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The Bernoulli polynomials Bn(x) are defined by the generating series
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i where Br = Br(0) is the r-th Bernoulli num-
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Bi = 0 for all n ≥ 2. The odd Bernoulli number Br = 0 for r odd

> 1 and the first few are :

B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30.

The Bernoulli polynomials Bn are related to the sums of n-th powers of the
first few natural numbers as follows. For any n ≥ 1, the sum 1n+2n+· · ·+kn

is a polynomial function Sn(k) of k and Sn(x) = Bn+1(x)−Bn+1

n+1
.

In this paper, for nonzero rational numbers a, b and rational polynomials
C(y), we study the Diophantine equation1

aBm(x) = bBn(y) + C(y)

with m ≥ n >deg C +2 for solutions in integers x, y. More generally, we look
for rational solutions with bounded denominators. One says that an equation
f(x) = g(y) has infinitely many rational solutions with bounded denominator
if there exist a positive integer λ such that f(x) = g(y) has infinitely many
rational solutions x, y satisfying x, y ∈ 1

λ
ZZ. The equations of the type

f(x) = g(y) for f(x) = x(x+ 1) · · · (x+m− 1) and various polynomials g(y)
have been studied extensively during the last decade. Also the special case
when g(y) = yn−r where r is any rational number were studied earlier in [2].
We have proved there that in this case there are effective finiteness results for
x ∈ ZZ and y ∈ QI . Note that, our results in this paper do not give effective
results as in [2]. In [4], we have some results for general g. We prove :
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Main theorem
For any polynomial C(y) ∈ QI [y] and and m ≥ n > deg C + 2, the equation

aBm(x) = bBn(y) + C(y)

has only finitely many rational solutions with bounded denominators except
when m = n, a = ±b and C(y) ≡ 0; in these exceptional cases, there are
infinitely many rational solutions with bounded denominators if, and only if
a = b or a = −b and m = n is odd.
In particular, if c is a nonzero constant, then the equation

aBm(x) = bBn(y) + c

has only finitely many solutions for all m,n > 2.

Remarks
(a) The condition n > deg(C) + 2 in the theorem is optimal as can be seen
from the fact that the equation

B3(2x− 1

2
) = 8B3(y) +

3

2
y − 3

4

has infinitely many rational solutions corresponding to x = 2y − 1
2
.

(b) The particular case of the theorem when a = n, b = m,n 6= m and the
polynomial C(y) is the constant nBm −mBn, has been discussed in [1].

We shall make extensive use of the following theorem of Bilu & Tichy:

Theorem.
For non-constant polynomials f(x) and g(x) ∈ QI [x], the following are equiv-
alent:

(a) The equation f(x) = g(y) has infinitely many rational solutions with
a bounded denominator.

(b) We have f = φ(f1(λ)) and g = φ(g1(µ)) where λ(x), µ(x) ∈ QI [X] are
linear polynomials, φ(x) ∈ QI [X], and (f1(x), g1(x)) is a standard pair over
QI such that the equation f1(x) = g1(y) has infinitely many rational solutions
with a bounded denominator.

Standard pairs are defined as follows. In what follows, a and b are nonzero
elements of some field, m and n are positive integers, and p(x) is a nonzero
polynomial (which may be constant). A standard pair (f, g) is one of the
following.
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Standard Pairs

A standard pair of the first kind is

(xt, axrp(x)t) or (axrp(x)t, xt)

where 0 ≤ r < t, (r, t) = 1 and r + deg p(x) > 0.

A standard pair of the second kind is

(x2, (ax2 + b)p(x)2) or ((ax2 + b)p(x)2, x2).

A standard pair of the third kind is

(Dk(x, at), Dt(x, ak))

where (k, t) = 1. Here Dt is the t-th Dickson polynomial.

A standard pair of the fourth kind is

(a−t/2Dt(x, a), b−k/2Dk(x, a))

where (k, t) = 2.

A standard pair of the fifth kind is

((ax2 − 1)3, 3x4 − 4x3) or (3x4 − 4x3, (ax2 − 1)3).

By a standard pair over a field k, we mean that a, b ∈ k, and p(x) ∈ k[x].

