POWERS OF A MATRIX AND COMBINATORIAL IDENTITIES

J. Mc Laughlin

Mathematics Department, Trinity College, 300 Summit Street, Hartford, CT 06106-3100 james.mclaughlin@trincoll.edu

B. Sury

Stat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560 059, India. sury@isibang.ac.in

Received: 12/09/04, Accepted: 6/23/05, Published: 6/29/05

Abstract

In this article we obtain a general polynomial identity in k variables, where $k \geq 2$ is an arbitrary positive integer. We use this identity to give a closed-form expression for the entries of the powers of a $k \times k$ matrix. Finally, we use these results to derive various combinatorial identities.

1. Introduction

In [4], the second author had observed that the following 'curious' polynomial identity holds:

$$\sum_{i} (-1)^{i} \binom{n-i}{i} (x+y)^{n-2i} (xy)^{i} = x^{n} + x^{n-1}y + \dots + xy^{n-1} + y^{n}.$$

The proof was simply observing that both sides satisfied the same recursion. He had also observed (but not published the result) that this recursion defines in a closed form the entries of the powers of a 2×2 matrix in terms of its trace and determinant and the entries of the original matrix. The first author had independently discovered this fact and derived several combinatorial identities as consequences [2].

In this article, for a general k, we obtain a polynomial identity and show how it gives a closed-form expression for the entries of the powers of a $k \times k$ matrix. From these, we derive some combinatorial identities as consequences.

2. Main Results

Throughout the paper, let K be any fixed field of characteristic zero. We also fix a positive integer k. The main results are the following two theorems:

Theorem 1. Let x_1, \dots, x_k be independent variables and let s_1, \dots, s_k denote the various symmetric polynomials in the x_i 's of degrees $1, 2 \dots, k$ respectively. Then, in the polynomial ring $K[x_1, \dots, x_k]$, for each positive integer n, one has the identity

$$\sum_{r_1+\dots+r_k=n} x_1^{r_1} x_2^{r_2} \cdots x_k^{r_k} = \sum_{\substack{2i_2+3i_2+\dots+ki_k \le n}} c(i_2,\dots,i_k,n) s_1^{n-2i_2-3i_3-\dots-ki_k} (-s_2)^{i_2} s_3^{i_3} \cdots ((-1)^{k-1} s_k)^{i_k},$$

where

$$c(i_2, \dots, i_k, n) = \frac{(n - i_2 - 2i_3 - \dots - (k - 1)i_k)!}{i_2! \cdots i_k! (n - 2i_2 - 3i_3 - \dots - (ki_k)!}.$$

Theorem 2. Suppose $A \in M_k(K)$ and let

$$T^k - s_1 T^{k-1} + s_2 T^{k-2} + \dots + (-1)^k s_k I$$

denote its characteristic polynomial. Then, for all $n \geq k$, one has

$$A^{n} = b_{k-1}A^{k-1} + b_{k-2}A^{k-2} + \dots + b_0 I,$$

where

$$b_{k-1} = a(n-k+1),$$

$$b_{k-2} = a(n-k+2) - s_1 a(n-k+1),$$

$$\vdots$$

$$b_1 = a(n-1) - s_1 a(n-2) + \dots + (-1)^{k-2} s_{k-2} a(n-k+1),$$

$$b_0 = a(n) - s_1 a(n-1) + \dots + (-1)^{k-1} s_{k-1} a(n-k+1)$$

$$= (-1)^{k-1} s_k a(n-k).$$

and

$$a(n) = c(i_2, \dots, i_k, n) s_1^{n-i_2-2i_3-\dots-(k-1)i_k} (-s_2)^{i_2} s_3^{i_3} \cdots ((-1)^{k-1} s_k)^{i_k},$$

with

$$c(i_2, \dots, i_k, n) = \frac{(n - i_2 - 2i_3 - \dots - (k - 1)i_k)!}{i_2! \cdots i_k! (n - 2i_2 - 3i_3 - \dots - (ki_k)!}.$$

as in Theorem 1.

Proof of Theorems 1 and 2. In Theorem 1, if a(n) denotes either side, it is straightforward to verify that

$$a(n) = s_1 a(n-1) - s_2 a(n-2) + \dots + (-1)^{k-1} s_k a(n-k).$$

Theorem 2 is a consequence of Theorem 1 on using induction on n.

