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Abstract

In this article we obtain a general polynomial identity in k& variables, where £ > 2 is an
arbitrary positive integer. We use this identity to give a closed-form expression for the
entries of the powers of a £ x k£ matrix. Finally, we use these results to derive various
combinatorial identities.

1. INTRODUCTION

In [4], the second author had observed that the following ‘curious’ polynomial identity
holds:

fn—1 . .
Z(—l)z( . >(I+y)”2l(f€y)’=x"+fv"1y+~-+xy”1+y"-

The proof was simply observing that both sides satisfied the same recursion. He had also
observed (but not published the result) that this recursion defines in a closed form the entries
of the powers of a 2 x 2 matrix in terms of its trace and determinant and the entries of the
original matrix. The first author had independently discovered this fact and derived several
combinatorial identities as consequences [2].

In this article, for a general k, we obtain a polynomial identity and show how it gives a
closed-form expression for the entries of the powers of a k£ x k matrix. From these, we derive
some combinatorial identities as consequences.
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2. MAIN RESULTS

Throughout the paper, let K be any fized field of characteristic zero. We also fix a positive
integer k. The main results are the following two theorems:

Theorem 1. Let xq,--- ,x be independent variables and let sq,--- , s, denote the various
symmetric polynomials in the x;’s of degrees 1,2 --- |k respectively. Then, in the polynomial
ring K[xq,--- , x|, for each positive integer n, one has the identity

T1 .72 Tk __
g I1I2---£L’k =

ri+-+r=n

D7 lia, o i m)si 2T gy (1) s
2ia+3iz+-+kip<n

where
(n — iy — 203 — - — (k — 1)i,)!
iol il (n — 2 — 3ig — -+ — (kig)!

Theorem 2. Suppose A € My(K) and let

C(i27 e 7ik7n) =

TF — )T 4 T2 oo (= 1)y T
denote its characteristic polynomial. Then, for all n > k, one has

A" = b 1 AP 4 b 0 AR

where
bk—l = CL(TL —k + 1),
bp—2 =a(n—k+2)—sja(n —k+1),
by =a(n—1) —sia(n —2) + -+ (=1)"2s;_sa(n — k + 1),
bo = a(n) — sia(n — 1) + -+ (=1)* 'sp_ja(n — k + 1)
= (=D spa(n — k).
and
a(n) = clin, -+ yig,n)sy 2T ()il (<) ),
with
. . . (n—12—223——(k‘—1)zk)'
o) = o — 203~ By — -~ — (hig)!

as in Theorem 1.
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Proof of Theorems 1 and 2. In Theorem 1, if a(n) denotes either side, it is straightforward
to verify that

a(n) = sia(n — 1) — spa(n — 2) 4+ - + (=) tspa(n — k).

Theorem 2 is a consequence of Theorem 1 on using induction on n.
OJ

The special cases £ = 2 and k = 3 are worth noting for it is easier to derive various
combinatorial identities from them.

Corollary 1. (i) Let A € M3(K) and let X® = tX? — sX + d denote the characteristic
polynomial of A. Then, for alln > 3,

(21) A" = an,lA —+ an,gAd](A) -+ (CLn — tCLn,I) [,
where
(1 ] — 7 =929 o
a, = Z (_1)z (Z +]) (n ' (4 . ])tn—2z—3jszdj
2i+3j<n J vty

forn >0 and ay = 1.

(ii) Let B € My(K) and let X* = t X —d denote the characteristic polynomial of B. Then,
for alln > 2,

B" =b,I + b, 1Adj(B)
for alln > 2, where

n—1 . o
bn — -1 ztn—2zdz'
(e
Corollary 2. Let 0 € K, B € My(K) and t denote the trace and d the determinant of B.
We have the following identity in My(K) :
(an_l — Gan_g)B + ((Zn — (9 + t)an_l + Gan_gt)f = yn—lB + (yn - tyn_l)],

where

an= > (-1) (7’ H) (n —i Qj) (0 + )" 27390t + d)'(6d)

2i+3j<n J i+

and

n—1 - ;o
L = -1 ztn—2zdz.
Y = ) ( ; >( )
In particular, for any 0 € K, one has
by — (0 + 1)b—q + 0b,—2 =1,

where

b= (—1)i(i fj) (” —i 2j> (6 +2)"273(1 4 20) 67

2i+3j<n J it
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Corollary 3. The numbers c, = 22i+3j:n(—l)i(i?) 2137 satisfy
Cp + Cne1 — 2¢—0 = 1.