The theorem of Bilu and Tichy above shows the relevance of the following
definition:

A decomposition of a polynomial F (x) ∈ C[x] is an equality of the form
F (x) = G1(G2(x)), where G1(x), G2(x) ∈ C[x]. The decomposition is called
nontrivial if deg G1 > 1, deg G2 > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are called
equivalent if there exist a linear polynomial l(x) ∈ C[x] such that G1(x) =
H1(l(x)) and H2(x) = l(G2(x)). The polynomial called decomposable if it has
atleast one nontrivial decomposition, and indecomposable otherwise.
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We shall also use the following result due to Bilu et al [1] :
Theorem

Let m ≥ 2. Then,
(i) Bm(x) is indecomposable if m is odd and,
(ii) if m = 2k, then any nontrivial decomposition of Bm(x) is equivalent

to Bm(x) = h((x− 1
2
)2).

Proof of main theorem.
We note once for all that we may assume a = 1 as we may replace b by b/a
and the polynomial C(y) by C(y)/a and the assertions remain the same.
First, we deal with the case m = n.

Case (1) Suppose m = n and m is an odd integer.
In this case, the equation looks like Bm(x) = bBm(y) + C(y) · · · · · · · · · · · · (1)
Assume that equation (1) has infinitely many rational solutions with bounded
denominator. Then by [3], Bm(x) = φ(f1(λ(x))) and bBm(y) + C(y) =
φ(g1(µ(y))) where λ(x), µ(x) ∈ QI [X] are linear polynomials φ(x) ∈ QI [X]
and (f1(x), g1(x)) is a standard pair over Q such that f1(x) = g1(y) has
infinitely many rational solutions with bounded denominator. Now as m is
an odd integer, by [1] Bm(x) is indecomposable.
Therefore, either deg φ(x) = m and deg f1(x) = 1 or deg φ(x) = 1 and deg
f1(x) = m.

(i) Let deg φ(x) = m. Then Bm(x) = φ(Ax + B) for some A,B ∈ QI .
Therefore for some u, v ∈ QI , Bm(ux+v) = φ(x). This gives bBm(x)+C(x) =
Bm(rx+ s). Hence C(x) = Bm(rx+ s)− bBm(x). Now as deg C(x) < m−2,
the coefficients of xm, xm−1 and xm−2 are zero on the left hand side of the
above equation.
Equating the coefficient of xm on both sides, we get rm = b. We have a
contradiction already when b is not an m-th power in QI . If it is an m-th
power, then there is a unique rational solution r of rm = b as m is odd.
Similarly, equating the coefficients of xm−1 on both sides, we get s = 1−r

2
.

Finally, the coefficient of xm−2 gives

0 =
m(m− 1)rm−2

2
(s2 − s +

1− r2

6
).

Putting the value of s, we get r2 = 1 i.e., r = ±1. Clearly, the two values of
s corresponding to r = 1 and r = −1 are, respectively, s = 0 and s = 1. But,
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both of these imply that C is identically zero because Bm(1− x) = −Bm(x)
for odd m.

(ii) Suppose deg φ(x) = 1 and deg f1(x) = m.
Then, as m is an odd integer, (f1(x), g1(x)) can be either first or third kind
of standard pair. Since here (deg f1, deg g1) = m 6= 1, (f1(x), g1(x)) can only
be first kind. So either f1(x) = xm or g1(x) = xm. Now let φ(x) = φ0 +φ1(x)
for some φ0, φ1 ∈ QI . Therefore, either
Bm(rx + s) = φ0 + φ1x

m or bBm(rx + s) + C(rx + s) = φ0 + φ1x
m for some

r, s ∈ Q with r 6= 0.
Now as deg C(x) < m−2, coefficients of xm−1 and xm−2 on the left hand side
of the above equations come only from the Bm part. Equating the coefficients
of xm−2, we get 6s2 − 6s + 1 = 0, s ∈ QI which is not possible.
Therefore when m = n and m is an odd integer equation (1) has only finitely
many solutions unless b = ±1 and C ≡ 0.

Case (2) m = n is an even integer 2d.
In this case, the equation becomes B2d(x) = bB2d(y) + C(y) · · · · · · · · · (2)
Assume that this equation has infinitely many rational solutions with bounded
denominator. Then, as in the previous case, we have by [3],
B2d(x) = φ(f1(λ(x))) and bB2d(y) + C(y) = φ(g1(µ(y))) where λ(x), µ(x) ∈
QI [X] are linear polynomials, φ(x) ∈ QI [X] and (f1(x), g1(x)) is a standard
pair over Q such that f1(x) = g1(y) has infinitely many rational solutions
with bounded denominator. Now as m is even, by [1] either the above is not
a nontrivial decomposition (that is, deg φ = 2d or deg φ = 1) or, B2d(x) is
equivalent to φ((x− 1

2
))2 where deg φ(x) = d.

