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One adaptive design is proposed and stwdicd by Bandvopadhyvay and Biswas (2001)
Jfor comparing twe treatments having continnons responses with covarfates at hand
in a phase HI clinioal trial. On the other hamd, @ drop-thedoser wrn design is
recently proposed by Ivanova § 263 ), which s known to fave the least voriabifiny
among wn-based adepiive designs for binary responses. The drop-the-loser rafe for
continwons date was recently introduced by Iranova er al. (2005). Bur neither of the
works considered covariates for the affooetion design. The present paper provides a
version af the newly proposed adaptive design, drop-the-loser rufe, but for continons
responses and by incorporating the covarfate information in the aflocation procedure.
Several exact and limiting properties of the design, and ofso of @ simpler version of
it, are studied. We compare the design of Bundvopoadfyay and Biswas ¢ 2000) with
the covariate-wdinsted drop-the-loser-type rule for comtinmons responses amnd conclude
that, althongh the drop-the-loser rule s better for binay responses, the design
of Bandvepadfyay and Biswas ¢ 200 ) performs better than the drop-the-foser-type
rile for continnons responses with covariates. We recommend the existing design of
Bandyopadhyay and Biswas (2000} for practical purposes.

Key Words:  Immigration ball; Limiting proporton of allocation; Probit link; Proporton of
allocation; Randomisation: Response-driven adaptive design; Treatment difference; Urn model.

1. INTRODUCTION

Response-driven adaptive designs are used in phase I11 clinical trials with an
objective to treat a larger number of patients by the eventual betier treatment.
The objective of a phase 111 trial is to compare the performances of two or more
competing treatments where the patients often arrive sequentially into the study.
Quite often the patients are treated one after another, and thus the procedure
allows the use of past allocation-and-response history up to any entering patient to
determine his/her treatment. Thus, the adaptive designs have their role to play in
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such a scenario to help us achieve some ethical gain by treating a larger number of
patients with the preferred treatment. At the same time, we also need a significant
amount of allocation to the worse treatment, to enable us to make meaningful
inferences about the treatment difference in an efficient manner. Adaptive design is
all about the trade-off between ethical gain (which is achieved if a larger number of
patients are treated by the better treatment) and power/efficiency of the follow-up
inference (which is maximized through optimal allocation).

Quite a few real applications of adaptive designs have been performed with
increasing frequency in the recent days. Some real applications of adaptive clinical
trials for dichotomous responses are due to Professor M. Zelen (in a breast cancer
trial, reported by Iglewicz, 1983), Bartlett et al. (1985), Tamura et al. (1994), Ware
(1989), Rout et al. (1993), Miiller and Schiifer (2001), and Biswas and Dewanji
{2004). Several adaptive designs are available in literature, although most of them
are suitable for binary treatment responses. Some of the well-known designs are
the play-the-winner rule (see Zelen, 1969), the randomized play-the-winner rule
(see Wei and Durham, 1978), and the success-driven design (see Durham et al,
1998). For such designs, the expected proportion of allocation to the better
treatment arm is more than 30%, and this proportion increases with the increase
in treatment difference. However, most of these designs are birth processes, and
accordingly, the variability is too high. In fact, the standard deviations of the
proportion of allocation for these designs are so high that an allocation that is less
than one or two standard deviation(s) from the expectation often leads less than
509 of patients to be treated by the better treatment, in the case of a two-treatment
experiment. Recently, Ivanova (2003) introduced a new adaptive design for two-
treatment allocation, called the drop-the-loser (DL) rule, which is a death process.
Consequently, the variation is quite low, as it is known from the results of stochastic
processes that death processes have less variability than the birth processes. Hu and
Rosenberger (2003) observed that the drop-the-loser rule has the smallest variability
among the available adaptive designs for binary responses.