Proof. This is the special case of Corollary 2 where we take # = —2. Note that the sum
defining c¢,, is over only those i, j for which 2¢ 4+ 35 = n. OJ

Note than when k£ = 3, Theorem 1 can be rewritten as follows:
Theorem 3. Let n be a positive integer and x, y, z be indeterminates. Then
(t+g\(n—1i—2) o , ,
D S (R | L e R A e
0il J 1+
i+37<n
Ty (:L.nJrl _ yn+1) — Tz (:L,n+1 _ ZnJrl) + Yz (ynJrl _ Zn+1)

a (z—y) (x—2) (y—2)

Proof. In Corollary 1, let

r+y+z 10

A=|—-2y—z2z—yz 0 1

TYZ 00
Thent=x+y+z, s =xy+xz+yz and d = xyz. It is easy to show (by first diagonalizing
A) that the (1,2) entry of A" equals the right side of (2.2), with n + 1 replaced by n, and
the (1,2) entry on the right side of (2.1) is a,,_1. O

Corollary 4. Let x and z be indeterminates and n a positive integer. Then
e ] — =27 S ) .
Z (_1)z(l ‘|‘]) <TL . [ ' ]) (21: + Z)n—2z—33(x2 + 2562)1(1’2 )j
2i+3j<n J vt
x2+n + nxl—i—n (l’ _ Z) _ 2$1+n 2z + 22+n

(x—2)°

Proof. Let y — x in Theorem 3. U

Some interesting identities can be derived by specializing the variables in Theorem 1. For
instance, in [5], it was noted that Binet’s formula for the Fibonacci numbers is a consequence
of Theorem 1 for k£ = 2. Here is a generalization.

Corollary 5. (Generalization of Binet’s formula)
Let the numbers Fy(n) be defined by the recursion

Fr(0) =1, Fx(r) =0, Vr <0,

Then, we have

irlig! - - igl(n — 209 — 3iz — -+ - — kiy)!
SR <n (1702 k! 2 3 k)
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Further, this equals ATt - NFE where N, 1 < i < k are the roots of the equation

ri+-+rE=n

TF — Tkl —Tk=2_ ... 1 =0.
Proof. The recursion defining Fj(n)’s corresponds to the case s; = —sy = -+ = (=1)k"ls, =
1 of the theorem. O

Corollary 6.

k ij
| | i (R\\" _ (n+k—1
ZC(/LQ?... ;Zk’n)an ((_]‘)j 1k J(j)) - ( k )
Jj=2
where
c(is, ik, ) = iol - igl(n — 2ig — 3ig — -+ - — klk)'

Proof. Take x; = 1 for all ¢ in Theorem 1. The left side of Theorem 1 is simply the sum
ZT1+---+rk=n L. [

From Theorem3 we have the following binomial identities as special cases.

Proposition 1. (i) Let X be the unique positive real number satisfying \*> = X+ 1. Let z,y
denote the complex conjugates such that xy = X\, x +y = A, and let z = —%. Then,

3 (_1)j(”;2.7>: Sy

2i+3j<n r+s+t=n
Ty (xn—l—l _ yn—l—l) —xz (J}n+1 _ Zn—l—l) + Yz (yn+1 _ Zn+1)

(z—y) (x—2) (y—2)

(i)
> o (T (") = lwrar

2i+3j<n J

(iii)

Z (n —j 2j) (a3 — (3n + 4)2“9*1 + (—1)"_

(i)
I (R ERE

J
(L Vo)™ = (1= VB (14 VB + (1= VB 1
2v/3 6 3
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3. COMMUTATING MATRICES

In this section we derive various combinatorial identities by writing a general 3 x 3 matrix
A as a product of commuting matrices.

Proposition 2. Let A be an arbitrary 3 x 3 matriz with characteristic equation x> — tx? +
sx—d=0,d#0. Suppose p is arbitrary, with p> + p’t +ps+d #0, p#0, —t. Ifn is a
positive integer, then

(31) A"= (p +p2t+sp+d)”3zniz( )( )(7’—;—’?)

ey (e ()

(pA* — Ap(p+t) —dI) (A+pl),

Proof. This follows from the identity

B -1

PP APt sptd
after raising both sides to the n-th power and collecting powers of A. Note that the two
matrices pA%2 — Ap(p+t) —d I and A + p I commute. O

Corollary 7. Let p, x, y and z be indeterminates and let n be a positive integer. Then

