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sequence of constants and £;, —20 < j = 20, is a sequence of independent
identical ly distributed (i.i.d.) random variables (1. v.s) belonging to the domain
of attraction of a strictly stable law with index 0 = « = 2. Let 8§ =
Ej’:l X ;. Under suitable conditions on the constants cj it is known that
for a suitable normalizing constant 34, the partial sum process ]x,,‘l.‘:?“”]
converges in distribution to a linear fractional stable motion (indexed by
a and A, 0 = H = 1) A fractional ARIMA process with possibly heavy

tailed innovations is a special case of the process X, In this paper it is

established that the process n_lﬁ” E.!t’:]l ..f'(ﬁn(}f,r_l 5S¢ + X)) converges in

distribution to l{_,l"f‘:x FiyddviLit, —x), where Lit.x) is the local time of
the linear fractional stable motion, for a wide class of functions J{ v) that
includes the indicator functions of bounded intervals of the real line. Here
A — o0 such that n=' g, — 0. The only further condition that is assumed
on the distribution of £ is that either it satisfies the Cramér’s condition or has
a nonzero absolutely continuous component. The results have motivation in
large sample inference for certain nonlinear time series models.

Consider a sequence X = T'_T-“:,:] cikp_j. k=1, whereej, j=0.isa

L Introduction. Consider a sequence £;, —oc = j < oo, of independent
identically distributed (i.1.d.) random variables (r.v.s) belonging to the domain of
attraction of a strictly stable law with index 0 < @ = 2. Define X = 32y &),
where ¢, j = 0, is a sequence of real numbers. Let §; = Zﬁ:l X; k=1.Then
under suitable conditions on the constants ¢; it is known that for a suitable
() = H = | and for a suitable slowly varying tfunction u(n), the finite-dimensional
distributions of the process (n ”u{njj"Shu] converge in distribution to those of a
linear fractional stable motion (LFSM). See, for example, Kasahara and Maejima
(198%). Wheno = 2, the LFSM reduces to the fractional Brownian motion (FBM),
and when H = | /e, it is taken to be the «-stable Lévy motion. (Definitions of the
preceding processes are recalled in Section 2.)

Now, for simplicity, let y, = n”u{u]. Let the constants 8, be such that
fn — cowith H_Iﬁn —+ (). In this paper it is established that the finite-dimensional
distributions of the process n 18, ZL‘:]I f{ﬁ“{y“_'Sk + x)) (indexed by ¢ and x)
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converge in distribution to those of ( [~ f(¥)dy)L(r, —x), where L(z, x) is the
local time of the LFSM, for a wide class of functions f(y) that, in particular,
includes the indicator functions of bounded intervals. (The only further condition
that will be assumed on the distribution of & is that either it satisfies the Cramér’s
condition or has a nonzero absolutely continuous component. )

For the particular situation where the limit of y“_' S[nr] 18 @ Brownian motion or
a FBM, some partial results in some form are available in Akonom (1993), Park
and Phillips {1999, 2001} and Tyurin and Phillips {1999}, where the motivation is
an interesting development of a large sample theory in some time series models
that have functions of the form f{5; ) occurring as regressions. The present paper
has the same motivation.

Major works for the i.1.d. situation §; = Z’L, &; that are related to the approach
of the present paper include Skorokhod and Slobodenjuk (1970) and Ibragimov
(1984, 1985). The approach of Ibragimov (1984, 1985) [a thorough account of
which is presented in the book by Borodin and Ibragimov (1993)] does not rely
on the moment conditions and hence, implicitly on the restriction of the Brownian
motion limit, of the earlier approach of Skorokhod and Slobodenjuk (1970) but
mainly on the requirement of the attraction of EL,%‘_; to stable laws. This

I n

approach is based on the representation
JHJI Z =1 | =1 = —luyT 18 Y £
— Y FBavy Sy==2 hHlvi 8= — 3 e k) F(u) du,
n n Joscm

k=1 k=1 k=1
where f,(v) = B, f(B,y) and f,{uj is the Fourier transtorm of f,{ v). The
conditions sought (in the i.i.d. case) are naturally through the Fourier transform
fulu) which in certain situations are then transtormed in terms of f,,{ v} and/or on
the distribution of &.

The approach of the present paper involves the approximation that the ditference

s s -~
(1 —Zﬁ,{y,,—'su——Zf fiy 'S 4 28)(2)dz >0 inL?
”k:l ”k:l =

as n — oo first and then £ — (), where ¢(z) = _“'Iﬁ_:r exp|{— ;j The approximating
) :

quantity % Y 7 fuly ' 8y +2£)¢(2) dz can be handled relatively easily. This
approach has some advantages, especially for the situation of the present paper,
tor instance, the required conditions for establishing the approximation (1) can be
viewed directly through f,( v) and the distribution of £; themselves.

In Section 2 we recall the definition of the LFSM, state a result on the
existence of its local time and also recall a result on the weak convergence of
the process }»;,_'Sw]. Section 3 contains the statements and the discussions of the
main results, and Section 4 contains the proots of them as consequences of (1).
Section 5 contains auxiliary results for establishing the approximation (1). The
proot of (1) constitutes Section 6.
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NOTATION. The constants 3,, £, and the functions f(v) and f,(y) =
B, (B8, y) are exclusively used in the sense they are used above. Similarly, ¢ (z) is
used in the sense of (1) above, b, in the sense of (4), and My, ;(v) and my 4 ¥) in
the sense of (6). We let

1 oss I 2 }

2 P 2e2

[so that ¢i{z) = g@(z)]. K stands for the Fourier transform of the measure K.
I4(-) stands for the indicator function of the set A and [E stands for the real line.
Convergence in L has the usual meani ng of the convergence in mean-square. The
notation C stands for a generic constant that may take different values even at
difterent places of the same proof.

P (2) =

2. Preliminaries. Let [{Z,(r), 1 € B}, 0 =@ =2 be an a-stable Lévy motion.
This means Z,(r) has stationary independent increments having a strictly
w-stable distribution, that is, for 5§ < 1, Z,(1) — Z4(5) has the characteristic
function exp{—(f — s)|u|*(1 + if sign(u) tan(%5"))}, where |f] =1 with § =0
when o = 1. (Note that this definition of strict «-stability for the case @ = | ditters
trom the usual one in that we take the shitt parameter to be (1.) When o = 2, Z, (1)
becomes the Brownian motion with variance 2.

A process [Agpl(r),r = 0} 1s called a LFSM with Hurst parameter H,
0= H < 1,ifitis given by

]
Man®=a [ (=) ) 2, (dw)

+a fﬂr{r —wyi-Vegz (du),

where Z,(1) is an a-stable Lévy motion as above and a is a nonzero constant.
When ¢ = 2, the LFSM reduces to the FBM. See Samorodnitsky and Tagqu ( 1994)
and Maejima ( 1989) for the details of LFSM.

We make the convention that in the case H = 1 /o, the LFSM [A, (1), 71 = 0}
is taken to be {Z,(r), f = 0. It 1s important to note, however, that in this case the
restriction () < H < 1 i1s equivalent tothatof | <o =<2,

Let {£(r).r = 0} be a real valued measurable process. Then a measurable
process {L{r.x),1 = 0,x € R} is said to be a local rime of {£(r),1 = O} if for
eachr =0,

'y a0
(2) /1.} Lalg(shds = f Lalx)Lir, x)dx tor all Borel subset A of
=

with probability one. [Without loss of generality we take Ay g(7) to be measur-
able.] For the symmetric LFSM, the existence of L(r, x} is known, see Kéno and
Magejima (1991). For the general LFSM, we have the following result. [It may be
noted that when 0 < @ = 1, the local time for {Z,(r)} does not exist; the case
| =« = 2iscovered by the next result. |
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THEOREM 0. Fora LFSM (A u(t), i =0 with = =2and 0 =< H < 1,
there is a local fime L1, x) such that for each 1t and x|

1 :
lim— | I A sVds=Lit,x inL-.
?Ilﬂl?v’;! [.r.x+!]]{ u.H{ ]} ( )

In addition, L(1, x) has the representation L(t, x) = % f_xl Jrq{ el e g lsl=x) ge oty

Next we recall the result on the weak convergence of the partial sum
process S[,;). Recall that£;, —oco = j < o0, is a sequence of i.i.d. r.v.s belonging to
the domain of attraction of a strictly stable law with index 0 = & = 2. For the later
purpose we mention that this, in particular, means for all ¥ in some neighborhood
of 0,

o : i mo s
(3) E[E:'u;-,]= |exp|—|u| G(lull(l + if sign(u)tan (T))} if o # 1,

exp{—fu|G(|ul)}, if e =1,
with |#] = I, where G (u) is slowly varying as 4 — 0. In addition, if one lets
(4) b-! =inf{u > 0:u%G(u)=n""},

then b, is of the form n'/®hn) for some slowly varying hin); in fact, b} -
nG{bn—'j. [For the details of these facts, see, e.g., Bingham, Goldie and Teugels
(1987), page 344.]