All the above designs are for binary treatment responses. Certainly the
amount of research on adaptive design is very low with more general treatment
responses, e.g., continuous treatment responses. The reason for this is mostly the
complexity that arises with such general responses. The question naturally arises:
how to adapt? The few works available in this context are Rosenberger (1993) and
Bandyopadhyay and Biswas (2004) where some nonparametric score functions are
used. Bandyopadhyay and Biswas (2001) (henceforth referred as BB) considered
continuous responses with covariates influencing the responses.

The important question that naturally comes to mind s whether one can
adopt a version of the drop-the-loser rule, applicable for continuous responses in
the presence of covariates, and provide a better adaptive design than the existing
Bandyopadhyay and Biswas (2001) rule. Recently Ivanova et al. (2006) provided
a version of the drop-the-loser rule, applicable for continuous responses, which
is called the continuous drop-the-loser (CDL) rule. Here, in this present paper,
we provide a version of the drop-the-loser rule applicable for continuous responses
where some of the covariates can take an important role in the responses. Thus,
a response with an unfavorable covariate should get much weight in favor of
the treatment concerned than the same response with a favourahle covariate.
In any realistic design, these aspects are to be considered. So, for the purpose of
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application, we need a version of the drop-the-loser rule, which is equipped with
continuous responses and properly takes care of the covariates of the patients. The
ezoal of the present paper is the development and comparison of this design with the
existing Bandyopadhyay and Biswas (2001) design.

The rest of the paper is organized as follows. In Section 2, we provide a
covariate-adjusted drop-the-loser rule for continuous treatment responses, which
we abbreviate as CCDL. There we consider a linear model for the responses and
for the sake of mathematical simplicity we assume normality. Section 3 deals with
an approach to carry out the proposed CCDL without having a linear model of
responses. Section 4 provides some properties, exact and limiting, of the design.
The exact properties include the proportion of allocation to the better treatment,
its standard deviation, and also some inferential issues that are evaluated by
numerical simulations. We also introduce the expected number of responses less than
a threshold as a performance characteristic. We provide a numerical comparison with
the BB rule and the 50:30 randomized design. Section 5 discusses the issues concerned
with the choice of design parameters in our proposed CCDL. An illustration with real
data is given in Section 3. Section 6 ends with some conclusions.

2. COVARIATE-ADJUSTED ADAPTIVE DESIGNS FOR
CONTINUOUS RESPONSES

2.1. The Setup

Suppose we have two competing treatments, say A and B, in a phase I11
clinical trial. We have a setup where the patients enter sequentially and each entering
patient is treated either by A or B using some randomization where the probability
of allocating any treatment is adaptively determined according to the state of art
based on the data up to that stage. Here we have a setup where the responses
are continuous and a covariate vector x affects the responses. For illustration, at
this stage, we assume simple linear model of responses where the covariate vector
influences the responses in the same way for both treatments. For many types
of treatment responses, a simple transformation of the response variable, eg., the
logarithm of survival time, leads to normality. Thus, for simplicity, we assume a
normally distributed response structure, although this assumption is not needed for
the development and implementation of our technique. Normality, of course, brings
some elegance in the mathematics. Suppose we have n patients in the trial. Let T, be
an indicator that takes the value | or (), accordingly, as the ith patient is treated by
A or B. Consequently, ¥, is the response. Thus, we assume that ¥, ~ N{u, +x7 §, %)
or ¥; ~ Nipi; + x] fi, ) depending on the ith patient is treated by A or B, where x;
is the covariate vector of the ith patient. Such a linear model holds in many real
situations, either directly or after taking a transformation of the data. Note that
different & could be one real possibility. But we decide to describe our design in a
simple setup. Such types of extra modifications can be done in our approach with
little difficulty.

MNote that, in our model above, the treatment difference (see Ware, 1989;
Wei et al, 1990) is g, — pp. Our allocation design should be such that it will
allocate a larger number of patients to treatment A if p, — pgz > 0, and the
allocation proportion to treatment A should increase with the increase in the
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difference p, — pz. But we should note the covariate values of each patient and give
appropriate weights to them in the allocation design.