ZZZ ( ) ( ) (T _? B k)(—l)j—HH—r (p(Pvme;er z)2>j

=0 j=0 k=0
" (p+x+y+z)kxy(x”—y’")—xz(m’"—zT)—i-yz(y’"—z”)
P p+z+y+2)r
=(zy (" —y") —zz @" = 2")+yz (y" —2"))
X (P3+p2 (fv+y+2)+p(Iy+m+y2)+xy2>"
bry=z

Proof. Let A be the matrix from Theorem 3 and compare (1,1) entries on both sides of
(3.1). 0

Corollary 8. Let p, x and z be indeterminates and let n be a positive integer. Then

EEEO0 )52

r=0 j=0 k=0

y (p+2x+z)er1+7"—a:Tz—r:L”"z+zl+T
p (p+2x+2)
1+n) P 4+p? 2o +2)+p (22 +2r2) +222\"
paz

14+n

:(nx —a2"z—nz"z+z
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Proof. Divide both sides in the corollary above by x — y and let y — . |

Corollary 9. Let p and x be indeterminates and let n be a positive integer. Then

Z ) ( ) ( ) (T _ j _ k) (— 1)kt <p<p ;3@2)3' (p ; 3:c>k r (;(;pgz)—:ﬂ

r=0 j=0 k=0
n(l+n)z7 1 ((p+2)3\"
2 pad

Proof. Divide both sides in the corollary above by (z — 2)? and let z — z. O

Corollary 10. Let p be an indeterminate and let n be a positive integer. Then

Sy (V) (o)t e

r —
r=0 j=0 k=0 J

Proof. Replace p by pz in the corollary above and simplify. O

Various combinatorial identities can be derived from Theorem 3 by considering matrices A
such that particular entries in A™ have a simple closed form. We give four examples.

Corollary 11. Let n be a positive integer.
(i) If p # 0, —1, then

EEE ()0 Lo T

T — n
r=0 7=0 k=0 J p

(ii) Let F, denote the n-th Fibonacci number. If p # 0,—1,¢ or 1/¢ (where ¢ is the golden
ratio, then

SYS (), ever e

/”'__
r=0 j=0 k=0 J

(iii) If p # 0, —1 or —2, then

ZZZ ( ) ( ) ( o k) (1 p 4P - 1)
J =(2"—1)((1+p)2(p+2))”

2p
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(i) If p#0,—1,—g or —h and gh # 0, then

EEEQ( - Jorr v

r=0 j=0 k=0 eI
— (" + ") ((1 +p)(gg4}:pp)(h +p))”

Proof. The results follow from considering the (1,2) entries on both sides in Theorem 3 for
the matrices

g+h (9—h)°
110 110 3 10 5 1 0
01o0],lto00],[-20 0], g+h ,
001/ \0o o0 1 0 0 1 — 0
0 0 1
respectively. O

4. A RESULT OF BERNSTEIN

In [1] Bernstein showed that the only zeros of the integer function
(n—27

=S (" )

720 J

are at n = 3 and n = 12. We use Corollary 1 to relate the zeros of this function to solutions
of a certain cubic Thue equation and hence to derive Bernstein’s result.

Let

1
A=1| 0
-1

o O =
O = O

With the notation of Corollary 1,t =1, s =0, d = —1, so that

a (n ) (n),
3j<n ']
and, for n > 4,

A" = f(n—=2)A" + (f(n) — f(n = 2))A+ (f(n) — f(n —1)) 1
f(n) fln—1) f(n2))

—f(n=2) —f(n=3) —f(n—4)
—fn=1) —fn-2) —f(n-3)

The last equality follows from the fact that f(k+ 1) = f(k) — f(k —2), for k > 2.
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Now suppose f(n —2) = 0. Since the recurrence relation above gives that f(n —4) =
—f(n—1) and f(n) = f(n —1) — f(n — 3), it follows that
fln=1)=f(n=3) fln-1) 0
(1) = det(4") = 0 “fn=3) fn—1)
—f(n—1) 0 —f(n—3)

=—f(n =17 = f(n =3+ f(n—1)f(n - 3)".
Thus (z,y) = =(f(n — 1), f(n — 3)) is a solution of the Thue equation
2+ —xy? = 1.

One could solve this equation in the usual manner of finding bounds on powers of funda-
mental units in the cubic number field defined by the equation 2® — x4+ 1 = 0. Alternatively,
the Thue equation solver in PARI/GP [3] gives unconditionally (in less than a second) that
the only solutions to this equation are

(C(Z,y) S {<47 _3)7 <_17 1)7 (1?0)7 (07 1)7 (17 1)}7

leading to Bernstein’s result once again.
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