Mow recallthatc;, j =0, 1, ..., is a sequence of real numbers such that cp = 1,
and X =} 72 ¢k j. We impose the following (mutually exclusive) conditions:

(C.1)
(5) cj=j""1"VeR(jy withH#1/a,0<H <1,

where R(j) is slowly varying at infinity, and

> c;j=0  when H—1/a<0.
j=0
(C.2)
&
Z|L‘_,-|re:oo forsome r suchthat0 =t <@, T =1
j=0
and

o0
Y ¢ £0.
j=0
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Throughout what follows we let, with b, as in (4),

nf-Yepimp,, if the condition (C.1) is satisfied,
o

;S ( ch-)b,,i if the condition (C.2) is satisfied.
j=0)

Because b, = nl2h(n), one has u”"fa“R{ujbn = nfyn) for a slowly vary-
ing uin).

The tollowing result is taken from Kasahara and Maejima [(1988), Theo-
rems 5.1-533], but see also the references given there, especially Astrauskas
(1983).

ProOPOSITION L. (1) Assume that the condition (C.1) is satisfied. Then the
Sinite-dimensional distributions of the process v, ' Snr) converge in distribution to
those aof the LESM process Ay (1), H # 1 /a.

(1) Assume that the condition (C.2) is satisfied. Then the finite-dimensional
distributions of the process }’n_ISIn (] converge in distribution to those of the
c-siable Lévy motion Z,(1).

Note that the statement (ii) of this result holds for the entire range () < @ = 2,
but our interest 15 only on the range | <« = 2 because, as was mentioned earlier,
the local time for Z, (1) does not exist when () <« = 1. S0 in the situation of (5)
with H — 1 /o < () but Z_?;ﬂ{‘j # () [which case was excluded in the statement (1)],

this restricts « to either | < ¢ = min{2, #] oro = 2 when ﬁ =2,

3. Statements and discussions of the main results. It is assumed that the
constants Sy, 0 = 1, involved throughout below is such that £, — oo with
u_'ﬁn — () as n — co. For any function A( v), we define

(6) My (vi=sup{hu):lu—y|=n} and my ,(v)=inf{h(u):|u—y|=n}.

Also, under the condition (C.2), we shall henceforth restrict to the situation
| <o =2 for the reason mentioned above, so that according to our convention
the limit Z,(7) in Proposition 1{11) becomes A, g (f) with H = 1/a.

THEOREM 2. Assume that either one of the conditions (C.1) or (C2) is
satisfied. In addition, assume that £y satisfies Cramér’s condition

lim sup |E[e™1]|<1.

|| ==

Let, f(y) be such that Mg 5(¥) and M 2 . ( v)are Lebesgue integrable for some
0= 0 and

(7 /‘1 {Mfﬁ(}} — m_f.d"{}"” d'}_. =} GER
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Then the finite-dimensional distributions of the process n—'g, ZL’Z]I fiB, =

(% 'Sc + X)) lindexed by (1,x)] comverge in distribution 1o those of
(2% FdY)LiE, —x).

Note that L(r, —x) will have the same distribution as that of L(z, x) only when
the @-stable Lévy motion Z, (1) involved in the definition of LFSM is symmetric
around zero (which is always true in the case of FBM, the case « = 2).

REMARK |.  There are alternative requirements on f( v) that will imply those
stated in Theorem 2. For example, one possibility is to assume that the set of
discontinuity points of f(v) is of Lebesgue measure zero, together with the
Lebesgue integrability of M| 7 ,( ¥). [It is clear that condition (7) is then implied
by the dominated convergence theorem)]. Also, as will be indicated later (see
the Remark 7). it is possible to relax the Lebesgue integrability of Mg (¥) 10
that of local Lebesgue integrability. Thus the second possibility is to assume the
local Riemann integrability of f( v), together with the Lebesgue integrability of
M) 5(¥). In particular, Theorem 2 holds for the important situation in which
F (¥} =TI a( ¥). (Here the limit will remain the same if the open interval (c, d)
15 replaced by the closed interval [c, d] or by a semi-open interval.)

REMARK 2. In the iid. situation §; = Y%_, &, with §, = y, =b, = /n,
and when f(y) is assumed to be Riemann integrable such that | f( v)| < B(1 +
l¥|~ ') for some B = 0 and ¢ = 0, Borodin and Ibragimov [(1995), Theorem 2.1,
Chapter IV, page 143, and Theorem 2.2, Chapter IV, page 145] show that the
conclusion of Theorem 2 holds without the Cramér’s condition. When fi(v)
is as above, we mention, without going into the details, the following partial
extensions: (a) Theorem 2 extends to the situation where £; 1s nonlattice without
satistying the Cramér's condition but only under the restriction h;'ﬁ,, = (1),
where b, 15 as in (4). [In the important case S, = y,, this will include the situation
of condition (C.2), as well as that of condition (C.1) when H — 1/e < 0, but
unfortunately will exclude the case H — I/e = (1] (b) Similarly, Theorem 2
extends to the situation where £ has a lattice distribution when bn_'ﬁ,, —+ () [which
in the case #, = ¥, will include the situation of condition (C.1) when H — 1 /e = 0,
but not otherwise].

REMARK 3. Regarding the results available in the direction of this pa-
per, Akonom (1993} deals with the situwation (of a Brownian motion limit)
where } (Zgjlejl < oo with 3% 4¢; # 0, E[l51]17] < oo for some p > 2,
lim,, _,~, " E[e™£1] =0 for some T = ) and the distribution of &, has a Lebesgue
density. Then the main result obtained there implies the conclusion of Theorem 2
when f(¥) = I, 4 (y) and ¥, = /n. This situation is a special case of that of
condition (C.2) for e = 2, and Theorem 2 requires only that £, satisties Cramér’s
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condition and is in the domain of attraction of a normal distribution and that
Zj-‘*':ﬂ, le;| < oo with 3-72 ¢; # 0. The underlying situation (with a Brownian mo-
tion limit) of Park and Phillips (1999, 2001} is the same as that of Akonom (1993)
but the form of f(y) is notrestricted to f( ¥) = I}, 51( ¥), however, the (Lipschitz
type) conditions imposed there on f( v) are unfortunately rather strong in addition
to requiring further moment conditions on &;.

Tyurin and Phillips (1999} consider the situation where X is in the truncated
form X; = E’:}:ﬂ, ¢ j&i— . In addition to the restriction H — 1/2 = (). In addition to
the underlying assumptions of Akonom (1993) on the distribution of £, indicated
above, it is further required that E[)%,|9] = oo for g = ﬁ The limiting Gaussian
process involved here will be different from a FBM, but will have similar
properties. (It is easy to see that the results of the present paper hold for the
truncated case X = Zj;:“c_;&_j also with the changes in the limiting forms taken
into account.)

MNow, an example given in Borodin and Ibragimov [(1995), Chapter IV,
page 143] shows that the requirement (7) on f{ v} in Theorem 2 cannot be avoided
entirely. The next result relaxes that requirement, but assumes conditions stronger
than the Cramér’s condition.