2.2. The BB Design

In the BB design, the (i+ 1)st patient is treated by treatment A with
probability
q}(ﬁm_ﬁm)
T

where Ji,; — [ty 18 the covariate-adjusted estimate of p, — u,; based on the data up to
the first § patients and o, is a scaling constant. It is observed in Bandyopadhyay and
Biswas (2001) that the design works well in terms of allocating a larger proportion
of patients to the better treatment. The design is intuitive in nature. The limiting
proportion of allocation to treatment A is given by

i Ha— Mg
Thga = ‘T"(—)

Ty,

See Bandyopadhyay and Biswas (2001) for details.

2.3. Continuous Drop-the-Loser Rule of lvanova et al. (2005)

The rule can be illustrated by an urn model as follows. An urn contains one
ball of each of the three types, types 1 and 2, which represent the two treatments,
and also type 1, representing an immigration ball. Every entering patient is treated
by drawing a ball from the urn. If an immigration ball is drawn, we add one ball
each of kind, 1 and 2. If the drawn ball is of kind i, i = 1, 2, we treat the patient
by the corresponding treatment. We replace the ball with probability di(“—”) for

T
some scalars ¢ and o, This procedure is continued.

2.4. Covariate-Adjusted Drop-the-Loser Design for
Continuous Responses

It is observed that the DL rule for binary responses or continuous responses
allocates with quite low wvariability. In the light of the comments of Hu and
Rosenberger (2003) in the context of binary responses, we want to see whether we
should use the BB design in practice or some possible version of the DL/CDL
rule, applicable for continuous responses, in the presence of covariates. Here
we propose the covariate-adjusted continuous drop-the-loser rulke (CCDL). Our
proposed allocation design is as follows.

We start with an urn having one ball each of type A, B, and 1, where 1 is
the immigration ball. For the (i 4+ 1)st entering patient. { = (), we draw a ball from
the urn, and treat the patient by treatment A or B if the drawn hall is of type A
or B. On the other hand, if the drawn ball is of type 1, we add one ball each of
the types A and B to the urn, replace the | ball, and draw one ball from the urn
afresh. We continue this procedure until we get a ball of A or B to treat the patient
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accordingly. Let the response of the patient be Y. the covariate vector is x;,,, and
the indicator of allocation is T, ;. We then replace the drawn ball with a probability
Pir1 = Pig(Yi, Ty x49), which is also a function of all the accumulated data up
to the first (i +1) patients. We then carry out the same procedure for the next
entering patient.

The all important problem lies in determining p;,,. For this we proceed as
follows. Let /i, be the estimate of § up to the data of the first i patients. Then we
suggest to set p;,, as

b= Gl —Fx. —0) (2.1)

where & is the cumulative distribution function (cdf) of a symmetric random
variable. Specifically, we can use the cdf of a normal distribution with variance oy,
Thus, (2.1) reduces to

Vi — Bl % — ﬁ') (2.2)

7

.PJ'+'I = t-]:.(

i

Here ¢ is a constant, which is set to make most of the p-values not too close to 0
or 1. Thus, a meaningful idea can be to choose ¢ as the prior idea of (p, + g/ 2
One can sequentially update ¢ by replacing it by (ji,; + ft;)/2. The choice of g,
should also be driven by the fact that all the p-values should not be too close to
0 or 1. Note that a small value of g, will make the p-values too sensitive to the
¥-values, p; will be close to 0 or | accordingly, as ¥, — n,'_1x,- — ¢ = 0 or =0. But, on
the other hand, a very large value of 7, will make the p,’s close to 0.3, irrespective
of the corresponding responses, thus making the adaptive mechanism very weak.
This is also not desirable. It is the experimenter’s task to choose o, moderately by
balancing this trade-off.