In the former case, if deg φ = 2d, then we have

B2d(rx + s) = bB2d(x) + C(x)

for some r, s ∈ QI with r 6= 0.
Comparing the coefficients of x2d, x2d−1, x2d−2 we have

r2d = b , r = 1− 2s , s(s− 1) = 0.

This gives rx + s = x or 1 − x and so, b = 1 and C(x) ≡ 0 since B2d(x) =
B2d(1− x).
If deg φ = 1, then since both f1, g1 have degree 2d > 2, the standard pair
(f1, g1) must be of the first kind.
Thus, we have r, s ∈ QI with r 6= 0 so that either

B2d(rx + s) = φ0 + φ1x
2d
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or
bB2d(rx + s) + C(rx + s) = φ0 + φ1x

2d.

Clearly, either of these implies that s2 − s + 1
6

= 0 exactly as in case (1).
Now, we consider the case when deg φ = d; then for some r, s ∈ QI , B2d(rx+
s) = φ((x− 1

2
))2 and

bB2d(x) + C(x) = φ(kx2 + lx + m), for some k, l, m ∈ QI with k 6= 0.
Let φ(x) = φ0 + φ1x + .... + φdx

d.

We digress to make a simple observation:

Lemma
If B2d(rx+ s) = φ((x− 1

2
))2 for some r, s ∈ QI with r 6= 0, then (r, s) = (1, 0)

or (−1, 1). In particular, B2d(x) = φ((x− 1
2
)2).

Proof
By comparing the coefficients of x2d and x2d−1 on both sides, it easily follows
that (r, s) = (1, 0) or (−1, 1). As B2d(x) = B2d(1 − x), we have B2d(x) =
φ((x− 1

2
)2).

Returning to our case, by the lemma, we have B2d(x) = φ((x− 1
2
)2).

Therefore we have bφ((x− 1
2
)2) = φ(kx2 + lx + m)− C(x).

Also, the equality B2d(x) = φ((x− 1
2
)2) gives

x2d − dx2d−1 +
d(2d− 1)

6
x2d−2 + ... = φ0 + φ1(x− 1

2
)2 + .... + φd(x− 1

2
)2d.

By comparing the coefficients of x2d in this equation, we get φd = 1. Further,
the coefficients of x2d−1 give φd−1 = −d(2d−1)

12
.

Now consider the equation, bφ((x− 1
2
))2 = φ(kx2 + lx + m)− C(x).

b(φ0 +φ1(x− 1
2
)2 + ....+φd(x− 1

2
)2d) = φ0 +φ1(kx2 + lx+m)+ ....+φd(kx2 +

lx + m)d − C(x).
As deg C(x) < 2d − 2, coefficients of x2d, x2d−1, x2d−2 do not have any
contribution from C(x).
By comparing the coefficients of x2d on both sides, we get bφd = φdk

d. This
implies kd = b which either has no solutions in rational k or one or two
solutions according as whether d is odd or even.
By comparing the coefficients of x2d−1 on both sides we get bφd

(
2d

2d−1

)
(−1

2
) =

φd

(
d

d−1

)
kd−1l. This gives k = −l.

By comparing the coefficients of x2d−2 we get,
φd−1(1− 1

k
) = d(m

k
− 1

4
). Putting the value of φd−1, we get m = 2d−1+(4−2d)k

12
.
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Therefore, in this case

kx2 + lx + m = kx2 − kx +
2d− 1 + (4− 2d)k

12
.

By Bilu - Tichy’s theorem, if equation (2) has infinitely many rational solu-
tions with bounded denominator, then

(x− 1

2
)2 = ky2 − ky +

2d− 1 + (4− 2d)k

12

has infinitely many rational solutions with bounded denominator. This is
seen to be equivalent to considering the equation

X2 − kY 2 =
(2d− 1)(1− k)

12
.