THEOREM 3. Assume that either one of the conditions (C.1) or (C2) is
satisfied.

(1) Suppose that, for some integer ng, the ng-fold comvolution of the distribution
af & has a nonzero absolutely continwous component. Let f{v) be Lebesgue
integrable such that sup, g | F( ¥)| =< oc. Then the conclusion of Theorem 2 holds.

(ii) Suppose that, for some integer ng = 0, [ |1_[’;“=_.n,I Elef s Wi )| du < oo

g =1

where g(j) = ZLﬂq and n='8, x AT (Baly, 'Si + X)) converges in
probability to 0. Assume further that f(y) and f2(y) are Lebesgue integrable.
Then the conclusion of Thearem 2 holds.

Note that if [|E[e™5]|Pdu < oo for some p > 0, then the condition
I |]_[’;.“=T-J,I E[e'"#'7%i]| du < oo for some integer ng > () in statement (ii) above
is satisfied.

Note that the requirements on f(y) in the first statement are stronger than
those in the second statement; consider, for instance, f{ v)~ |v|" as |v] — 0 with
(=1 = —1/2. Also, as in Theorem 2 (see Remark 1), the integrability of fzf v)
in the second statement can be relaxed to that of local integrability.

Let us make some remarks regarding the requirement onn '8, Z’;“:_II FiB, =
{}1,".5';--}—1]_‘1 in statement (11). First, it 1s redundant when ng = 1. When x =0 and
B, = ¥, an important case in applications, the requirement is satisfied because the
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quantity reduces to n~ ,8,, Z"“_ F(5¢), which clearly converges in probability
to Oin view of n 18, — 0.

Suppose that x # 0. Then the additional condition lim, .~ sup), =, [F(¥)}| < 0o
is sufficient because, for each 1 = k& = np, with probability tending to one
ﬁn{yn_' St + x) will be supported in a neighborhood of +0c. The same is the case
when x = () and ﬁ,,yn—' — 0O

In the remaining case x = () and ﬁ,,yﬂ" — (), suppose. for instance, that
Fiv)~|v|]" as |v] — 0 with 0 = t = —1/2. Then with probability tending to

one, 17 B, 1 f (Bay, 'Sl = Cn 1By, T = Cin~18) T (ny, T — 0.

REMARK 4. So far our results are for f,( v) = £, f(f ) based on f( v).
It is possible to extend Theorems 2 and 3 to more general Jal¥) that satisty

the following conditions: sup,, [ |fa(¥)|dy < oo, sup, _,l"__ |f2(y)dy = 0,
lim, . o SUP, f“}.l_.:r] | fal ¥)|dy =10 and, letting

f. Solu) du, if vy =10,
]
— | falu)du, if v <0,

there is an F(y) such that F,(y) — F(y) at all continuity points of F(v).
These conditions are satisfied when f,(¥) = B, f(B,y) with F(y) = [~ f(u) du
it v =0 and F(y)= _,l"__ fluydu it v = 0, and, in fact, we shall use the
assumptions on f{ y¥) only in the form of the above conditions. Theorem 3(ii)
extends as follows. Assume, for some integer ng = 0, _,I’|E[e“‘5']|““du < 0O
and n—'zn“ If,,{}»'n S¢ + x) converges in probability to 0. Then, if f,(v)
qamtjr the above conditions, n~! Zlm] fn{yn_'Sk + x) converges in distribution
to _,lr Lo,y —x]dF{ v). Similarly, Theorem 3(1) extends, under the additional
assumption supy, y 0," I £, ()] = oo for some o, — oo with ‘L“ — .

The next result may be viewed as a discrete approximation to the local time of
the LFSM, which we obtain as a by-product to Theorem 3ii1) {whose requirements
are satisfied with ny = 1). Note that the approximation is in L2, in contrast to
the distributional approximation in Theorems 2 and 3. Note also that in this case
yn=nH,

THEOREM 4. Suppose that f{v) and | ) v) are Lebespue integrable. Then,
Joreacht,

£ Mzrl,f(ﬁu( Ag, u( )—x)) — (f_:: f(}-‘lﬂ’}")ifﬁﬂ in L2,

The next result is a continuous analogue of the preceding result.
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THEOREM 5. Assume that f{v) and [ 2 v} are Lebesgue integrable. Then

ﬁ [}x’ f(.-cff (Aa_;; (E) - x)) ds — ( [_:: Fiy) ﬂr}.)L{L x) in L2

Joreacht and x as k — po.

As noted In connection with Theorem 3(i1), the Lebesgue integrability of fzf ¥)
in Theorems 4 and 5 can be relaxed to that of local Lebesgue integrability.

REMAREK 5. Note that because the distribution cfu”:\u_;;{k,r'n] 15 the same
as that of Ag g (k), it follows from Theorem 4 that —L 31"} f(A, y(k) —
Jm”j converges In distribution to (f_”‘*l Fividv)Lir, x) as n — oo. Similarly,
ﬁf&” f(Ag g1 (s)—xx™) ds converges in distribution to ([T Fy)dv)Liz, x)
as k¥ — oo, in view of Theorem 5.

REMARK 6. One has —tq 5" (" (e (s/x) — x))ds =« [ fle" x
(Mg (s) — x))ds. When f(y) = L y(y) and & = 1/n, the right-hand side
reduces to rll_,l}i L xtm(Ae, mis))ds.

4. Proofs of the results. The proposition stated next is just a formalization of
the approximation (1), the proof of which is postponed to the next two sections
because it requires many auxiliary results. In this section we derive Theorems ()
and 2-5 as consequences of it. Recall that we let

oo| -3}
Var 2.)

PrOPOSITION 6. Ler fu(v) = B, f(Byv). Assume that the conditions of any
one of Theorems 2 or 3 are safisfied. Let L, (1, x) = % ZL‘ZL Jul y“—' 8¢+ x), where
g = 1, except under the second part of Theorem 3 in which case g = ng with ng as

imveolved there, and

2

2??} and ¢(z) =

1
£+ 2

de(2) = exp I S

[n1]

| e
Ly e(t,x)= = Z [ _fn{y,,_'ii} + x4 ze)p(z) dz.
k=17"%

Then

2
li lim s E|L,(z,x)— L, (2, | =0.
&-Tﬂﬂ—l*qurl_jxp [{ nlf, x) n el I]} ]

We next deal with L, (7, x) through the following series of steps.
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LEMMA 7. Foreache =,

[n1]

(8) Ly (1, x)— ( [ f{?]d?) Z‘#’e—(}"n ITL+X}

.I'.I |

is bounded by a nonrandom guantity that converges to () as n — oo,

ProoF. For convenience take £ = 1. Let F,,( v) =fi_xﬁnf{ﬁnujdu, and de-
fine F(y) such that F(y) = f_ flwydu if y = 0 and F(y) =
if v = 0. Note that F,(y) — F(y) at all continuity pc:intq of F(y) and
Fib)y— Fla)=0if 0 ¢ (a, b]. Now L,, .(r, x) takes the form _,l’ { Zl‘"] @l y—
y“_' S¢ — x)1d Fy( v). The difference between this and

1 [nr]

(9) f“ﬂ .]( Zqﬁn—yn n—xn)dFm

is bounded in absolute value by Cf!lr-'l:rr] d|Fyl(y) = c-'riIuI}ﬂHF] | fu)] du.

