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Abstract: A peneral adaptive allocation design i3 proposed for continuous
multivariate responses where the covariance matrix of the response vectors is
unknown. There are £ > 2 competing treatments, possible prognostic factors are
considered in the allocation procedure, potential delaved responses are allowed
for, and treatment-covariate interactions are incorporated. The allocation rule
for any incoming patient is dependent on all the allocation-and-response-and-
prognostic factor history of the previously allocated patients as well as the
prognostic factor vector of the cumrent patient. The design is a peneralization
of the approach suggested by Bandyopadhyay and Biswas (2001), which was
presented for a much simpler scenaro. The performance characteristics of
the proposed design and some follow-up inference procedures are studied
analytically and also numerically illustrated. An extension of the present
approach to the situation where some components of the response vectors are
continuous and some binary is then considered. Some further extensions of the
work are briefly indicated.

Keywonds: Allocation proportion; Delaved response; Mixed responses;
Multivariate nommal distribution; Probit link: Prognostic factor; Unknown
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1. INTRODUCTION

The comparison of K =2 treatments in a clinical trial has recently
received considerable interest in the literature. Furthermore, several
adaptive allocation designs have heen proposed for assigning patients to
the competing treatments. The aim of these designs is to allocate larger
numbers of patients to the better treatments as the trial proceeds and
thus to satisfy the ethical requirement that as few patients as possible
are assigned to inferior ones. Of course, the simultaneous objective of
estimating treatment differences is also under consideration. The idea
of an adaptive design is to let the past data determine the allocation
probabilities to the different treatments for the entering patients.
However, most of the available literature on adaptive designs deals with
treatments with binary responses, ignores associated prognostic factors
for the incoming patients, and overlooks possible delays in responses.
For example, Andersen et al. {1994) study an adaptive design for
comparing K = 2 treatments with binary responses that are immediately
ascertainable, and Ivanova and Rosenberger (2000) compare this design
with several others.

One drawback of adaptive designs is that they are limited in
terms of possible applications, due in part to the underlying models
being unrealistic. For example, covariates may influence the responses,
but almost all of the existing work on adaptive designs ignores such
information. In the real-life applications described by Royall (1991} and
Tamura et al. (1994), the available covariate information could not
be used due to the unavailability of such theory. Depending on the
covariate information, a patient’s response may be more likely to be a
success. A treatment-allocation problem in the presence of prognostic
factors is considered by Begg and lglewicz (1980), who used optimum-
design theory to suggest a deterministic design criterion, which is then
maodified for computational convenience. The presence of prognostic
factors is also considered by Atkinson (1982, 1999}, who used optimum-
design theory to provide a procedure based on the biased-coin design
for an arbitrary number of treatments. Of course, the goal of biased-
coin designs is to achieve equal allocation. In the context of adaptive
designs, where the aim is to allocate larger numbers of patients to
the better treatments, the treatment-allocation problem is discussed by
Bandyopadhyay and Biswas (1999), who provided a modification of
the randomized play-the-winner rule of Wei and Durham (1978) to
incorporate covariate information. In the case of continuous responses,
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such covariate information is used by Bandyopadhyay and Biswas
(2001), and Rosenberger et al. (2001) consider the binary case.

As a motivating example for the type of design that we propose,
consider the adaptive clinical trial that was conducted at the Indian
Statistical Institute from January 1999 to March 2000, which is described
by Biswas and Dewanji (2004). In this particular trial, the effect of
pulsed electromagnetic-field therapy was compared with a placebo in the
treatment of patients with rheumatoid arthritis. For each patient, there
was a multivariate response vector, which included values on variables
such as degree of pain and extent of swelling, in addition to various
prognostic factors. Since no suitable adaptive design was available for
multivariate responses, much of the information could not be used
for treatment allocation. Moreover, the patients were assumed to be
homogeneous, so that information on prognostic factors was also not
incorporated.

In many practical situations, the responses are likely to be
continuous. Incorporating the full continuous response history into the
allocation design is a challenge to statisticians. Bandyopadhyay and
Biswas (2001}; henceforth referred to as BB, introduced a design in this
direction, which may be viewed as a first attempt to skew the allocation
probabilities when responses are continuous. They considered a simple
lincar model for univariate responses without having any treatment-
covariate interaction in their model. However, their model is simple in
the sense that, in reality, many more logistics come into play. A more
realistic and general design in the following five respects is considered in
the present paper.