In the present setup, our data up to the ith patients comprises the allocation
indicators {T,, A, T}, the responses {¥,. A, ¥}, and the covariate vectors {x,, A, x,}.
We denote the following;

?.-1_. = —zj.T] T:l YJ _a- - —Zj.'_.1 (- Tj]lrj
LiaTj L (1=T13)

5 zj._] Tox; ;. o zj._] (1—1T))x;
iy (o " Em(1-T)

My = Z T:l" g = Z (1 = Tj::l'
=1 i

S.I’.‘I:.J- - E T:l'(xj = j'-.-h'::”:xj = j'-.-tl'::IT + E (1 i Tj}(xj EE -i'm'} (xj EE j'-ﬂi'::l?.'

1

S.l:_'r.J' = z }if-’fj_"m'r.-uxm' — Mgy Ym‘-"m‘
=
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The normal equations are

i TJ’ (F'{\ ] . \
>li-1|a 1-7, xj:lkﬁnJ=Zr:{1—ﬂ-J

j=1 .
A

implying

i 0 Zj.'_1 TJI‘T Ha ma ¥y
0 Mg Tl = 'l'jl.jl.x}' iyl = g Y
Zj.'_l T;x; Zj.'_l (1— Tj]lxj Zj._1 _xJ-_x}' I Zj-_1 ¥ox;

and hence

ﬁj’ — S.:::!J'S.I_T.I {2'3]
We use (2.3) and the current patient’s response and covariate vector values to obtain
the ball replacement probability (2.1) or (2.2). Note that in such a situation, the
estimate of the treatment difference, p, — uy, is

fai — g = ?fu _?m' — (%0 — Xap) TR‘ (2.4)
Clearly, the above covariate-adjusted rule is the usual drop-the-loser rule

{Durham and Ivancova, 2001, Ivanova, 2003) with the unconditional probability of
replacing the ball as

_pT o
P:"+1 = E|:c]:.( Vi ﬁj Xit1 L)] (2.5)

T iy

which depends on x;, if that is assumed to be non-stochastic. If, on the other hand,
we assume a stochastic covariate vector X with a distribution function H. then the
expectation in p?  in (2.5) is also taken over the distribution of X. We denote it by
Plis OF Py, accordingly, as the patient is treated by A or B. Quite naturally, the
exact expression becomes complicated.

2.5. Simulation

We provide a detailed simulation study to examine the nature of ethical
eain obtained through this allocation design. In fact, we study the proportion of
allocation to the two treatments for different parametric values and for different
distributions of the responses and covariates. Some of the simulation results are
presented in Table 1. It is observed that we have a larger allocation to the better
treatment, but never too large. We compare our results with the standard allocation
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Table 1 Comparison of PropA) and 5D (within parentheses) of the CCDL rule with the 5050
randomized rule and the BB design. Here only one covariate is considered and o= 1,2, i=2,
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= N(L L), n=40, 100, g, =0 always