Unless the right hand side is zero, such an equation has only finitely many
rational solutions with bounded denominators, by Dirichlet’s unit theorem.
Now, the right hand side is zero if, and only if, k = 1 and then we have
b = 1, l = −1,m = 1/4 and C(x) = φ(kx2 + lx + m) − φ((x − 1

2
)2) is

identically zero.

Therefore when m = n = 2d, equation (2) has only finitely many rational
solutions with bounded denominator unless b = 1 and C ≡ 0.

Case (3) m > n > deg C(y) + 2 and m is odd.
The equation is
Bm(x) = bBn(y) + C(y) · · · · · · · · · · · · (3)
Suppose that the equation (3) has infinitely many rational solutions with a
bounded denominator. Then as before, by [3] we have, Bm(x) = φ(f1(λ(x)))
and bBn(y) + C(y) = φ(g1(µ(y))) where λ(x), µ(x) ∈ QI [X] are linear poly-
nomials, φ(x) ∈ QI [X] and (f1(x), g1(x)) is a standard pair over Q such that
f1(x) = g1(y) has infinitely many rational solutions with bounded denomi-
nator.
Now as m is an odd integer, by [1] Bm(x) is indecomposable. Therefore,
either deg φ(x) = m and deg f1(x) = 1 or deg φ(x) = 1 and deg f1(x) = m.
If deg φ(x) = m, then n = m( degg1(µ(x))). Since deg g1(µ(x)) ≥ 1, we get
n ≥ m which is contradiction.
Hence deg φ(x) = 1. This implies deg f1(x) = m and g1(y) = n. Let
φ(x) = φ0 + φ1x for some rational numbers φ0, φ1. As m is odd, the stan-
dard pair (f1, g1) can only be of the 1st or of the 3rd kind.
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(i) Suppose (f1, g1) is a standard pair of the first kind. Then, either f1(x) =
xm or g1(x) = xn. Therefore,
either Bm(rx+s) = φ(xm) = φ0+φ1x

m or bBn(rx+s)+C(rx+s) = φ(xn) =
φ0 + φ1x

n.
Now as deg C(x) < n − 2, coeficients of xn, xn−1, xn−2 in the equation
bBn(rx + s) + C(rx + s) = φ0 + φ1x

n are same as that of bBn(rx + s).
Therefore, either the coefficient of xm−2 in Bm(rx+s) is zero or the coefficient
of xn−2 in bBn(rx + s) + C(rx + s) is zero. This gives as in the previous case
6s2 − 6s + 1 = 0, s ∈ QI which is not possible. Therefore (f1, g1) can not be
a standard pair of the first kind.

(ii) Suppose (f1, g1) is a standard pair of the third kind.
That is, (f1, g1) = (Dm(x, αn), Dn(x, αm)) and (m,n) = 1.
Therefore, Bm(rx + s) = φ0 + φ1(Dm(x, αn).

This means
∑n

i=0

(
n
i

)
Bn−i(rx + s)i = φ0 + φ1

∑[m
2

]

i=0dm,i(x
m−2i),

where dm,i = m
m−i

(
m−i

i

)
(−αn)i. We will compare the coefficients on both

sides.
Equating the coefficients of xm on both sides, we have rm = φ1.
The coefficient of xm−1 on the right hand side is zero and, so we get

(
m
1

)
rm−1s+(

m
m−1

)
B1r

m−1 = 0.

This gives s = 1
2
.

The coefficients of xm−2 give m(m−1)
12

rm−2(6s2 − 6s + 1) = m
m−1

(
m−1

1

)
(−αn)φ1

which on simplification yields r2αn = m−1
24

.
By considering the coefficients of xm−4 and on using the values of φ1, r2αn,
we get m = 9

2
which is a contradiction. Hence (f1, g1) can not be a standard

pair of the third kind also.

This implies that when m > n > deg C(y)+2 and m is odd, the equation (3)
can have only finitely many rational solutions with bounded denominator.

