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ApsTRACT. If IV is a division algebra with its center & number feld K and with
an involution of the second kind, it is unknown if the group SU(L, D)/ (D71, d),
U1, D is trivial. We show that, by contrsst, if K is a function field in one
variable over a mumber feld, and if IV is an algebra with center K and with
an invelution of the second kind, the group SU(1, DV/[U(1,4), U7(1, D)] can be
infinite in general. We give an infinite class of examples.

1. INTRODUCTION

Let K be a mumber fiekl, and let D be a division algebra with center K, with
an involition of the second kind, 7. Let [7{1, D) be the unitary group of D, that
is, the =set of elements in D* such that dr(d) = 1. Let 5I7(1, D) be the special
unitary group, that is, the set of elements of [V/{1. D) with reduced norm 1. An
old theorem of Wang [7] shows that for any central division algebra over a number
field, SL({1, D) is the commutator subgroup of D*. It is an open question (see []
p. 536]) whether the group SU(1, D) equals the group [U(1, D), U(1, D)| generated
by unitary commutators.

We show in this note that, by contrast, if K is a function field in one wariable
over a number field, and if D & an algebra with center & and with an involution
of the second kind, the group SU(1, D) module [I7(1, D), U(1, D)| can be infinite
in general. More precizely, we prove:

Theorem 1.1. Let n = 3, and let { be a primitive n-th oot of one. Then, there
erists a division algebra D of index n with center () z) which has an involution
of the second kind such that the corresponding grouwp SU(1, D)/(U(1, D), U(1, D))

is infinite.

Our algebra will be the symbol algebra D = (o, 2:(, K, n) where K = Q{()(z)
and a € § is such that [Q()( ¢a) : §({)] = n. This is the K-algebra generated by
two symbols r and s subject to the relations v = q, " = 2, and sr = (rs. If we
write L for the K subalpebra of D penerated by v, it & clear that L is just the field
¢, wa)(z). The Galois group L/K is penerated by o that sends = to (v note
that -~ 7 pation of L by s has the same effect as o on L. An easy computation

351



352 B. A. SETHURAMAN AND B. SURY

shows that ="

is the smallest power of x that is 4 norm from L to K, so0 standard
results from cyclic algebras ([3 Chap. 15.1] for instance) show that D is indeed a
division algebra. It is well known that D has a valuation on it that extends the

z-adic valuation on K. This valuation will be erucial in proving our theorem.

2. THE VALUATION ON D

We recall here how the z-adic valuation iz defined on D. Recall first how the
z-adic (discrete) valuation is defined on any function field E{z) over a field E: it
is defined on polynomials f = ¥, a;7' (o € E) by v(f) = min{i | a; # 0}, and
on quotients of polynomials f/g by v f/g) = v(f) —vi{g). The value proup Ty
is F, while the residue L is E. This definition gives valuations on all three fields
QC+C Y (x), K, and L, all of which we will refer to as v. These fields have residues
(respectively) Q¢ +¢71), Q{0 and ¢, /a) with respect to v. It is standard that
the valuation v on G + {71 (z) extends miquely to K, a fact that will be crucial
b s,

With v as above, we define a function, also dencted v, from D* to (1/n)E as
follows: first, note that each d in D* can be uniquely written as d = I+ s +---+
L1 Y forl € L. (We will call each expression of the form Ls', i = 0,1,...,n—1,
a monomial.) Define v(s) = 1/n, and v{l;5) as () +iv(s). Note that the n values
v(l;5"):0 = i < n are all distinct, since they lie in different cosets of £ in (1/n)E.
Thus, exactly one of these n monomials has the least value among them, and we
define v(d) to be the walue of this monomial. It is easy to check that v indeed
gives a valuation on D, We find U'p = (1/m)E, 50 T'p /Ty = EZ/nf. Also, the
residue D contains the fielld Q(¢, 3/a). The fundamental inequality ([E p. 21))
[D: K] =[Pp/Tk|[D: K] shows that D = L = Q(¢, 3/a).

Note that since D is valied, the valuation v (restricted to K extends uniquely

from K to D ([6]).

3. CompuTaTion oF SU(1, D) ano [U(1, D), U(1, D)

Write k for the field Q(C + (")), and 7 for the nontrivial antomorphism
of K/k that sends { to (7!, Note that since o and x belong to the field &, we
may define an involution on D that extends the antomorphism of K/k by the rule
T(frisd) = 7 f)¢¥rs! for any f € K (so 7(r) = r, 7(s) = 5; see 2] Lemma 7].)