Define vy, i = —m,..., [ R m such that vy —m = —V < Vg mgl < -+ <
Vorm—1 < ¥mm =V and sup; | Vo i — ¥mi-1] = :;r Then the difference between (9)
and

m=—1 [ns] e
| ¥ i
(10) ) ( Zq‘rnm— v k—-x]) [ ar

I==m

is bounded in absolute value by C = f”"l I F|(y) = C--. Further, the dif-

ference between (10} and E:"___m{” Zlm] D (Vmi — ¥ 15 — x)) f,l:’r”:' dF(y)
is bounded in absolute value by C‘Zfr___m f;‘f:l"“*'d{ﬁ,{}-‘} — F(y))|. Thus,

it follows that (8) is bounded in absolute value by a constant multiple of
=gy | du + £ 4 3070 | [Ymitl d(F,(y) — F(y))|. Denote this by

oL

Q(v, m,n). Itis clear that lim,,_, -, lim,,_, o, lim,,_, ., Q(v.m.n}=0. O

LEMMA 8. For each & = 0, the finite-dimensional distributions af - '
Zlm] -:ﬁr&{y“—'.ﬁ'k + x) [indexed by (1, x)] conmverge in disiribution io Hm':e nf

fn PelMg pis)+ x)ds.

ProoF. For notational convenience, take £ = 1. Also, we take x = 0 for
simplicity so that we consider the process n-} Elm -:,tr(y”_'.S'kj indexed only
by 7. We now invoke Gikhman and Skorokhod [(1969), Theorem 1, page 485].
According to this result, letting Z,(5) = -_-p{yn_'ﬁ'[,”]j, we need to check that [the
finite-dimensional distributions of ,(s) being convergent to those of the limit
C(5) = @ Mg (5)) by Proposition 1]

-“;unp E[|Znls)]] < oo, lim imsup sup  E[|Zn(51) — Lnls2)|] = 0.

n=0 nso0 |5 —s|=p
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Because lim, .~ sup|, .., #( ¥) = 0,1t is enough to verify that, for every § = (,

lim limsup sup  P(|y; ' Sps) = ¥ ' Snsy | = 8) = 0.

10 ot |5y~ =y

Note that supy -, Pl Susir— v Wl = 8= SUP) <y Pily;lx
Sincql = &) by the stationarity of {X;, k = 1). (Here the stationarity is used only
for convenience and can be avoided.) Now, Theorems 2.2 and 4.1 in Kasahara
and Maejima (1988), give bounds for SUP(r <y P{|yn".5'|,,r]| = 4}, respectively,
when ) < o <= 2 and when @ =2 . Using the arguments similar to those used in
Kasahara and Maejima [(1988), Section 5], these bounds converge to zero by first
letting m — oo and then n — (. This completes the proot. [

The next result is related to Theorem 4.

LEMMA 9. Foreache = Oandforallt andx,n~" EE:]I (ﬁh.{ﬁa_;;{%j +x)—

1o (Mg p(s) +x)ds in L2,

PrROOF. 1, x and £ being fixed, take for notational simplicity 1 = 1, x = () and
e= 1 Write n~ ' 7_ ¢(Aq (X)) in the form [j ¢(Ag p(21)) ds. Then the
proot is clear because 1\5._;;{[‘;—'*]_‘1 — My sr(s) converges to () in probability [see

Samorodnitsky and Tagqu (1994), Proposition 7.4.3] and because sup_ ¢(z) < oc.
O

The next result is a continuous analogue of Proposition 6 for the LFSM
situation.

PROPOSITION 10. Suppose thar f(v) and f2(y) are Lebesgue integrable.
Let Ly(t,x) = ! o f{x”{:\a_;;{s,f.-f] — x))ds. Further, let L (1, x) =

e |

(%, F(y)dy) fy ¢(Ag p(s) —x)ds. Then

lim lim sup E[|L2(r, x) — Lo(r, x)2] = 0.
x. I

- Ll

The proot of this result is essentially contained in the proot of Proposition 6 for
the situation of the second part (with ng = 1) of Theorem 3. The next proposition
will be the only remaining fact required (apart from the proot of Proposition 6) to
complete the proots of Theorems () and 2-5.

ProrosiTioN 11, For each 1 and x, fé-:,f}h-{ﬁ:,_;;{.c] — x)ds — Lz, x) in
L as ¢ L0, where Lit,x) is the local time of Ay p(s), that is, satisfies the
requirement (2). In addition, L(i, x) has the representation of Theorem 0, that
is, L{t,x) = %ff;cf‘fjef“'i‘"‘“-”m—“d.':du_
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ProoF. Let T: = JH el Ay (5} — x)ds. We first show that T. is a Cauchy
sequence in L2. For notational convenience, we restrict for the moment to 1 = 1
and suppress the occurrence of x. We need to show that E[(Y,, — TEE“]?] — () as
(&1, £2) ) (. Note that

v’ 2’ n-u w2
& {257 rd‘u_

J_ J_

Hence, because EI.TE| T&.‘gl = ‘El.lrﬂ .IrﬂlI ‘i"&q (Mg mis n'i"a-.g“\u. H(s2)) dsyds;],

I = = ! : Ay (5 ) =ivhg pisa)
EI:TEITEE]:W.[_-:;[:@E jq.} .’q.} Y o B dedsa

S e L g g N |
e UEUETUERS gy du.

—n-u —ule ,-"?d-u

(11)

Here the order of integration is interchanged, which is permissible for each fixed
£y and g5, as can be seen using the fact _,I}: _,I}: | E[effan si)—ivAanis2) ]| ds dt < 1.
Now if

| o0 pod 1 el A o
(12) W[ f EU f et e S =1y g (52) d.nd.':g]dudvc:oo,
s J=ma 0 Jo

then it is clear from (11) that E[ Y., T.,] converges to (12) as (£, £2) — 0 by the
dominated convergence theorem. Note that

1 |
E[f [ E:'u Mg pis)=ivh, pis) dﬁl d.'.‘.‘z] - 0.
0 JO

The same is also true for E[Y. ] and E[T ], so that E[(Ye, — Te,)*] — 0

as (g1, e2) | 0.
We now verity (12) in astronger form that will be needed below. Note that, mak-
ing now the occurrence of x explicit, for the L7 (7, x) defined in Proposition 10, one

can directly check that sup, sup, E[(L](r, xjjzj = oo (see Remark 8). Thus, in
view of Proposition 10, it follows that lim sup,_, ;sup, E[{fﬂ', el Ay p(5)) d.':}E] <
oo. Hence, in view of the identity (11) (with £y =&2). it follows by Fatou’s lemma
that

|

P Gy

D pOd I 1 : :
(13) % f f [f f E[e‘m[‘ﬂa'ﬂhI]_'x]_wtﬂa'ﬂtn]_'t]]d.'i‘|d.'i")]du du
=oa J=oa LJO SO B

Actually we have shown that (11) converges to (12) because (11) is bounded above
by (12).
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Thus, we have established the Cauchy converzence of fécﬁh-{ﬁu_n{sj —x)ds
in L2, which entails the converzence in L?. Denote the limit by L(r,x). In
particular, {13) gives

d d
(14) f -[_: ¢ (Ag g(s) —x)dsdx — f Lit, x)dx inL!

for every interval [¢,d). It remains to show that the limit L(r, x) is indeed a
local time, that is, (2) holds. It is sufficient to verify that JI:{ Le.dy(Ag m(s)ds =
j:fIL{Lx]dx for every interval [c, d). In view of Remark 6, Proposition 10, in
particular, entails that

I I _ I i
E-L Iy crm (Aa, 1 (5)) ds — [} be (Mg i(s) —x)ds -0 inL?

as 1 — 0 first and then & — 0, uniformly in x (in the sense of Proposition 10).
Hence,

L d rt ) )
[-, Lear( Ao m(s))ds —j; -[} P (Mg pyis) —x)dsdx = 0 in L.~

as £ — (). In view of (14), this completes the proot. [

Now note that Propositions 10 and 11, together with Remark 6, proves
Theorem (). In the same way Theorems 2 and 3 follow from Propositions 6 and 11
and Lemmas 7 and 8. Thus, it only remains to establish Proposition 6.