1. BB considered the case of univariate responses from the patients.
But, in reality, the responses are likely to be multivariate in many
situations. For a recent account of some of the issues raised by
muliiple outcomes in the context of clinical trials, see chapter 15 of
Jennison and Turnbull (2000). Also, in some applications, safety and
efficacy may be the two components of a bivariate response; see, for
example, Jennison and Turnbull (1993). In such cases, it may be a
useful but difficult idea to use the multivariate response history for
any adaptation. The present paper deals with this.

2. The approach of BB is for two treatmentis only. It is not
straightforward to extend their method to a £ = 2 treatment setup, as
in the other multi-treatment generalizations of two-treatment adaptive
designs. The present paper makes progress in this direction too, taking
the multivariate responses into consideration.

3. One serious simplification in the approach of BB is the assumption of
known variances for the errors in the linear model. The variances, a
matrix in the present multivariate case, are likely to be unknown and
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unaqual for different components of the treatment response vector. This
general and practical situation is considered in the present development.
Consequently, the model and analysis change quite considerably.

4. BB considered a simple linear model and ignored any possible
treatment-covariate interaction. The latter possibility is incorporated
in the present study. The analysis of such interactions in the context
of nonadaptive designs is discussed, for example, in chapter 7
of Whitehead (1997). In BB, only the allocation-and-response-and-
prognostic factor history was considered in the adaptation. Thus, the
current patient’s prognostic factor vector was ignored. In the present
work, we also use the current patient’s prognostic factor for the
adaptation, and the design is modified accordingly.

5. Finally, BB briefly mentioned possible delayed responses in the
adaptation procedure. Here, we discuss this possibility in a more
general way and present some discussions in this context. The effect of
delayed responses in the context of binary data has been investigated
by simulation by Ivanova and Rosenberger (2000). More recently,
asymptotic properties of various adaptive urn designs for discrete data
in the presence of delays are obtained by Bai et al. (2002).

The paper is structured as follows. In section 2, the general
multivariate model is described, and it is shown how the parameters
may be estimated. The adaptive design is introduced in section 3, and
then some properties of the design are investigated in section 4 using
simulation. This is followed in section 5 by a discussion of how inference
may be carried out after such a design. The adaptive design in section 3
for continuous responses is then extended in section 6 to the case where
some of the responses are binary and some continuous. In section 7, the
main conclusions are summarized and some possible extensions to the
present work are indicated.

2. THE GENERAL MODEL
2.1. Description of Model

In the present paper, we consider a general situation where we have
multivariate treatment responses as well as X = 2 treatments. For the ith
entering patient in the study, let ¥, be the m x 1| multivariate response
vector under consideration. Let us define a set {5, ..., gy} of indicator
variables such that 4; =1 if the ith patient is treated by treatment
j and d; =0 otherwise. Clearly, Zf._q d;=1 for all i. Let I be the
m x | treatment effect for the jth treatment for j=1, ., K. Further,
suppose that x; is the px 1 vector of prognostic factors for the ith
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entering patient and that B; = (ﬁjl. ,ﬁﬂ":lr is the corresponding m x p
matrix of regression coefficients. Then we can write the linear model for
multivariate response as

Z&‘up +Z B X (2.1)

where g; is the m x 1 error vector. Note that the model includes both
the main prognostic factors and their interactions with the treatments,
whereas the multivariate analogue of the BB model would have B; =
B for all j. In the present paper, we carry out the analysis assuming
independent multivariate distributions for the gs with mean vector
zero and an unknown covariance matrix 2. The design provided in
section 3 is applicable for any distribution of €;5. Note that if the d,s
are predetermined and the errors are normal, (2.1) is just the usual
multivariate analysis of covariance model.
Now, the general model (2.1) can be written in the form

Y =Z0+e€ (22)
where
Y, =y ey ¥y, BE G Bos Biyooes Be), £,=(&,.... &)
and
MNote that 4, =

