complement
of X7 in X7, Then, by Proposition 2.3, | X 2| ~, |L]. This proves (b).

Now, if L~50then |L] ™, 0 and hence | X 2| >, 0. So, by Proposition 2.6, | X 2| is a pl ball.

Let o be a d-simplex in §f . Let By = |o] and By = |8/, ,\{a}|. Then By and By are
pld-balls. Let fa: By — |Xz| be apl homeomorphism. Let f = falag,. Since €8 = 082
and &{| X ) = |EX | = |0X2], f:28), — €(|X4]) is a pl homeomorphism. By Proposition
2.4, there exists a pl homeomorphism fi: B, — | X | such that filag, = f = f2lag.. Then
S U fais a pl homeomorphism from lS:.‘f'l-i-IE w | X|. Thisproves (c). O
Lemma 4.3. Let X be a combinatorial triangulation of a £a-homology d-sphere. Let X
be an induced subcomplex of X which is a combinatovial d-ball. Let L = C(X, X) and
Xo=N(L,X). Then X7 is £a-acvclic.

Prool. Let J =X, M X7 Then, by Lemma 4.1, J = €X,. So, Jis a combinatorial (d — 1)-
sphere. Therefore, Hy_1(J, £2)=F2 and Hy(J, £2)=0forallg # d—1.Also Hy (X1, £2)=
Oforallg =0. Forg = |, we have the following exact Mayer—Vietons sequence of homology
groups with coefficients in £ (see [9,12]):

AR :f+l{X}'_’H:j{J}'_’Hq'{XI}'@H;f{Xl}'_’Hq{X}'_’Hq—HJ}—‘ (7

Now, Hy(X, F2)=Framd ﬁq{X, Fa)y=0"1or g # d. By Lemma 4.2, | X1 is a connected

d-manifold with non-trivial boundary. Therefore, Hy( X2, £2) = 0 and Hy{ X7, £2) = 5.

Then, by (7), Hy(Xz2, £2) =0for 0 =g =d — | and for g =d — 1 we get the following
short exact sequence of abelian groups:

00— #2 = F3— Hy (X2, £2) = 0.

Clearly, this implies Hy_ (X2, £2) = 0. Thus, ﬁq{Xz, Fay=0forallg=0 O
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Proof of Theorem 2. Let X | be an m-vertex induced subcomplex of M which is a combi-
natorial d-ball. Let L = C(X, M) and X; = N(L, M). Then, by Part (b) of Lemma 4.2,
1X2] > IL].

Again, by Lemma 4.3, X5 is £a-acyelic and hence L is Fa-acyelic. Since n<m + 7, the
number of vertices in L is = 7. Therefore, by Theorem 1, L is collapsible. Then, by Part (c)
of Lemma 4.2, M is a combinatorial sphere. [

Proof of Corollary 3. If ¢ is a d-simplex of M then the induced subcomplex A4, | (7)
is & {d + 1)-vertex combinatorial d-ball. Therefore, by Theorem 2, M is a combinatorial
sphere. O

Proof of Corollary 4. Assume, if possible, that M admits a bistellar i-move xa for some
i=0. Let f be the core of A and 2 = A\, Then M[A] = A} (2) + S (B is a
(d 4+ 2)-verex combinatorial d-ball. Therefore, by Theorem 2, Mis a combinatonal sphere,
a contradiction. This proves the corollary. [
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