5. Auxiliary results for the proof of Proposition 6. We first obtain some
estimates on the behavior of the characteristic function of
J=1

(15) Si=v; ' Y sk
=0

(The reason for considering S}?, which is in the form of a finite-order sum of
independent r.v.s, will become clear in the next section.) Here gi(k) = ELﬂ,q
with ¢; as in the conditions (C.1) or {C.2). Only the distributional pmperties
of 'i'* will be required, so that for convenience we take 'i'* = y" E g{.{jéjk
UI‘IdEI‘ the condition (C.1), we have ¢; = ;”""f"R{;] for a slowly varying
R(j) (with Y Zqc =01if H — 1/ «: (). For simplicity, we shall restrict to
the situation ¢; ~ Cjii-1-Ve j _, o, for a suitable constant C. Then note

that g(k) = ZLﬂq ~ C'kH-Ye | 5 no, for some constant C’, so that for
convenience ST can be taken to be of the form [with b; as in (4)]

J g H-Ve g
(16) 5;:2(_,) %_
J

k=1 4
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Note that in view of (3), there is a § = 0 such that, letting v (v) = E[¢"5],
(17) [y (v)] < e~ EFGUED for all [u] < 8,

where {w) 1s slowly varying at ().
In the rest of this section it is assumed, without further mentioning, that either
one of the conditions (C.1) or (C.2) is satisfied. Further, the constant b j 15 as in (4).

LEMMaA 12, Ler ﬁ j(u) be the characteristic function of .5'; defined in (153).

Then there are constants A =0, 4 =0, d = 0 and 0 = ¢ = « such that |E jlu)] =
Ae~ " for all |u| = Ab; and j = 1, where b; is as in (4).

ProoOF. It is enough to prove the result tor all sutficiently large j, because for
any jop =1,
- ibjy € —dlul*

o v s
| Hi(u)| = 1 = ghlLbigl® o —didbyg| {Edl

for 1 < j < jpand |u| < Ab;.

In the same way, it is enough to consider u such that |u| = C for some
C = (0. We have |ﬁ_,-{u]| = ]_[il=I |yﬁr{y_;'g{kjuj|_ Consider the situation of
condition (C.1). Then [taking into account the simplification (16)], |H;(u)| =
Ty |¢((_§)”—'f“ “)|. Suppose first that H — 1/e > 0. Then | (% EyH=ljun AR
for all |u| <8b;. Thuq in view of (17,

|ﬁ_f(u]|£exp! g!( )n Ifa_I! (G,)H—Ifa%)]

for all |u| = 8b;.

Recall that b" - ;G{b '_‘J [the &{u) in (4) and that in {17) being the same]. One

can assume tcr convenience that h" = ;G{b_'] Then the sum in the preceeding
exponent becomes

i H=1}o o 1 I H=1/uo i
o B el )
(9 uf ;Z!( ! G \\J bj

MNote that with G{w) being continuous, it is bounded on compacts. Hence,
by Potter’s inequality [see Bingham, Goldie and Teugels (1987), statement (i1)
of Theorem 1.56, page 25], for every § = () there is a B = (), such that
IG(x)/G(v)| = Bmax{(x/v)?, (x/¥)~%} for all x = 0, y = 0. Hence, it fol-
lows easily that for a given € = (), there are C = (0 and C; = () such that

inf=[e] |H,— {{ Y=l |“|]| = Cy|u|~? for all sufficiently large j and for all
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lu| = C. Thus, (18) is bounded below, for some C’ = 0, by C’Ju|* "% for all suf-
ficiently large j and for all |u| = C. This proves the result under condition (C.1)
when H — 1 /o = (.

When H — 1 /e < (), note that whenever k = [je] for a given €, one has, for
some C = 0, {%}”_”a = C for all sutficiently larze j. Hence, essentially the same
arguments used above apply for this case also.

It remains to consider the case under condition (C.2). By assumption }_7Z,c; #
0 and } ;5 ci] = oo, so that for some positive constants # and x one has
%= |Zf=nf,-| = i for all sufficiently large k. Further, in this case yI._' =
h;'{zﬁﬂq]_'. Hence, the proot of this case is contained in the above arsuments.
This completes the proof of the lemma. [

LEMMA 13, Ler H jlu) be the characteristic function of .5' T defined in (15).
Assume that &ysari ':ﬁe':rhe Cramér’s condition of Theorem 1. 'Hre'n jﬂr any d = (],
thereisa B = Oanda 0 <= p < | such that SUP |y |- |H,{u]| = Bp! forall j =1,
where b; is as in (4).

ProOOF. As in Lemma 12, it 15 enough to prove the statement for all
sufficiently large j. Now recall that the Cramér’s condition is actually equivalent
[0 Sup|.~, |r{z}] = 1 ftor all @ = 0. First consider the situation under (C.1).
When H — 1/ <= 0 [and taking into account the simplification {16)], we have
ﬁﬁ“”ﬂzlmmulgkgﬁTma

sup |H;(u)|= sup li[|¥’-’((§)n_”abij)!5(ﬂﬂpIf,f-f(z}l)j-

|u|=db; || =edbr py | |z|=d

Now consider H — /¢ = (). Given € = (), there 1s a C = 0 and a jy such that
{ kyH=1/e » ¢ forall k =|jeland j = jo. Hence, as before, SUP|y| =db |H,{uj|

{ﬁuP|z|_-idr: [Wrz)])/=lel, j = j,. Because for some p > 0, j — [je] = pj for all

sutficiently large j. this proves the result under (C.1). The proot under (C.2) uses
the same arguments. [l

To proceed turther we need the following result, contained in Bhattacharya and
Ranga Rao [(1976), proof of Lemma 11.1, page 93].

LEMMA 14, Lerp and v be finite measures on R*. Let n be a positive number
and K, a probability measure on R* satisfving K,({x:]|x| < n))= 1. Let h be a
real valued Borel measurable function on R* such that | My o (x)| and |my . (x}]
are integrable with respect to p and v [where My (x ) and my, (x) are as defined
in (6)]. Then

f = [mf_ﬂd{,u — Vs Ky — [{f—’nf..?r}}dv1
fdip—v) :
< [ Mppdu—v) Ky + [(Mg2y— frdv.
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The K ;; above will be chosen such that its characteristic function K ol ) satisfies

(19) |Ky(u)| < Cexpl—(nu) %)

for all real &, where C is a constant (independent of ). This is possible in view
of Bhattacharya and Ranga Rao [(1976), Corollary 10.4, page 88], where K is
used extensively as a smoothing device. Next we give some Inequalities that will
be used in a rather crucial manner in the next section. For this reason we need to
state the bounds explicitly.

LEMMA 15, Assume that £ satisfies the Cramér’s condition. Let K, be
the smoothing probability measure of Lemma 14 satisfving (18). Then, for some
O=p=1,

f|ﬁffﬂl|lfq(u]|du Eo ) W
and

f|e—"‘*‘f’3 — 1||H; )| Ky du = C(e* 417" o).

ProoF. Let L = 0,@ = ¢ = (,d = 0 be positive constants involved in
Lemma I2 and let 0 = p = | be as in Lemma 13. Then, recalling the inequality
(19) for [K ()],

[ 18,618 ldu < [

llul=aby)

< Cf E_dllllrdu-}—cg}'ff E—[F]'|u|]l,-3 2
Hu | =] Haa | =k ;]

which proves the first part. The second part also follows in the same way using
the nequality |.¢:—"3*‘-3f*2 — 1] = w2 /2 over the range {|ju| < ib;} and using the

Aildu+ [ IR, du
i =

inequality [e~*"*/2 — 1| < 2 over the range {|u| > I

LEMMA 16, Suppose that, for some integer ny, the ng-fold comvolution of the
distribution of §; has a nonzero absolutely continuous component. Let H; be the
probability distribution S defined in (15). Then there are measures H; an.d H; h
such thar H; = H HE H st . satisfving the following properties:

(i) Forevery r =0, there is a constant L, such that H;*{Rj = Lyj™" forall
J = np.
(i) Let H : be the Fourier transform of H ¥ Then there are constanis A = (),
=0, d =0 and 0 = ¢ =« such thar for even J = ng and for every r = (0,
|H;| < Ae~dll L L_j=" forall |u| < Ab; and for a suitable constant L.
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(i) There are constanis B = 00 and 0 = p <= | and an integrable funciion
g(v) = 0 such that supy >as, |H} (u)| = Bg{b;'ujp-’ forall j = 2ng.