2.2, [Estimation of Parameters

From (2.2), the normal equations are

Z Z = Zj' s (23)
where
) éaédr b i ahgﬁj P o ‘Sméxﬁ-
ZIZ“ = 3eae 51,x,éd pBrET :LL? i A Bt

n n ) T
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and
n T
EJ—'I éJL
r
] d]J—JL

Ty =

ot

E:’I'—'I &KJIJKJ?
Note that §;5;; = | or 0 according to whether j = j. Now let

n B _ 1 n
Ne=X0 L= Lo
=] Jn j=1
and
—J.ll - E IaJ-IL
.”' =]
for j =1, ..., K. Then (2.3} implies that
N, i + N, Bx, =N, ¥, (2.4)
and
N}"zjnﬂ;- + Z &JJ££ BT Z '5,11_4_1 (2.5)

for j=1,..., K. Solving (2.4) and (2.5) yields the estimated covariate-
adjusted treatment effect for the jth treatment given by

-

E‘m = K‘m i Bj.uz‘m' {2'6:|
where
-1
L _ Ll i _ —T
= (Zaﬂij_ﬁ? N, xJ”{L) (Z&ﬁ.i.xf - NJ.”{J.”L.")
=] i=]
for j=1,..., K. Now write
s . .
BJ:" = {'Ej'l.u' Tt 'Ejlu.u::l
forj=1,..., K. Then it follows from (2.6) that the estimated covariate-

adjusted difference between treatments j and & in the fth response
component is

. ro_ AT _
.F‘u.u .F!Ji:l.u e YJI.II - Yj:r’.u - EJ-I-\.”‘!'-‘I.II T E‘Emfku

for j.k=0,000 K.j#£kand £=1,..., m. Note that the forms of the
above estimators are not affected by the adaptive design, but their
distributions are.
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2.3. Delayed Responses

Let i, be an indicator variable which takes the value 1 or 0 according to
whether the response of the wth patient is available just before the entry
of the nth patient. Thus, {#_; w=1,..., n=u+1,...} isa triangular

sequence such that any row is either {0, ..., NIRRT O B e l,...}, or
10,...,0,1, 000, 1,000 We write

P('?Jr.ll - 1} = n.ll—]l"

where 7, , = n, forall m and =, — 1 as n — co. This means that every

response is obtainable eventually. It is easy to see that, for ¢ = 5,

Pt =l =1)=1,

but we also need to model Py, = 1|y, =0). A useful functional
form for this probability may be 1 — &, for some a < (0, 1), which
can be justified from a mathematical formulation considering some
distribution of the response times, some other distribution for the
interarrival times, and independence of these distributions; see, for
example, Bandyopadhyay and Biswas {1996).

When some responses are delayed, the delayed response indicators .5
come into play. In fact, if some responses are not available, the convenient
way is to carry out the analysis using the available responses, provided the
available responses are sufficient in number to find estimates of all of the
unknown parameters. Thus, the approach will be conditional on the 5.
For mathematical simplicity, we assume that the n, s are independent of
any other variables, that is, the ¥s and ds, which is practical in many
situations. In this case, by using a superscript [ for delayed response
estimates, the estimates of the components of  will be

~0 T2  Ep_p
iy, =Y — B,
where
. n on 1 o
Nj.u s E P‘ilj'..l|+ I&j‘ Kjll P 'N-'ﬁ E '?J'..u+'| &JJL‘
=] =]
5 1 »
£j| = F Z m’..l|+l a‘)‘]‘{j"
mo=1
and

n -1
(Bj:;:l d = E Hi 1 &J'Iﬁi'.&? - Nj—fﬁ @E ::IT }
=1

* Z Wi nt1 é}lLL?- = N‘]ﬂiﬁl(z‘ﬂ} T}
i=1
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for j=1,..., K. Here, ?f, and X% are defined if the N% are nonzero,
and {.&ﬁ]l? is defined if { 0, ;. bl — Nﬁzfl {zfl]l?'} is nonsingular.

An unconditional analysis, integrating over the distribution of the delayed
responses, is of interest, but it is very difficult to proceaed theoretically, as
the i,,s are dependent for a fixed u. However, we provide some simulation
results in section 4.2 that are unconditional on the delayed responses.