The special cases k=2 and k=3 are worth noting for it is easier to derive various combinatorial identities from them.

Corollary 1. (i) Let $A \in M_3(K)$ and let $X^3 = tX^2 - sX + d$ denote the characteristic polynomial of A. Then, for all $n \geq 3$,

$$(2.1) A^n = a_{n-1}A + a_{n-2}Adj(A) + (a_n - ta_{n-1})I,$$

where

$$a_n = \sum_{2i+3j \le n} (-1)^i \binom{i+j}{j} \binom{n-i-2j}{i+j} t^{n-2i-3j} s^i d^j$$

for n > 0 and $a_0 = 1$.

(ii) Let $B \in M_2(K)$ and let $X^2 = t X - d$ denote the characteristic polynomial of B. Then, for all n > 2,

$$B^n = b_n I + b_{n-1} A dj(B)$$

for all $n \geq 2$, where

$$b_n = \sum \binom{n-i}{i} (-1)^i t^{n-2i} d^i.$$

Corollary 2. Let $\theta \in K$, $B \in M_2(K)$ and t denote the trace and d the determinant of B. We have the following identity in $M_2(K)$:

$$(a_{n-1} - \theta a_{n-2})B + (a_n - (\theta + t)a_{n-1} + \theta a_{n-2}t)I = y_{n-1}B + (y_n - t y_{n-1})I,$$

where

$$a_n = \sum_{2i+3j \le n} (-1)^i \binom{i+j}{j} \binom{n-i-2j}{i+j} (\theta+t)^{n-2i-3j} (\theta t + d)^i (\theta d)^j$$

and

$$y_n = \sum \binom{n-i}{i} (-1)^i t^{n-2i} d^i.$$

In particular, for any $\theta \in K$, one has

$$b_n - (\theta + 1)b_{n-1} + \theta b_{n-2} = 1,$$

where

$$b_n = \sum_{2i+3j \le n} (-1)^i \binom{i+j}{j} \binom{n-i-2j}{i+j} (\theta+2)^{n-2i-3j} (1+2\theta)^i \theta^j.$$

Corollary 3. The numbers
$$c_n = \sum_{2i+3j=n} (-1)^i {i+j \choose j} 2^i 3^j$$
 satisfy $c_n + c_{n-1} - 2c_{n-2} = 1$.

Proof. This is the special case of Corollary 2 where we take $\theta = -2$. Note that the sum defining c_n is over only those i, j for which 2i + 3j = n.

Note than when k = 3, Theorem 1 can be rewritten as follows:

Theorem 3. Let n be a positive integer and x, y, z be indeterminates. Then

$$(2.2) \sum_{2i+3j\leq n} (-1)^i \binom{i+j}{j} \binom{n-i-2j}{i+j} (x+y+z)^{n-2i-3j} (xy+yz+zx)^i (xyz)^j$$

$$= \frac{xy (x^{n+1}-y^{n+1}) - xz (x^{n+1}-z^{n+1}) + yz (y^{n+1}-z^{n+1})}{(x-y) (x-z) (y-z)}.$$

Proof. In Corollary 1, let

$$A = \begin{pmatrix} x + y + z & 1 & 0 \\ -x y - x z - y z & 0 & 1 \\ x y z & 0 & 0 \end{pmatrix}.$$

Then t = x + y + z, s = xy + xz + yz and d = xyz. It is easy to show (by first diagonalizing A) that the (1,2) entry of A^n equals the right side of (2.2), with n+1 replaced by n, and the (1,2) entry on the right side of (2.1) is a_{n-1} .

Corollary 4. Let x and z be indeterminates and n a positive integer. Then

$$\sum_{2i+3j\leq n} (-1)^i \binom{i+j}{j} \binom{n-i-2j}{i+j} (2x+z)^{n-2i-3j} (x^2+2xz)^i (x^2z)^j$$

$$= \frac{x^{2+n} + n x^{1+n} (x-z) - 2 x^{1+n} z + z^{2+n}}{(x-z)^2}.$$

Proof. Let $y \to x$ in Theorem 3.