ProoOF. The proof is similar to the ii.d. case }-—I.-“E Z}LIEI' |see Prohorov
(1952) and Le Cam {1960), pages 68—72]. We briefly recall the arcuments. For
simplicity, we consider the case np = 1. First, letting F for the distribution
of £, one writes F =6G) + (1 —#)G2, where 0 = @ < 1 and G| and G2
are probability measures such that | 1s absolutely continuous with respect
to the Lebesgue measure with a Lebesgue density uniformly bounded by a
constant. (In particular, the density of (7, is square integrable and, hence,
|§||2 15 also integrable.) This is possible because F 1s not entirely disjoint
from the Lebesgue measure. Then the characteristic function vrp(u) of F has
the corresponding decomposition yrp(u) = 0yrg, (u) + (1 — 8)g,(u). Hence,
H_I-{uj = H}ﬁ:l{{)r,ﬁrgl{yj_'g{k]uj +(1 —{)jr,ﬁrt;zfyj_'g{kjujj which can be written

in the form H;(u) = ¥/ Y. 6'(1 — 0)/~! r[f_,t;:,,(y;'g(muj, where . is
either rg, or g, such that W, occurs in the product l_[t t,f.r*,«{y g{.{ju]
exactly [ times, and the sum %__; is with respect to all such productq h::ragwenf

Now let I} = {l:|I — j#| > ™). Then H}" is the measure corresponding to
the Fourier transform Z,«H:-Z,!ﬁ (1—8)/~ J'1_[J¢: Wiy g{.{ju] Itis clear that

H(R) is bounded in absolute value by E:;:f‘ {!}!’)‘f{l @) ~!, which is known
to have the bound stated in statement (1). Fcr statement (11) use the fact that
|."1’_I-s M= |H: (u)] + H;*{R} and then use :r;_i:le bound in statement (1) for H;*{R],
together with the bound in Lemma 12 for | H;{u)|.

Proot of statement (iii) uses essentially the same arguments of the i.i.d. case
given in Prohorov (1952) or LeCam (1960) mentioned above, the essential facts
being the Cramér’s condition for (7| and the function g{v) in statement (111) taken
to be |l§ j(av)|? for a suitable constant a, which is integrable as indicated earlier.
The necessary modifications needed for the present case being essentially the same
as those used in the proofs of Lemmas 12 and 13, the proofis concluded. [

LEMMA 17, Under the situation of the preceeding lemma, for some() = p < 1,
flﬁ;funduz C(1+ p’)
and
[I w2 )| H w)ldu < C(s* + p')

Jorall j = 2nyg.
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ProorF. Regarding the first statement, according to statements (ii) and (iii) of
Lemma 16, there is a (0 <= p = | such that for any r = (), there is an L, satistying

f|ﬁ;{uj|du =f |H;{uj|du+f |H [ (u)| du
| <kbj) MESTR

< [ (Ae=dW" 4 L, j77) du +Bp-ffg(u}du
il <i;)

tor all j = 2ng. Here the integrable function g(x) = 0 is the one occurring in
Lemma 16(iii). Similarly, the second statement follows. [l

The next result deals with the situation of the second statement of Theorem 3.

LEMMA 18, Suppose that [ |E [etE1] | dy < oo for Ssome integer ny = (.
Then for all j = ng, the conclusions of Lemma 17 hold for Hi(u) itself.

PROOF. Because Lemma 16(iii) holds for ﬁ_;{uj itself for all j = np with
g(v) = | E[e™1][", the proof follows as in the previous lemma using Lemma 12.

O

6. Proof of Proposition 6. We first prove the result under the conditions of
Theorem 2 (assumed to hold henceforth without further mentioning ), which will
then essentially contain the prootf under the conditions of Theorem 3. Throughout
below the constants v, are such that

n_'vn—ﬂ] and v;'ﬁnqﬂ.

Such a choice of v, is possible because n~!'8, — 0. Further, p will always
stand for a constant with (0 < o < 1. For the function f,(v) = flav), a = 0, the
identities

1
f“fu-waf}"-" Gy Efo-nf}"l dy,

(200 :
[ my, nja{¥)dy = = fmf.q( vidy,

which follow in view of My, p(¥) = My (ay)and m g, pa( ¥)=m g qlay), will
be invoked repeatedly. In particular, because | M|y ;( ¥) dy < oo for some n = 0,

i21) lim sup leul_!,;uf}rjdy=lim sup lel_ﬂu.lu-uf}-‘]dy =C.

e, =20,
We begin with the following result, where and elsewhere recall that f,(v) =

Fnf(fav).
PROPOSITION 19,

SUpE[|fa(yy ' Sk + 011 = Comy ' + wap) flel_ﬁwu-uf}-‘jd}r_
X
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PROOF. Wehave, with g, (j) =y, zﬁ_ﬂq [recall that y, = n™ ~YeR(m)b,],

v 'S = Z {gnm—n—gnfl—;J}§;+Zgnm—;}§,-nw,, VS,

J==ou i=1

where 5 = Z_;:IEk{k — j)&;. Note that 57 andS;; are independent. Hence,
Ellfayy 'Sk 4+ 1)1 = E[ [ 1atr DBy =7t + s::n]

= [ | furldH.y.

where Hy is the distribution of S;, Hu(y) = Hi(y — yk_'yn{x + §7%)) and
fak( N = _;",,{yn—'yk};]. Noting that §7 is in the form of (15). Lemma 14 (with the
measure v taken to be identically zero) gives [ | fux|d Hat < fMIfu;I R

d{Hsk*K!I—I}’ },J.Theright—handside isboundedby{fMlhl i (y)dy) =
S n _Yaky n

(f |Hk{uj||K.:u-|m,k_|{u}|du} because for a probability measure P with
I |ﬁ{u]|du = oo, its density p( v) satisfies

(22) sup p(y) < [ |Pw)du.

(H.; = Ky has a density function.) Now [|Hi(w)K 1, 1)l du < cu

k =1 £
P vy, ' ) according to Lemma 15. Also, -'rMIfJ.I i }’u}’;_I{ yidy = }»',,yk

f lel-ﬂ.u':n_l { ¥)dy in view of (20). Hence, the proof follows. [

Note that

(23) sup.ﬂ:U' T zs)lcﬁ(z)dz] < supE[|fuly,; ' Sk + ).
= X

EX

Further, E[|f (v, 'St + 0l = BIEUS*(Baly, 'Sk + x)|] and, hence, by
Proposition 19,

sup E[| £2(v 'Sk + 011 < Chulynyy ' + vnp®) f Mg i(y)dy.
X

Now note that n—! k=|{}’n}’k_l + v,p*) = C because y, = k"u(k) with
0= H < 1 and u(k) slowly varying. Thus, by (20) and because n"ﬁ,, — 0},

SUp — [Zu Y '5k+xn|}

e [Zf |2 S +x+z£.‘1|¢(?]dzj|
k=1""

— (.

(24)

EX



1790 P JEGANATHAN

REMARK 7. If welet f'"'(y) = f(y)I(|y] > 1), then sup, B, E[| f" (B x
('S¢ 4 x))1] is bounded by C(yny; ' + vap®) [ M| ;0| g1 (3) dy, in view of
Proposition 19, where lim; .~ limsup, .~ [ le'”l-ﬁu!'u_lf}rj dy = 0 if
M ¢ 4 (¥)dy < oc for some n = (. Then without loss of generality, f(y) in
Theorem 2 can be taken to have a compact support; in particular, the integrability
of M ¢2;( ¥) can be relaxed to local integrability.

The next lemma will ease the computations to be carried out further on.