3. THE ADAPTIVE DESIGN

Let us denote by F, the allocation, response, and prognostic factor
histories up to the nth patient. Then, by our adaptive design, the
allocation prohbabilities to the K competing treatments should be a
function of ¥, in some way. In the univariate two-treatment setup of
Bandyopadhyay and Biswas (2001), the estimates of the components of
1t were based on these past data and these estimates were used for any
a_iliapl:atiun. Here, we will use the same principle. In addition, one would
like to use the prognostic factor of the entering patient, which is known
before the allocation, in the adaptive design. In the case of a single
binary response variable, this approach was taken by Rosenberger et al.
{2001). Furthermore, there is a significant difference in our model from
the approach of Bandyopadhyay and Biswas (2001) in the sense that
we assume that the variance is unknown, and thus we need to make an
appropriate adjustment to take this into account. Let &3, be the estimate
of the error variance for the £th variable based on the data in 7, where

n:

2

n K
Al = B i
[n—K(p+1))a;, =% % éj,-(lj-.u- — Hjen — EJ.,.J,E.-)
i=] j=1

We assign the first Kmy, patients so that exactly m, patients receive
each treatment. Choice of my = m,(N), where N is the total sample
size, is such that my is increasing with N, and an initial estimate of all
the unknown parameters is obtainable from this initial sample of size
Kmy. This initial sample can be looked upon as a compromise between
adaptive and fixed sample-size procedures. It ensures that at least m,
patients are assigned to each treatment and that we have some estimates
of the unknown parameters as, subsequently, some treatments may
receive very few, or even no, allocations using the adaptive procedure.
Of course, if m, is too large, there will be little skewing of the allocation
probabilities, since the adaptive procedure is only applied to the last
(N — Km,) patients. From the (Km, + 1)st patient onwards, we carry out
adaptive sampling in the following way.
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We consider a suitable distribution function G of a symmetric
random variable such that G{0) = 1/2 and G{—x) = 1 — G{x). Then we
set the allocation probability for the (m+ 1)st patient as

1 m
P(&J n+1 = 1| ns _J|+'|::| = TR Z ZU};
{3 =1{ksj) t=I
ﬁ'r.u +£_u 12, _ﬁkl'.u _'..x.,u 18 b
" 1:_.;-( g +Lji . + 1 kf, : {3_11
T in

where w, is the weight for the fth component of the multivariate
response with 30, w, = 1. Note that (3.1) is an example of what
Rosenberger et al. (2001) calls a treatment effect mapping. It was first
used by Rosenberger (1993) for continuous responses. The choice of w,
is, of course, a delicate question. Unlike in the usual sampling case, w,
should not be variance-driven, since here the ethical issue is of greater
concern and the more important response component should receive
greater weight in the allocation procedure. In section 4.1, we study the
effect of different choices of the w, upon the allocation proportions
using simulation. In the case of possible delayed responses, (3.1 will be
replaced by

1 K m
P(aJ n+1 = ]'I _||+'|::| = T Z Z wy
1k

{g} =1
A

I T
% G (Hj,n —J|+'I.IH F&hl £'+1Eﬁ:r’n) -

|‘_||

4. NUMERICAL RESULTS
4.1. Immediate Responses

We carried out a detailed simulation study with K =3 treatments
for bivariate responses where both components of the response are
equally important, that is, w, = w, = (1.5, and also for the cases where
w, = (.8 and 0.2, Further, we consider the case p =1, for illustration.
We took my =4, so that the adaptive design is applied to the 13th
patient onwards: see section 3. In the computations, we used the
probit link with the history G(x) = ®{x), where @ denotes the standard
normal distribution function; we have taken oy = o; =4 and B, = B, =
B, =(1,2)", and p denotes the correlation between the responses and
X~ N(2,1). The results for n= 30 and n = 60 are based on 1,000
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simulations. In both cases, the results were obtained using a computer
program written in 5-Plus. The allocation proportions and their standard
deviations when wy, = w, = 0.5 are reported in Table 1. We observe that
a larger number of patients are treated by the better treatment by our
allocation design, as expected.