Some interesting identities can be derived by specializing the variables in Theorem 1. For instance, in [5], it was noted that Binet's formula for the Fibonacci numbers is a consequence of Theorem 1 for k = 2. Here is a generalization.

Corollary 5. (Generalization of Binet's formula) Let the numbers $F_k(n)$ be defined by the recursion

$$F_k(0) = 1, F_k(r) = 0, \ \forall r < 0,$$

$$F_k(n) = F_k(n-1) + F_k(n-2) + \dots + F_k(n-k).$$

Then, we have

$$F_k(n) = \sum_{2i_2 + \dots + ki_k \le n} \frac{(n - i_2 - 2i_3 - \dots - (k - 1)i_k)!}{i_1! i_2! \cdots i_k! (n - 2i_2 - 3i_3 - \dots - ki_k)!}.$$

Further, this equals $\sum_{r_1+\cdots+r_k=n} \lambda_1^{r_1} \cdots \lambda_k^{r_k}$ where $\lambda_i, 1 \leq i \leq k$ are the roots of the equation $T^k - T^{k-1} - T^{k-2} - \cdots - 1 = 0$.

Proof. The recursion defining $F_k(n)$'s corresponds to the case $s_1 = -s_2 = \cdots = (-1)^{k-1}s_k = 1$ of the theorem.

Corollary 6.

$$\sum c(i_2, \cdots, i_k, n) k^n \prod_{j=2}^k \left((-1)^{j-1} k^{-j} \binom{k}{j} \right)^{i_j} = \binom{n+k-1}{k}.$$

where

$$c(i_2, \dots, i_k, n) = \frac{(n - i_2 - 2i_3 - \dots - (k - 1)i_k)!}{i_2! \cdots i_k! (n - 2i_2 - 3i_3 - \dots - ki_k)!}.$$

Proof. Take $x_i = 1$ for all i in Theorem 1. The left side of Theorem 1 is simply the sum $\sum_{r_1 + \dots + r_k = n} 1$.

From Theorem3 we have the following binomial identities as special cases.

Proposition 1. (i) Let λ be the unique positive real number satisfying $\lambda^3 = \lambda + 1$. Let x, y denote the complex conjugates such that $xy = \lambda, x + y = \lambda^2$, and let $z = -\frac{1}{\lambda}$. Then,

$$\sum_{2i+3j \le n} (-1)^j \binom{n-2j}{j} = \sum_{r+s+t=n} x^r y^s z^t$$

$$= \frac{x y (x^{n+1} - y^{n+1}) - x z (x^{n+1} - z^{n+1}) + y z (y^{n+1} - z^{n+1})}{(x-y) (x-z) (y-z)}.$$

(ii)

$$\sum_{2i+3j \le n} (-1)^j \binom{i+j}{j} \binom{n-i-2j}{i+j} = [(n+2)/2].$$

(iii)

$$\sum \binom{n-2j}{j} (-4)^j 3^{n-3j} = \frac{(3n+4)2^{n+1} + (-1)^n}{9}.$$

(iv)

$$\sum \binom{n-2j}{j} 3^{n-3j} (-2)^j$$

$$= \frac{(1+\sqrt{3})^{n+1} - (1-\sqrt{3})^{n+1}}{2\sqrt{3}} + \frac{(1+\sqrt{3})^{n+1} + (1-\sqrt{3})^{n+1}}{6} - \frac{1}{3}.$$

3. Commutating Matrices

In this section we derive various combinatorial identities by writing a general 3×3 matrix A as a product of commuting matrices.

Proposition 2. Let A be an arbitrary 3×3 matrix with characteristic equation $x^3 - tx^2 + sx - d = 0$, $d \neq 0$. Suppose p is arbitrary, with $p^3 + p^2t + ps + d \neq 0$, $p \neq 0$, -t. If n is a positive integer, then

(3.1)
$$A^{n} = \left(\frac{p d}{p^{3} + p^{2}t + sp + d}\right)^{n} \sum_{r=0}^{3n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{j} \binom{n}{k} \binom{j}{r - j - k} \times \left(\frac{-p(p+t)^{2}}{d}\right)^{j} \left(\frac{-(p+t)}{p}\right)^{k} \left(\frac{-A}{p+t}\right)^{r}.$$

Proof. This follows from the identity

$$A = \frac{-1}{p^3 + p^2t + sp + d} (pA^2 - Ap(p+t) - dI) (A + pI),$$

after raising both sides to the *n*-th power and collecting powers of A. Note that the two matrices $pA^2 - Ap(p+t) - dI$ and A + pI commute.