Ha
Dresipn 0.0 06 1.2 1B 24
n=4 s=1
{a) 0500 {0082) 0.520 {0082 (1.538 (0081 0.550 {0081 (0.558 {0080
(k) 0500 {0082 0522 {0.0RD) 0.543 (0.0R 1) 0562 {0.080) 0582 {0080
() 0500 {0073 0507 {0.073) 0517 {0,074 0523 {0.075) 0529 (0074
{d) 0500 {0073 0500 {0.070) 0,500 {0.076) 0500 {0.078) 0.500 {0079
() 0500 {0.18%) 0.700 {0,150 (1,829 {0, 100) 0.891 {0081 0922 {0076)
(£ 0500 {0.096) 0572 {0.095) 0.636 (0.097) 0.699 {0L08R) 0.758 (0082
() 0500 {0078 0520 {0075 0.545 (0.077) 0.564 {0078 (0588 (0077
n=40, 7=2
{a) 0500 {0093 0516 {0093 0.532 {0.092) 0540 {0.093) 0551 {0093
(k) 0500 {0093 0517 {0092 0.531 {0.092) 0551 {0.093) 0371 (0092
() 0.500 {0087 0504 {0.086) 0513 {0087 0516 (0086) 0516 (0087
{d) 0500 {0.076) 0500 {0.072) 0.500 {0.072) 0500 {0.077) 0.500 {0077
() 0500 {0.298) 0648 {0.275) 0.766 {0.23]) 0.843 {0.170) 0893 {0.120)
(£ 0500 {0.151) 0567 {0.143) 0.640 (0. 141) 0.698 {0.128) 0751 (0118
{z) 0500 {0090 0521 {0.0BT) 0.544 {0.0RG) 0.563 {(LORS) 0589 (0089
n=100, s =1
{a) 0500 {0053 0523 {0053 0.539 {0.054) 0.554 {0.053) 0.560 (0052
(k) 0500 {0053 0524 {0053 0.546 (0.054) 0566 {0.055) 0585 (0052
() 0500 {0048 0509 {0.049) 0519 {0.049) 05326 (0.050) 0532 {0050
{d) 0500 {0050 0500 {0.049) 0,500 {0048 0500 {0,049 0500 {0049
() 0500 {0.142) 0.721 {0.126) (0.862 {0.093) 0.933 {0057 0963 {0028
(£ 0500 {0067 0578 {0.065) 0651 (0.066) 0.717 {0.063) 0.775 {0.060)
{z) 0500 {0051 0523 {0053 0,546 (0049 0569 {0L050) 0.592 {0049
n=100, s =2
{a) 0500 {00607 0517 {0.059) 0,533 {0.060) 0.545 {0.060) 0553 {0.060)
] 0500 {00607 0518 {0.060) 0,540 {0.059) 0560 {0.060) 0581 (0061
() 0500 {0.050) 0503 {0.050) 0503 {0.050) 05320 {0.050) 05325 (0051
{d) 0500 {0049 0500 {0.049) 0,500 {0.050) 0500 {0048 0500 {0049
() 0500 {0.275) 0684 {0.249) (0.825 (0.185) 0.905 {0.122) 093 (0085
(f) 0500 {0.104) 0577 {0,107 0.647 (0.099) 0.717 (0087 0.77 (008
() 0500 {0.056) 0521 {0.056) 0,547 {0.059) 0.569 {0.055) 0589 (0053

Designs in the above tables:
(1) CCDL (ay, =1.c=1), (b) CCDL (gy, = |, c = (g, + 152,
(¢} CCDL (my, = 0.0 =0), {d) Randomized 50:50,
(¢) BB (my, = 1), () BB (g, = 3), (g) BB (my, = 10).

design provided by Bandyopadhyay and Biswas (2001) for continuous responses
with covariates, as that seems to be the only comparable adaptive design in this
case. We observe that the BB design is ethically more sound in the sense that on
an average a much larger proportion of patients are treated by the better treatment.
Even though the standard deviation (8D of the proportion of allocation for the BB
design is slightly higher in some cases, the larger allocation proportion compensates
for that.
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3. PERFORMANCE OF THE DESIGN: COMPARISON WITH COMPETITORS

As the most obvious performance measure, we study the expected proportion
of allocations to the better treatment by our design CCDL. This proportion is
denoted by Prop(4). We also study the standard deviation (5D) of the proportion,
as the initial goal of the DL rule is to reduce the variahility. These are presented
in Table | for different parametric values. We also present the same for the 30:30

Table 2 Comparison of power for the one-sided est based on CCDL rules
with the 5050 randomized rule and the BB design. Here only one covariate is
considered and e =1, =2 x~ ML 1), oy = 1.2, n =40 100, pr, =0 always