To see the effect of the two components of the response not being
equally important, a simulation study as above was carried out when
no= (3,2)%, n, =2, 2y p,=1(1,2)", n =60, and p =0.5. When uwy =
(0.5, the allocation pmportia'ns were 0,407, 0.325, and 0.268 with standard
deviations 0.131, 0.137, and 0.132. When w, = 0.8, so that the first
component is more important, these figures become 0433, 0.336, and

Table 1. Monte Carlo estimates of means and standard deviations of allocation
proportions

noop o E(N,/m) SDIN,/r)  E(Ny/r) SD(N,/n) E(N;,,/r) SD{N, /r)

{.‘1:] E] i EE gt E] s {2,2}1

30 05 0333 0.120 0.333 0.120 0.334 0.120
0 0l 0.333 0.110 0.333 0.110 0.334 0.110
60 05 0334 0.140 0.333 0.140 0.333 0.140
60 0.1 0.333 0.130 0.334 0.130 0.333 0.130
(b) p = (3.3)" and Hy=p, =12, T
0 05 0389 0.120 0.301 0.115 0.310 0.114
0 0l 0.388 0.105 0.307 0.103 0.305 0.103
60 05 0416 0.120 0.292 0.140 0.292 0.140
60 0.1 0.433 0.122 0.285 0.128 0.281 0.121
fchp, = (3,37, My = (2.2} and oy =l T
0 05 0409 0.119 0.331 0.123 0.260 0.106
30 0l 0.409 0.108 0.334 0.110 0.258 0.094
60 05 0463 0.124 0.331 0.136 0.206 0116
60 0.1 0.455 0116 0.333 0.122 0212 0.104
(dyp =497 p, =(2.2)" and p_ = (1, )7
0 05 0463 0.104 0.301 0.105 0.236 0.094
30 0l 0.454 0.095 0.303 0. 100 0.243 0.088
60 05 0519 0.109 0.289 0.126 0.192 0.105
60 0.1 0.520 0.099 0.286 0.118 0.194 0.094
(e) p,=(4.4)", p, =(2.2)" and p, = (0, 0)"
0 05 0468 0.100 0.327 0.118 0.2035 0.078
30 0l 0.464 0.000 0.333 0.095 0.203 0.073
60 05 03533 0.097 0.330 0. 100 0.137 0.083

o0 0.l 0.536 0.078 0.324 0.007 0.140 0.071




Downloaded by [Indian Statistical Institute] at 02:43 23 August 2011

General Multi-Treatment Adaptive Design 149

(0.231 with standard deviations (.141, 0.142, and 0.125. In contrast, when
wy = (1.2, so that the second component is more important, the allocation
proportions are 0.363, 0335, and 0302 with standard deviations (0.149,
0.147, and 0.149. Clearly, these results make sense given the values for

e and I

4.2, Delayed Responses

We have carried out a detailed simulation study for delayed responses
too and the allocation proportions are reported in Table 2. In the
computations, we assume that sufficient time has passed in order to
observe all of the responses from the first 12 patients, so that the delayed
responses are applicable from the 13th patient onwards. Here, we used
the following model. The probability of obtaining a response from the
nth patient before the entry of the (n+ 1)st patient is 1 —exp(—0.3).
Further, the probability of obtaining a response from the nth patient
before the entry of the (n + t 4 1)st patient, given that the response is
not available before the entry of the (n+ ¢)th patient, is | — exp{—(0.3).
To appreciate the effect of this delayed response mechanism, if n = 30,

Tahle 2. Monte Carlo estimates of means and standard deviations of allocation
proportions when there are delayed responses

noop E(Ny/n) SD{Ny/n) E(M,/n) SD(Ny/n) E(Ny/n) SD(Ny/n)

(@) py = py=p, = (2.2

30 05 0333 0.110 0.333 0.110 0.334 0.110
60 05 0333 0.140 0.333 0.140 0.334 0.140
{b) M= i3,3)" and Ho=p = {2,

i 05 0377 0.110 0.312 0112 0311 0.109

60 05 0402 0.141 0.304 0.136 0.294 0.132
©p, =033 p,=022"and g, =(1, 1)

i 05 0399 0.112 0.336 0.110 0.266 0.108

60 05 0447 0.138 0.336 0.127 0.216 0.118
(d) p, = (4. 47, u, =2 2)7 and u= (1 T

i 05 0438 0.107 0.312 0.107 0.250 0.092

60 05 0509 0.113 0.293 0.113 0.198 0118
ehp =14, 4H7, M= (2.2)" and u,o= {0, o7

05 0449 0.099 0.329 0.101 0222 0.082

60 05 03528 0.096 0.322 0.109 0.150 0081
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then about 26 responses on average are observed before the entry of the
31st patient.