Proof af the theorem. Let d be in 71, D), s0 dr(d) = 1. Since v and v o 7 are two
valuations on D that coincide on &, and since v extends uniquely from &k to K, and
then uniquely from K to D, we must have vo 7 = v. Thus, we find 2v(d) = 0, that
is, d must be a wnit. Then, for any d and € in 071, D), we take residues to find
ded—Te-1 = ded & L. However, D = L = Q({)( v/a) is commutative, so d and &
commute, s0 ded e~ =

Note that we have a natural inclusion of L in the v-units of L; we identify L
with its image in L. Under this identification, for any [ € L € L, I = . Since the
commutator of two elements in [7{1, D) has residue 1, it suffices to find infinitely
many elements in SU(1, D) N L to show that SU(1, D) modulo [U/(1, D), U(1, D)
is infinite.

Write L; and Lo (respectively) for the subfields Q(¢ + ¢~ 1){v) and Q(<) of I;
note that Lo is the residue field of K. Then the involution 7 on D acts as the
nontrivial automorphism of /L, so for any [ € T, I7{l) is the norm map from L
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to Ly. The automorphism o of L/K restricts to an automorphizsm (also denoted
by o) of L/Ls, and it i standard that the reduced norm of [ viewed as an element
of D is just the norm of [ from L to K ([3] Chap. 16.2] for instance), and hence
the norm of [ from L to Ls. We thus need to find infinitely many { € T such that
Ngp, () = Ny (1) =1

Now, the set S, = {l € L : Ng () = 1} & indexed by the L; points of the

torus 1) = “ﬂ;__] G (see [, §2.1). Similarly, the set S; ={l € L: Ngpl) = 1}

is indexed by the Lo points of the torus Th = Rl:;.-"]i- G To show that S5, M Ss is
infinite, we switch to a common field by noting that the groups T3(L;) and Ta(La)
are just the ky points of the groups (R, 4, 71) and (R, 4, T3) respectively, where
ko = Q¢+ ¢71). Thus, it suffices to check that (Hp 4,71 N B, a, To)(ke) is
infinite, and for this, it is sufficient to check that (Rg, 4, T, N RLQIIn'k“TEIIﬂ{I!:”:I is
infinite. As both Ry . Ty and Ry 15 are kg-tori, the connected component
(B, e, 10 RLﬂ;kﬂTﬂ" is a kg-torus as well, since it i3 a connected commut ative
group defined over &y consisting of semisimple elements. So, its &y points are Zariski
dense in its {§ points by a theorem of Grothendieck (see p. 120 of [1]). Hence, it
suffices to check that there are infinitely many @ points in (Rp, o, Ti N R, o, T2 )"
But for this, it clearly suffices to check that there are infinitely many ¥ points in
(B, kg T1 N Ry, e, T2 )

Write any [ € Las | = X 4+ ({—¢ 1Y where X, ¥ € L;. Then, X = Z"_ﬂl it
and ¥V = Z::ﬂl it where 2,9 € ky. Consider the equations NI,.*L,”:' =1 aml
Nz 1, (1) = 1. Rewrite these in terms of powers of r, invoking the actions of o and
7 and using the fact that v = a. The first equation now imwolves the 2n variables
x4, 1 and has coefficients in L;. Equating the coefficients of v (i = 0,...,n — 1)
on both sides, we pet n equations in the wariables z; 3 with coefficients in k.
Similarly, the second equation involves the variables z;. 3 and has coefficients in
Ls. Using the fact that (( —¢~1)? € ky and equating the coefficients of 1 and
¢ — 7! on both sides, we get two equations in the variables 7, y; with coefficients
in by, Asn = 3, we have n + 2 < 2n, and these equations have infinitely many
common solutions over . This proves the theorem. O

4. CONCRETE ILLUSTRATION FOR =23

We illustrate the theorem for n = 3 by concretely constructing infinitely many
elements in SU(1, D) /[U7(1, D), U7(1, D)]. We take a = 2 for simplicity. Write [ =
a+b/—3, where a and ba.tf- in Ly. Then Nz, (1) = a®+3b = 1 has a parametrized

—3 2s
S+3 0 243
t; £ 0} and mh-;tmm- in a and b above. Then compute Ny, (1), noting that
a(s) = (to + wtr + wtar?). We solve for the #; so that Nz () = 1. We claim
that if we take {5 = 1 and #; = 0, then for arbitrary f5 = £, NLJ,.LQ{III = 1. Indeed,

set of solutions o = for s € L,. Write s = #g + 17 + far? for

! = ufv, where
= 2w +f.?'r — Etuzrz,
v=2+Fr+1r

Then, an easy computation, using +* = 2, shows that

Ng (1) = (2w+ 0 r —20wr?) 2w+ twr — 2twr®) (2w + 7 — 207 ) = — 88 +215
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Similarly,
Npp (0) = (24 87 + 07)(2 + Pwr + 6r%) (2 4 P + twr?) = -8 + 25,

Thus, we have an infinite set of solutions and we are done. (Actually, the parametric
solution above was first obtained using Mathematica™ | The program gives other
parametric solutions as well, for instance, f;, = 0., = — iﬂ .
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