LEmmsa 20, Let £, k = 1, be Lid standard Gaussian random variables
independent of {§;: —oo < j < oo). Then, for each & = (),

1 [nt] N
sup E'| § — Z (fn(}",; 'S + x + Zie)
£4,.X n =1
2
G -
—[ faly, S;--E—X-F—ZE}-:,HZ)H’Z)] j|—>{l_
o =)
PROOF. Define the o-fields / ; = o(S81,..., 5. Z),..., Z ;). Because {Z;}

and {53} are independent, E[fy(y, 'Sk + x + Zie)lF k-1] = [o fulyy 'Sk +
x + ze)(z) dz. The differences %{f,, YIS+ x4+ Zee) — Elfu(y7 S+ x +
Zie)|l ¢—1]) form martingale differences with respect to {/ ¢, & = 1}. Hence, the
expectation in the statement of the lemma is bounded by E[;—z VIR M o
8¢ +x + z£)gp(z) dz]. The proof follows by (24). [

FINAL ARGUMENTS OF THE PROOF OF PROPOSITION 6. For notational
convenience, and because all the bounds derived below will be independent of
X, we restrict to the case x = (). In the same way, we restrict to 1 = 1. In view

of the preceeding Lemma 20, it is enough to show that E[{% Z};Z]I{fn{y;'&] -
fn(}*,,_ISk + st})]2| — 0 by letting first # — oo and then £ — . Then, in view
of (24), it is enough to show that

l n n
T2 2 Elatn ' S)— futn 'S + Z;0)
555 j=lk=j4l

X (fuly 'S0 = a7 Si 4 Zi2))]

converzes to () by first letting n — oo and then £ — (). Recall that fork = j,

1] i k
ylSk= Y (gatk=D—ga(l=D)61+ Y gk —DE1+ Y galk—D&
l==n0 I=1 !=_,I:+|
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with g,(j) = y“_' E;i:ﬂck and y, = n”_"'f"R{ujh,, This is the same as
}"n_l‘sk — qak.r + }’In }"k - T
where SE—;' = Z;;ﬂ_lgk_j(q]&_q. Because .S'E_I. and 5::;' are independent,

ELfuly, 'S fuly,  Se + Zie)]

- - =1
= E[ A5 [ o me ) (e Gu) 5 = v i) |
where Hi_ ; 1s the distribution of .S':_j, (75 15 Gaussian with mean () and variance
o’ and
Enkj = E}"k__lj}"n .
Using similar identities, it follows that (25) can be written in the form

I n
”_EZE[{IH{}";:IS”—J“‘H{}’;: S+ Z; £))
=1
(26) !

bt Z fﬁ!k!d{Hﬁt J 'H-‘.' II'*GPHLJ}}

k=j+1

where we have set fo;( v) = fn{y Ye—j¥) and H # (A =He j(y =y ;%

.S'::I} We first show that, for every & = (), the quanm}f

) > E[{ﬁ:(}’n_l's:'] Jaly, S + Z;£))
f=[n§
27 J=[nd]

x Yy [fnkjd{HfI L ol :*F*w}]
k=j+[f8]"

converges to 0, first by letting n — oo and then £ — 0. By taking v = Hf .

o= Hk j ¥ Gey; and Ky = K - i in Lemma 14, one gets upper and Icwer
bounds for

i #
(8 [ fuid(HE; % Gepy — HE).

By looking at these bounds, it is clear that we need to obtain bounds for the
following:

2 u #
[:Hg:] f Mf"kj g !I“_ I Fa }’k__l.l; d{ Hk _j * GE"JJ"J: * K!u Fn YJ. _,l H Kll"_ I Fn }'l-_—l_f } 5
#

':3{1} f{M-ﬁJk.f'z"ﬂ_l}"u}’*:; — f“-"f}dﬁk_jq

GO [ Uaki =y 2y VAHE
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Regarding (30), we have, againusing Lemma 14 with v =0 and K; = K.,, }’nn

it
f {Mf-“’-'.f'z"u_ ' YJ.-__I_E = Tk } de—j

|}d{Hk I*K -]

< M L -1
_f{ f.ukj--h'.u ¥y _r f.uJ._r vy }':'JYJ. }’FJ}’J. _..}

E f {M.ﬁjk_f-.-h'u_lﬁj}’*:;{y] f nkj » -!I.u }"-'J}'l % {}]}d}

(32)
x f |H-‘~'—..l: (H}”Kl'.-fl}’.u }1.‘_'_.; (1) | du

= C}’n}"k__lj( f {Mﬁl_m_ﬂ}r} —mﬁl_.l?{}r}}d}r)“ - pk—fun}ﬁ,_l}.k_jj

=Clyayej +vap* ™) f (Mg (D =m g 1(M)dy,

where we have used (22), Lemma 15(1) [.S'E_j is in the form (15)] and the
identity (20). In the same way, the final bound (32) holds for (31) also. Now

consider (29). Let A1z ;( v) be the Lebesgue density of Hf , K. S ) . Then
|'| 1 _r

—Hf

d{Hk Ir * Gfuk_r _J: *Kl';l}’.ll}’l.__lj]

T R |
Va Fnlp_;

fu,
; ki« vy }"-'J}’l _r

=fM -1 {}}[fhk_;{\ — ZEnkj)P(z)dz — My J(‘F]]

fuJ._r vy }’J }"J,-

(33)

Now [recall that H_(y) = Hi—;(y — v, vaS5i)]
| |
|fhk__;{}- — ZEnkj)p(2) dz —hk_;'(}-‘.‘l|

‘f{e—u *-'JJ-_r"— ” Il ¥ = .__r}’.u "J'J]'[H.t—,r *K | }{u}du

[|f uled /2 ||(Hi—j * K, ik ()| du.

Yo ki _

Using this and Lemma 15(11), (33) 1s bounded in absolute value by

( [lem;l o | {}}d})(f|e u J',-JJ._HE - |||{HL - *K = _, }{uj|du

(34)  =Cleyy +pk—-fu,,yn—'yk_jlynrkiﬂf(flel_m.,u_uu‘}d}-‘)

f S—

= C{EEH ¥ }’k__l_j + Un pk_j}-
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Thus, summing (32) and (33), (28) is bounded in absolute value by a constant
multiple of (Q(n) + &2, ¥y +(Q(n) + 1)y, p* =/, where

Qin) = f {Mf.ﬂ”.:”q{}rj —mf_ﬂ"!:uq{}r]}d}r.

In addition, E[| fu(y, ' S;) — fu(yy ' S; + Zj)] = C(yay; ' + vap’) by Propo-
sition 19 and (23). Thus, (27) 1s bounded in absolute value by a constant multiple
of

|
5 Z (a¥] "+ vap)

[nd]
(35) Jj=n

n

% Z ((Qln) +£Ek_;'}}’u}’k__'j +(Qm) + Ny o).
k=j+4[4]

Now note that £,;; = entfl(k — j}—”u{n]{u{k - j]]", where the slowly varying
u(n)is such that y, =nTun). When k = j-Ie—[jE] and j = [nd], there is a constant
(C(4) depending on § such that HH{JL ;]_ = C{8) for aII bm’r’ﬁlf:ilﬂn'ilj,r large n.
Hence, one can check that — E: s ¥a¥j Zk PN sn e ;}"n}"k ;= C.(8)e?

for some constant C,{E]. In addition, FEJ=I}""}";' Zk=_;+IUJ=P T

FI—‘ = v pd b= }"n}’k__l_;' — () and EI"—‘ 2 g v o Xk jia1 vt~ = 0. (Re-

call that n_'u,, — (1) Also, @(n) — 0 by (7). Thus, for each & = 0, (27) con-
verges to () as n — oo and & — (). Hence, it remains to show that the difference
between (26) and (27) converges to (), first by letting n — oo and then § — (.
The same argumemq used in Proposition 19 show that | [ fn{y“—'yk Ivjd{Hf

GF”,‘_J. }{},]| Hbcundedb}f C{y,,yi -Ie—vnpk 7). Hence, it can be ‘ieenﬂ'lat

& |
|t|qencughthhcwﬂ1m El;l_]ll"n}’; Zﬁ I+|}’n}"j;||- d Z" |;;5]}"n}";