As expected, we observe that the allocation proportions for such a
delayed response case are weighted averages of the proportions obtained
for immediate responses and 1/K, and thus are slightly more skewed
towards 1/K than the immediate response case. This can be easily
explained, as the responses are possibly delayed and the adaptation will
be slower, resulting in a lower skewness of the allocation probabilities.

5. INFERENCE FOLLOWING THE DESIGN

So far, we have mainly concentrated on design issues. Of course, after
the adaptive allocation is complete, the question of relevant inference
comes into play. To appreciate some of the difficulties that can arise, see
Ivanova et al. (2000), who study an adaptive urn design for comparing
K = 2 treatments with binary responses. Given the generality of our
model, inference in our case is a separate and detailed issue. However,
in this section, we provide a sketch of methods of inference. More
specifically, we present some simulation results in order to assess how the
conventional methods are affected by the adaptive design.

Suppose that, upon completion of the trial. we have data on n
patients. Then there are a number of hypotheses that we may be
interested in. For our purposes, the one of most interest is likely to be
whether the treatment mean vectors are equal. The total sum of squares
and products matrix for the responses is given by

T ) SR e A
J=1i=]
where

s | —
z.u =i ; J_ZI N‘l:llzjll'

We may define 7' and T" similarly. Continuing, the within-treatments
sum of squares and products matrix for the responses is

l”j E E &J.I Z N‘LII—‘I.II—‘IJI

J=1i=]

Again, we define W and W! in the same way. Then the total sum of
squares and prﬂducm matrix I’ar the responses, adjusted for the presence
of the covariates, is

Tl.ll:l i Tl.ll:l ‘ITI'”:I |?'{T[J|:||—l —--!.-l'.u:l1

¥i.x
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and W)" may be defined similarly. So the usual Wilks’ lambda statistic
for testing whether there is a difference in the treatment mean vectors is
given by

Wkl

Ry

‘i

MNote that the form of the statistic is not affected by the adaptive design,
but its distribution is. However, although A, no longer follows a Wilks’
lambda distribution, the power of the exact test based on A, can be
evaluated using simulation. Of course, if we ignore the adaptive design,
an approximate critical region can be constructed by using Bartlett’s
approximation for large n. Thus, in our case, if we ignore the adaptive
design, we have

1 ;
—t—5(m+K+2p+2)tlog A, ~ ¥y

asymptotically as m — oc, and it is interesting to compare the powers of
these two tests.

Another hypothesis that we may be interested in is whether the
treatment mean vectors are related by a linear contrast, such as
EL Vit =}, where 7,,...,7; are fixed constants and Ef;]j:j =0
Clearly, the contrast sum of squares and products matrix for the
responses is given by

(T E e 1)

K 1
ZJ';] H

Thus, using chapter 12 of Mardia et al. (1979), the usual Wilks’ lambda
statistic for testing for the above linear contrast across the treatment
oroups is

Sy
G =

L w
kg = le.u:l +(-[_||:|I-

As for the previous test, if we ignore the adaptive design, an approximate
critical region can be constructed by using Bartlett’s approximation for

large n. In this case, if we ignore the adaptive design, we have
1 . 3
— n—;{m+2!('+2p]l log AL ~

asymptotically as n — oo,
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Monte Carlo estimates of the powers of both the exact and
approximate tests based on A, at the 5% level of significance are
presented in Table 3, where, in order to make the comparison of the two
tests fair, the critical region of the approximate test is adjusted to give a
test of size 5%. As before, the estimates are based on 1,000 simulations.
MNote that the exact test based on A is a left-tailed test while the above
approximate test is right-tailed. These results show that the approximate
test can have substantially less power than the corresponding exact test,
especially for scenarios (b) and (c). Further simulations, not reported
here, show that the size of the approximate test using an unadjusted
critical region tends to be less than 5% for high values of p and greater
than 5% for low values of p. In general, this test maintains the desired
size of 3% if » is at least 50 in the present context.