Corollary 7. Let p, x, y and z be indeterminates and let n be a positive integer. Then

$$\sum_{r=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{j} \binom{n}{k} \binom{j}{r-j-k} (-1)^{j+k+r} \left(\frac{p(p+x+y+z)^{2}}{xyz} \right)^{j}$$

$$\times \left(\frac{p+x+y+z}{p} \right)^{k} \frac{xy (x^{r}-y^{r}) - xz (x^{r}-z^{r}) + yz (y^{r}-z^{r})}{(p+x+y+z)^{r}}$$

$$= (xy (x^{n}-y^{n}) - xz (x^{n}-z^{n}) + yz (y^{n}-z^{n}))$$

$$\times \left(\frac{p^{3}+p^{2} (x+y+z) + p (xy+xz+yz) + xyz}{pxyz} \right)^{n}.$$

Proof. Let A be the matrix from Theorem 3 and compare (1,1) entries on both sides of (3.1).

Corollary 8. Let p, x and z be indeterminates and let n be a positive integer. Then

$$\sum_{r=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{j} \binom{n}{k} \binom{j}{r-j-k} (-1)^{j+k+r} \left(\frac{p(p+2x+z)^2}{x^2 z} \right)^j \times \left(\frac{p+2x+z}{p} \right)^k \frac{r \, x^{1+r} - x^r \, z - r \, x^r \, z + z^{1+r}}{(p+2x+z)^r}$$

$$= \left(n \, x^{1+n} - x^n \, z - n \, x^n \, z + z^{1+n} \right) \left(\frac{p^3 + p^2 \, (2x+z) + p \, (x^2 + 2x \, z) + x^2 \, z}{p \, x^2 \, z} \right)^n.$$

Proof. Divide both sides in the corollary above by x - y and let $y \to x$.

Corollary 9. Let p and x be indeterminates and let n be a positive integer. Then

$$\sum_{r=0}^{3n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{j} \binom{n}{k} \binom{j}{r-j-k} (-1)^{j+k+r} \left(\frac{p(p+3x)^2}{x^3} \right)^j \left(\frac{p+3x}{p} \right)^k \frac{r(1+r) x^{-1+r}}{2(p+3x)^r}$$

$$= \frac{n(1+n) x^{-1+n}}{2} \left(\frac{(p+x)^3}{p x^3} \right)^n.$$

Proof. Divide both sides in the corollary above by $(x-z)^2$ and let $z \to x$.

Corollary 10. Let p be an indeterminate and let n be a positive integer. Then

$$\sum_{r=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{j} \binom{n}{k} \binom{j}{r-j-k} (-1)^{j+k+r} p^{j-k} (p+3)^{2j+k-r} \frac{r(1+r)}{2}$$

$$= \frac{n(1+n)}{2} \frac{(p+1)^{3n}}{p^n}.$$

Proof. Replace p by px in the corollary above and simplify.

Various combinatorial identities can be derived from Theorem 3 by considering matrices A such that particular entries in A^n have a simple closed form. We give four examples.

Corollary 11. Let n be a positive integer.

(i) If $p \neq 0, -1$, then

$$\sum_{r=0}^{3n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{j} \binom{n}{k} \binom{j}{r-j-k} (-1)^{j+k+r} p^{j-k} (p+3)^{2j+k-r} r = n \frac{(1+p)^{3n}}{p^n}.$$