By
Dresign 0.0 0.6 1.2 1.8 24
n=4, =1
{a) 0050 {0158 0.3 1. 564 0.768
(b 0.050 015 0.335 0,559 01,758
{«) 0050 0135 0.325 0. 548 0.758
() 0.050 01.495 0.970 L.000 1000
&) 0050 {.389 (.8R5 {989 0.999
{f) 0.050 0495 0.968 1000 1000
(z) 0050 0.537 0.978 L.000 1000
n=4, =2
{a) 0050 0.072 0.156 0,334 0.528
(b 0050 0.071 0.157 0,339 0.528
) 0050 0.067 013 0.128 0.528
() 0.050 0.183 0453 0.818 0.970
&) 0050 0,100 0.195 0.322 0.517
{f) 0.050 0106 0.378 0.665 0901
(z) 0050 0.185 01.500 0,824 0.969
n= 100, s =1
{a) 0050 0.258 0.53] 0. 764 {1866
(b 0050 0.259 (1,535 0.758 {1858
) 0050 0.237 01.524 0.758 (1,858
() 0050 (.842 L0000 L.000 1000
{e) 0050 0.777 0.999 1000 1000
{f) 0050 0892 L0000 1000 1000
(z) 0050 0.877 L0000 L.000 1000
n= 100, ¢=2
{a) 0.050 0.083 0.219 .31 0413
(b 0050 0084 0215 0,359 0412
) 0050 0.073 01.204 0,42 0,398
() 0050 0.317 (.842 0.997 1000
) 0050 0,103 0.259 0.507 0.725
{f) 0050 0.327 0.841 0.9493 0.999
(z) 0050 0.323 0.873 0.997 1000

Designs in the abowve tables:

{a) CCDL (6g = l.c=0), (b) CCDL (54 = l.c =, + g} 2},
{¢) CCDL (my, = 10, ¢ = 0), {d) Randomizd 50:50,

(2) BB (my, = 1), (f) BB {(my, =3, {2) BB (o, = 10).
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randomized rule and also for the BB design for the sake of comparison. We observe
that Prop(A) is never too large for the better treatment in CCDL, and hence the
ethical gain is less than that of the BB design. But the SD values are less for the
CCDL rule.

The natural question following the allocation is to carry out the inference.
Here we want to carry out a test for the null hypothesis H, :p, = n, against
the one-sided alternative H, : p, = ;. For simplicity, we carry out the test for a
fixed-sample size n. Quite naturally, a right-tailed test based on the test statistic
8, = [i4, — Hg, 15 recommended. The test is to reject Hy if 5, > w5, where w4 is
chosen appropriately (by extensive simulation study) to have a 5% level of the test.
Thus, u, s is the upper 5% cut-off point of the null distribution of §,. In practice,
we simulate §, for 10,000 times and find w,, as the 95th quantile of the null
distribution of §,. We present the power of the test in Table 2 for both designs.

A good design is that which induces good ethical allocation (by treating a
larger proportion of patients to the better treatment) as well as the design having
large power to detect treatment difference. Although some other criteria, such as
expected number of failures or variahility of allocation, can be used as indicator of
a good design, we recommend concentration on the two basic criteria, namely a)
ethical allocation and b) large power. All other criteria are, in some sense, dependent
on these two. It is interesting to note that ethical allocation does not necessarily give
high power. This is a trade-off. So the experimenter needs to find the appropriate

Table 3 Comparison of ERLT,'s of the CCDL rule with the 5050
randomized rule and the BB design. Here only one covariate is considerad
and e=1 =2 x~NLI1),n=100d=1,2 and p, =0 always

Ha
Dresign 0.0 0.6 1.2 (] 24
d=1
{a) 32736 28017 23 855 20.431 17998
(k] 12736 2R008 23740 20.165 17.341
() 12,734 28144 24184 21053 18.735
{d) 32736 28225 4 408 21630 19.577
() 32,736 26.231 18.531 12013 7.393
{f) 32,736 27.521 22009 16811 12.340
g 32,736 28017 23740 20,098 17.156
d=2
{a) 50,000 44 468 38900 33957 018
(k) 50,000 44457 I8 B4R 33609 2032
() S0.000 44616 30,400 34.768 30931
{d) 50,000 44711 10.7ER 35521 12078
() S0.000 42374 32104 22982 15481
() S0.000 431R86 36,703 10217 222
(£ S0.000 44,469 18848 3351 28781