If the hypothesis of equality of treatment mean vectors is rejected,
then we will want to identify which differences are significantly different.
Thus, we may be interested in the pairwise differences p;, — p, for j k =
l,....K, j=k,and £=1,..., m. Covariate-adjusted estimators of these
are given in section 2.2. If we again ignore the adaptive design, we can
construct 100(1 — 2)% simultaneous confidence intervals for the pairwise
differences using

1

A - - —T [n]— i —
.“‘l'r’.lr — HMein + L. Kip+1 )2, [mK (K —1)} T in JN T N_ + X ‘5‘11: T g E&thkll.ll—.ﬁ:.ll
in kn

for jk=1,..., K, j<k and £ =1,...,m, where t ., represents the
upper 7% point of the ¢ distribution on v degrees of I'reedum and

}J:: Eé (.I JJI L\.I zjnjr'

Table 3. Monte Carlo estimates of the powers at the 5% level for the exact and
approximate tests based on A, for # = 30 and 60

Scenario
n i Test (a) (b) (c) (d) (e}
30 0.5 Exact 0.0% 0.176 0.419 0.776 0.901
Approx. 0.05 0171 0,393 0.753 0.892
30 0.1 Exact 0.05 0.201 0.481 0.910 0981
Approx. 0.05 0136 0.377 0.856 0965
[il1] 0.5 Exact 0.05 0.289 0663 0.962 0986
Approx. 0.05 0.194 0.525 0.940 0980
(i) 0.1 Exact 0.05% 0.479 0.844 0,996 (0.998

Approx. 0.05 0.355 0.784 0.996 0.998
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Table 4. Owerall coverage probabilities for the simultaneous confidence
intervals when x = 0.05

Scenano
n o (a) (b) (c) (d) (e)
30 0.5 0. 864 0.850 0.852 0. 866 0.870
30 0.1 0.873 0.865 0.865 0. 866 0.883
[l 0.5 0. 900 (L850 0,906 0918 0.920
()] 0.1 0.930 0922 0,934 0.930 0.946

Simulation estimates of the overall coverage probabilities of these
intervals based on 1,000 replications are given in Table 4. As expected,
the coverage probabilities become closer to the nominal value of 95% as
n increases and p decreases. However, even for n = 60 and p = 0.1, these
can be up to 3% too small

6. MIXED CONTINUOUS AND BINARY RESPONSES

In this section, for the purposes of illustration, we consider the bivariate
case only, where one component of the response is continuous, assumed
to be normally distributed, and the other component is binary. Such
mixed continuous and discrete data, that is, binary /categorical responses,
are common in several biomedical contexts. For some examples of
such mixed biomedical data in the recent literature, see Holmes et al.
(1994) for the Boston Convulsant Teratogenesis Study at Brigham and
Women's Hospital, Wang et al. (1994) for the Harvard Six Cities Study,
and Little and Schluchter (1985) for an example on the effects of parental
psychological disorders on child development. For such a bivariate
response, we can use a combination of our present approach, given
in (3.1), and a K-treatment generalization of that of Bandyopadhyay
and Biswas (1999) for binary responses in the two-treatment case with
prognostic factors. The conditional allocation probability of the (n + 1)st
patient to the jth treatment will have a weight w; for the continuous
response part and a weight uy = | — w, for the binary response part. The
continuous part will be as given in section 3.

For the binary part, let ¢ be a function that transforms %" —
[0,H] € % such that glx;) = g(x,) when x, is a more favorable
prognostic factor vector than x, in terms of treating a patient. In the
expression for the conditional probability, the contribution of the binary
responses will be a mixture of several parts. Let »; and =, be positive
constants, and let b, = K + (K — 1)oynm 4+ Hx,n Then each of the earlier
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successes by the same treatment, that is, treatment j, will have a weight
o (K — 1)/ b, ; each of the earlier failures by any other treatment will have
a weight x;/b,; and each of the earlier patients having a prognostic factor
x will have a weight =.{H — g(x)}/h, if they are treated by treatment
Jj and will have a weight g(x)/{(K — 1)b,} if they are treated by some
treatment other than j. Thus, the conditional probability of allocation to
the jth treatment for the (n 4 1)st patient is

P(&j..lw'l -— ]'I:-}-.u‘ £|+ I}
A T

P | I
u, i G‘.(F‘m +LI+1E‘:-,| — M _£'+1Eb|)

(5) s

+ I;3(1 +11I(K— 1) i‘, ¥yd; +i‘,(1 — ¥, (1 — 5ﬁ_)}

an

+ Iz[zih' — 8(x)}d; + Z,H(L-Hl — &K — 1)])-

Mote that, by this allocation design, the current patient’s prognostic
factor is only used in the continuous response part. In order to use the
current patient’s prognostic factor in the binary response part, a logistic
response function could be used, as in Rosenberger et al. (2001).