Zi"'kfll VaVi_ : converge to (), first by letting n — 0o and t]'len & — (). This 1s true

tor the first of these because it is bounded b}f o Z[;'ﬂ yny_' B yny!_' The
same 15 true for the second one because it can be rewritten as

' S D 7 B,
T Z }’n}" Z}’n}’; C”i Z ¥ [15]}’|j5]
Jf=lnd] J=Ind]

EI H' n
Z ;y R 6, asn — og,

n’ J=|nd]

tor each & = 0, where we have used the fact j ;p'_!-_2 1s regularly varying with index
| —2H = —1. This completes the proot of Proposition 6 under the assumptions of
Theorem 2.
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Now consider the proof under the assumptions cf Theorem 3. First, consider
Theorem 3(i). Because sup, | f(v)| = C, we have — E‘I"_“l_l | fuly 18, + x)| =
%~ where ‘H” — (). Hence, one can restrict to the sum - EJ_M“ jﬂ,{}j,".S'_I--F—x].
Proceeding as |n the proof of Proposition 19 and using Lemma 16(i) and the first

part of Lemma 17, for any r = 0, there is an L, such that E[|f.(y, 5 AT x})] 1s

bounded by
== CBnL,
[ 150 oty ([ 17z @oran) + <

k
Chu L,
K

<Cyay; " f If(y)]dy +

for all k = 2ng, where H® is as in Lemma 16 corresponding to the distribution
Hi of 57 . Hence, (24) (with the sums restricted to 2np = k = n) also holds,
because [ f2(y)dy < (sup, |f(¥)) [1f(y)|dy. It remains to deal with (26),
where as above, one can restrict the sum to j and & such that & = j + 2ng and
J = 2np. In the same way as above but using the Lemma 17(11), (28) is bounded
by Cy,,yk__'_j{EJ?kj + pk_j) + &% when &k = j + 2ng. Thus, the same arguments
used earlier under the aqqumpticnﬁ of Theorem 2 become applicable when r = 1.

[Now ynyp_ I,ﬂj‘ f 4 Lf“ I’], plays the role of the earlier v,,p“*‘-f~ where only the

facts n~'v, — 0 and ) Ty p*=I = C were used.] This completes the proof of
Proposition 6 under Theorem 3(1).
Regarding the proot under Theorem 3(ii). note that we are considering the sum
I o fn{yn—'ﬁ'_,- + x ) restricted to ny = j = n. Here we use the conclusions of
Lemma 18, which hold for H; itself for j = ng. The bound in Proposition 19 now
becomes Cy, ¥, '_,Ir |[f{v)|dy and the conclusion (24) (with the sums restricted
to np = k < n)also holds. Also, in dealing with (26) one can restrict the sum to
J and k such that & = j 4 ng (and j = ng), because

\ELf(y 'S 4 ) fuly 1S + 2011
< EV2f20,0t8 + 0IEVAI£2 (v Sk 4 0))

s0 that, similar to (24), lz ZI i |E[fn{}»'“_' S; 4+ xjf,;{}»'n Sitq +x)]| = 0 for
each fixed | < g < ny. Further, as above, (28) is now bounded by Cy, X {F”h

k "y when k = j + ng. Hence, the proot of Proposition 6 is concluded. [

REMARK 8. Under the conditions of Theorem 3(ii), it is implicit in the
preceeding proof that, for every 0 = 5y =52 < L, sup, E[{; Elnh] f,,{yn"

[n5]
S; +x))% is bounded by € T3y~ (Ba f 2 (yydy+ L2 vy
Similar bounds hold under Theorem 3(1) and under Theorem 2. One can establish

analogous bounds for sup, E[{% E[I.":i]:_”] _;‘],{yﬂ—'Sj + x))¥] forintegers ! = 1.



WEAK CONVERGENCE TO LOCAL TIMES 1795

REFERENCES

AKONOM, J. (1993 ), Comportement asymptotique du temps d occupation du processus des sommes
partielles. Amn. fnst. H. Poincard 29 57-81.

ASTRAUSKAS, A. (1983). Limit theorems for sums of linearly generated random variables.
Lithuanicn Math., S 23 127-134,

BHATTACHARYA, R. N, and RanGa Rao, R, (1976). Normal Approximation and Asymiptotic
Expansions, Wiley, New York.

BINGHAM, N. H., GOLDIE,C. M. and TEUGELS, J. L. (1987). Regular Variation. Cambridge Univ.
Press.

BorRODIN, A, N. and IBRAGIMOY, 1. AL (1995), Limit theorems for functionals of random walks,
Proe. Steklov Inst. Math. 195,

GIkHMAN, L 1 and SKOROKHOD, A, V. (1969). fntrodiction to the Theory of Random Processes.
Saunders, Philadelphia.

IBRAGIMOV, 1. A, (1984). Some limit theorems for functionals of a random walk, Dol Akad Mk,
555K 276 1(49-1052,

IBRAGIMOY, I AL (1985). Théorémes limites pour les marches aléatoires. Erole d"Eté de Probabil-
itds de Saint Flowr XU Lecture Notes in Mathe 1117 199-297, Springer, Berlin.

KasaHarA, Y. and MAEIMA, M. (1988). Weighted sums of iid. random varigbles attracted to
integrals of stable processes. Probal. Theory Related Fields TR 75-90,

KoNo, N, oand MAEIMA, M. (1991). Self-similar stable processes with stationary increments. In
Stable Processes and Related Topics (8. Cambanis, G. Samorodnitsky and M. 8. Tagqu,
eds.) 265-295, Birkhfiuser, Boston,

LECaM, L. (1960). Locally asymptotically normal families of distributions. Univ. Calif Publ Star
ist. 3 27-98.

MAEIMA, A, (1989), Self-similar processes and limit theorems. Sugakn Expositions 2 103-123,

Park, ). Y. and PHILLIPS, P C. B. (1999}, Asymptotics for nonlinear transformations of integrated
time series. Econametric Theory 15 200-208,

Park, 1. Y. and PHILLIPS, P. C. B. (2001). Nonlinear regressions with integrated time series.
Econometrica 689 117-161.

PROHOROV, YU, V. (1952). A local theorem for densities. Dok, Akl NMak 555K 83 797800,

SAMORODNITSKY, G. and Tagou, M. 5. (1994}, Swable Non-Gaussian Random Processes:
Stochastic Models with Infinite Varianee, Chapman and Hall, New York.

SKOROKHOD, A. V. and SLOBODENIUK, N, PLO1970). Limit Theorems for Random Walks, Naukova
Dumka, Kiev.

TyURIN, K. and PHILLIPS, P. C. B. (1999, The occupation density of fractional Brownian motion
and some of its applications. Working paper, Dept. Economics, Yale Univ.

INDIAN STATISTICAL INSTITUTE
BANGALORE CENTER

STH MILE, MYSORE ROAD
BANGALORE 560059

INDIA

E-MAIL: jegan@isibang.ac.in



	covergance of functionals-1771.jpg
	covergance of functionals-1772.jpg
	covergance of functionals-1773.jpg
	covergance of functionals-1774.jpg
	covergance of functionals-1775.jpg
	covergance of functionals-1776.jpg
	covergance of functionals-1777.jpg
	covergance of functionals-1778.jpg
	covergance of functionals-1779.jpg
	covergance of functionals-1780.jpg
	covergance of functionals-1781.jpg
	covergance of functionals-1782.jpg
	covergance of functionals-1783.jpg
	covergance of functionals-1784.jpg
	covergance of functionals-1785.jpg
	covergance of functionals-1786.jpg
	covergance of functionals-1787.jpg
	covergance of functionals-1788.jpg
	covergance of functionals-1789.jpg
	covergance of functionals-1790.jpg
	covergance of functionals-1791.jpg
	covergance of functionals-1792.jpg
	covergance of functionals-1793.jpg
	covergance of functionals-1794.jpg
	covergance of functionals-1795.jpg