(ii) Let F_n denote the n-th Fibonacci number. If $p \neq 0, -1, \phi$ or $1/\phi$ (where ϕ is the golden ratio, then

$$\sum_{r=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{j} \binom{n}{k} \binom{j}{r-j-k} (-1)^{k+r} p^{j-k} (p+2)^{2j+k-r} F_r$$

$$= F_n \frac{(1+p)^n (-1+p+p^2)^n}{(-p)^n}.$$

(iii) If $p \neq 0, -1$ or -2, then

$$\sum_{r=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{j} \binom{n}{k} \binom{j}{r-j-k} (-1)^{j+k+r} p^{j-k} (p+4)^{2j+k-r} 2^{-j} (2^{r}-1)$$

$$= (2^{n}-1) \left(\frac{(1+p)^{2}(p+2)}{2p} \right)^{n}.$$

(iv) If $p \neq 0, -1, -g$ or -h and $gh \neq 0$, then

$$\sum_{r=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{j} \binom{n}{k} \binom{j}{r-j-k} (-1)^{j+k+r} p^{j-k} (p+1+g+h)^{2j+k-r} \frac{g^r + h^r}{(g\,h)^j}$$

$$= (g^n + h^n) \left(\frac{(1+p)(g+p)(h+p)}{ghp} \right)^n.$$

Proof. The results follow from considering the (1,2) entries on both sides in Theorem 3 for the matrices

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} \frac{g+h}{2} & \frac{(g-h)^2}{4} & 0 \\ 1 & \frac{g+h}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

respectively.

4. A RESULT OF BERNSTEIN

In [1] Bernstein showed that the only zeros of the integer function

$$f(n) := \sum_{j \ge 0} (-1)^j \binom{n-2j}{j}$$

are at n = 3 and n = 12. We use Corollary 1 to relate the zeros of this function to solutions of a certain cubic Thue equation and hence to derive Bernstein's result.

Let

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}.$$

With the notation of Corollary 1, t = 1, s = 0, d = -1, so that

$$a_n = \sum_{3j < n} (-1)^j \binom{n-2j}{j} = f(n),$$

and, for $n \geq 4$,

$$A^{n} = f(n-2)A^{2} + (f(n) - f(n-2))A + (f(n) - f(n-1))I$$

$$= \begin{pmatrix} f(n) & f(n-1) & f(n-2) \\ -f(n-2) & -f(n-3) & -f(n-4) \\ -f(n-1) & -f(n-2) & -f(n-3) \end{pmatrix}.$$

The last equality follows from the fact that f(k+1) = f(k) - f(k-2), for $k \ge 2$.

Now suppose f(n-2) = 0. Since the recurrence relation above gives that f(n-4) = -f(n-1) and f(n) = f(n-1) - f(n-3), it follows that

$$(-1)^n = \det(A^n) = \begin{vmatrix} f(n-1) - f(n-3) & f(n-1) & 0\\ 0 & -f(n-3) & f(n-1)\\ -f(n-1) & 0 & -f(n-3) \end{vmatrix}$$

$$= -f(n-1)^3 - f(n-3)^3 + f(n-1)f(n-3)^2.$$

Thus $(x,y) = \pm (f(n-1),f(n-3))$ is a solution of the Thue equation

$$x^3 + y^3 - xy^2 = 1.$$

One could solve this equation in the usual manner of finding bounds on powers of fundamental units in the cubic number field defined by the equation $x^3 - x + 1 = 0$. Alternatively, the Thue equation solver in PARI/GP [3] gives unconditionally (in less than a second) that the only solutions to this equation are

$$(x,y) \in \{(4,-3), (-1,1), (1,0), (0,1), (1,1)\},\$$

leading to Bernstein's result once again.

References

- [1] Bernstein, Leon Zeros of the functions $f(n) = \sum_{i=0} (-1)^i \binom{n-2i}{i}$. J. Number Theory 6 (1974), 264–270. [2] James Mc Laughlin, Combinatorial Identities Deriving from the n-th Power of a 2 × 2 Matrix. Integers
- [2] James Mc Laughlin, Combinatorial Identities Deriving from the n-th Power of a 2 × 2 Matrix. Integers 4 (2004), A19, 14 pp.
- [3] PARI/GP: http://pari.math.u-bordeaux.fr/
- [4] B. Sury, A curious polynomial identity. Nieuw Arch. Wisk. (4) 11 (1993), no. 2, 93–96.
- [5] —, A parent of Binet's forumla? Math. Magazine 77 (2004), no. 4, 308-310.