The performance of the design is illustrated using a simple
simulation study. We considered the case of K =3 treatments for
bivariate responses, where one component is continuous and the other
binary, and both components are equally important. As in section 4.1,
p=1 Gix} =®(x), oi =4, my=4, and X ~ N(2,1). Further, &, =
=1, Bi=8=B;=1, H=1, and g(x) =1;,.,, where 1, denotes
the indicator of the event A. Let p,, p,, and p; denote the success
probabilities for the binary component for the three treatments when
glx) = 1. When g{x) = 0, these success probabhilities are a,p,, a,p.. and
ayps. The resulis for n = 60 based on 1,000 simulations are presented in
Table 5 when a, = 0.75. As expected, we see that a larger number of
patients are assigned to the better treatment by our allocation design.

7. DISCUSSION

A general adaptive design has been proposed in this paper for use
when several treatments with continuous multivariate responses are to
be compared. Simulation studies indicate that the design successfully
assigns more patients to the better treatments. We have also shown how
delayed responses may be incorporated, studied the power of the design
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Tahle 5. Monte Carlo estimates of means and standard deviations of allocation
proportions for mixed responses when n = 60

E{N,/n) SD(N,, /n) E{N,, /n) SD(N, /n) E(N,, /n) SD(M,, /n)

Dy=p=mw=2and py=p,=p, =04

0.333 0100 0.333 0. 100 0333 0.100
(i py=py=p; =2, py =06, p,=04 and p, =0.2

0.356 0.103 0.340 0096 0305 0.099
(i) =3, =g, =2, py =06, p, =04 and p;, =04

0.395 0.094 0.303 0.095 0.302 0.096
Wy =% =,=2 p=06p, =04 and p, =02

0.405 0.099 0.303 0.0 0292 0.089

Vim=3p=2 ;y=landp,=p,=p, =04
0.401 0.092 0.339 0.089 0.261 0.084
iy =3 =2 =1, p,=06 p, =04 and p, =02
0415 0.089 0335 0.095 0.250 0.082

for testing the equality of the treatment mean vectors, and suggested how
the design may be adapted for mixed responses.

In the present paper, all K treatments remain in use throughout the
trial, though, of course, the less promising ones are applied less often
as the trial proceeds. A natural extension is to incorporate some type
of elimination rule into our general model, so that the less promising
treatments are dropped from further study. Work along these lines is in
progress and we plan to report on this extension separately: see Biswas
and Coad (20035). Similar work in the context of adaptive urn designs
and binary responses has been carried out by Coad and Ivanova (2003),
following earlier work by Coad (1995) for K = 2 treatments with normal
responses.

As indicated in section 3, the choice of the w,s is a subjective
issue, which might have no connection with the variances. For different
diseases and for different types of responses, the experimenter should set
the w,s at the outset depending on his/her prior belief on the relative
importance of the components of the responses. Without any prior
information, w, can be set to 1/m for all {. However, the design is quite
sensitive to the choice of the ws.

From a practical point of view, there are several possible extensions
that would make the proposed adaptive design more flexible, especially
if an elimination rule is used. For example, some of the response
components may not be used in later decisions regarding which
treatments to drop, and the total sample size may be adjusted in order
to maintain a desirable conditional power. Clearly, such extensions
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complicate the analysis considerably and are beyond the scope of the
present paper.

Other extensions to the present work include the allowance for
staggered entry and the consideration of generalized linear models.
The latter include the logistic regression model studied by Rosenberger
et al. (2001}, and the adaptive survival analysis models suggested by
Rosenberger and Seshaiyer (1997) and Yao and Wei (1996). Both of
these extensions would make the general approach developed in this
paper more widely applicable. We hope to report on extensions along
these lines separately.
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