Case (4) m > n > deg C(y) + 2 and m is an even integer 2d.
Assume that equation Bm(x) = bBn(y) + C(y) · · · · · · · · · · · · (4)
has infinitely many rational solutions with bounded denominator. Then as
before, by [3],
B2d(x) = φ(f1(λ(x))) and bBn(y) + C(y) = φ(g1(µ(y))) where λ(x), µ(x) ∈
QI [X] are linear polynomials, φ(x) ∈ QI [X] and (f1(x), g1(x)) is a standard
pair over QI such that f1(x) = g1(y) has infinitely many rational solutions
with bounded denomnator.
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Now as m is even, by [1], either the above decomposition is trivial or B2d(x)
is equivalent to φ((x − 1

2
))2 where deg φ(x) = d and bBn(y) + C(y) =

φ(g1(µ(y))).
We first consider the case of a trivial decomposition for B2d; that is, either
deg φ = 1 or deg φ = 2d. The latter cannot happen because deg φ divides n
which is < 2d.
Suppose deg φ = 1. Then, deg f1 = 2d and deg g1 = n.
Now, since 2d > n > 2, the standard pair is not of the second kind. If it is
of the first kind, we have r, s ∈ QI with r 6= 0 and either

B2d(rx + s) = φ0 + φ1x
2d

or
bBn(rx + s) + C(rx + s) = φ0 + φ1x

n.

In both cases, we have a contradiction as before.
If (f1, g1) is of the third kind, the very same computation done in case (3)
gives a contradiction as it shows that 2d = 9/2.
If (f1, g1) is of the fifth kind, then 2d = 6, n = 4 and

B6(x) = φ0 + φ1(a(rx + s)2 − 1)3.

This means that the derivative B′
6(x) has a multiple root; however, B′

6(x) =
6B5(x) and one knows that Bodd(x) has only simple roots by a result of
Brillhart.
Alternatively, even by direct computation, comparison of coefficients of x6, x5

and x4 gives r2 = 12/5a, s = −r/2, φ1 = (5/12)3 and then the coefficients of
x2 do not match.
Hence, we are left with the case of a nontrivial decomposition; that is, deg φ =
d. Hence n = d (degg1(µ(y))). As 2d = m > n, this implies deg g1(µ(y)) = 1.
Therefore d = n = m

2
. Hence we have, bBn(ux + v) + C(ux + v) = φ(x) and

B2n(x) = φ(rx + s)2 for some rational numbers u, v, r, s, u 6= 0, r 6= 0. By
eliminating φ(x), we get

B2n(x) = bBn(kx2 + lx + m) + C(kx2 + lx + m).

We now use the property B2n(x + 1)− B2n(x) = 2nx2n−1 of Bernoulli poly-
nomials; we have

bBn(k(x + 1)2 + l(x + 1) + m)− bBn(kx2 + lx + m)
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+C(k(x + 1)2 + l(x + 1) + m)− C(kx2 + lx + m) = 2nx2n−1.

Since, the degree of C is < n − 2, 2 degC − 1 < 2n − 5. Hence in the
above equation, there is no contribution from C(x) in the coefficients of
x2n−i, i = 0, · · · , 5. Consider the coefficients of x2n−i, i = 0, · · · , 5 in the
equation bBn(k(x + 1)2 + l(x + 1) + m)− bBn(kx2 + lx + m) = 2nx2n−1.

The coefficient of x2n−1 = 2n = b
(

n
n−1

)
kn−1(2k+l)−b

(
n

n−1

)
kn−1l This implies

knb = 1.
Assume that b is an n-th power in QI ; otherwise we are already trough.

The coefficient of x2n−2 = 0 implies

0 =

(
n

n− 1

)
kn−1(k+l+m)−

(
n

n− 1

)
kn−1m+

(
n

n− 2

)
kn−2(2k+l)2−

(
n

n− 2

)
kn−2l2.

This gives k = −l.

The vanishing of the coefficient of x2n−3 gives
0 =

(
n
2

)
kn−2(2k+l)m−

(
n
2

)
kn−22lm+

(
n
3

)
kn−3(2k+l)3−

(
n
3

)
kn−3l3+

(
n

n−1

)(
n−1
n−2

)
B1k

n−2(2k+

l)−
(

n
n−1

)(
n−1
n−2

)
B1k

n−2l.

Simplifying this we get m = 1
2
− k(n−2)

6
. Finally, using the vanishing of the

coefficient of x2n−5 gives us

(2n− 1)(n− 4)k2 + 15 = 0.

This immediately shows n < 4. The only possibility is n = 3 but this gives
k2 = 3 and is impossible for a rational k.

Therefore when m > n > degC +2 and m is even then equation (4) has only
finitely many rational solutions with bounded denominator.
This proves the theorem in all cases.
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