Designs in the above tables:

{a) CCDL {gg = 1. c=0), (b) CCDL {54 = |, c = (14 + g} 2},
{c) CCDL {ay, = 10, ¢ = (), {d)} Randomized 50:50,

) BB (g4, = 1), (f]) BB {a, =3, {g) BB (m, = 10).
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design after judicious judgment. For binary response design, another criterion makes
sense. That is the expected number of faillures. In contrast, here responses are
continuous, and hence there is no meaning of failures/successes. Here we can
think of an alternative idea, namely, the expected number of responses kess than
a threshold «. We denote it by ERLT,. We carried out a detailed computation of
ERLT,. Only a part of that is presented Tahle 3, for the sake of brevity.

As a natural comparison, we compare the performance of the CCDL design
and the follow-up test with a test procedure that randomizes the patients among
the two treatments in a 30:30 way and also with a test following an allocation
by BB design. The power values for the BB rule are much more than that of the
CCDL rule. In fact, the powers for CCDL are often nearly 30% of that of the BB
rule. For the 50:50 randomized design, the power is sometimes larger, but it is not
an ethical (skewed) allocation. In a nutshell, the powers of CCDL are very small
and there is not much gain in allocation proportion (and hence not much gain in
ERLT,) than the 30:30 randomized design. Hence, we do not recommend CCDL.
MNote that BB (s, = 3) have almost the same power as the 50:50 design, but with
a higher proportion of allocation to the better treatment (and hence have smaller
ERLT,) than the 50:50 design. Thus, for a clinical trial with continuous responses
and covariates, we strongly recommend the existing BB rule with appropriate & over
the drop-the-loser-type rule or 50:30 design.

4. CHOICE OF DESIGN PARAMETERS IN CCDL

Choice of design parameters, ¢ and o, in (2.2) is a very important for
implementation of such designs. Clearly, there seems no optimal choice of these
unless one uses some standard optimality criterion like the D-optimality or the
D -optimality (see Atkinson, 1982). That is also quite difficult in this scenario,
mainly because the algebra becomes much too cumbersome. However, in principle,
that is doable. We, instead, concentrate on a sensible choice of these parameters
depending on our requirement.

We clearly want to distinguish between the ball replacement probabilities for
the two treatments when there is treatment difference. One way to achieve this is
to set ¢ to be equal to {n, + 1;)/2 and o, to be equal to . In the presence of
prior idea, that can be used to set these design parameters. Another way might be
to allocate the first m patients randomly in a 50:30 way among the two competing
treatments and use that data to estimate p,, jiz. o, and f, and set the design
parameters accordingly. Then, from the (m + 1)st patient onwards, we carry out
our adaptive design CCDL. A more complicated but more efficient way may be
to estimate u,, g, o, and § adaptively, and use the current estimate to determine
the design parameters adaptively. It will certainly impose a more complicated
dependence in the process and the mathematics will become more cumbersome.
However, there seems no problem in interpretation and implementation of this
adaptive estimation technique.

In fact, the roke of ¢, o4, and G is to fix the ball replacement probability
function. Theoretically, one would like to determine these design issues optimally by
optimizing some criterion of interest. For example, one can think of minimizing the
expected number of failures. But, as this is a very complicated expression, the easier,
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practical way out is to study different possible choices of ¢, 7, and G numerically
and find that combination for which the expected number of failures is minimum.

5. AN EXAMPLE: FLUOXETINE HYDROCHLORIDE

As an example of the construction of designs, we use part of the data from
Tamura et al. (1994) on the treatment of patients of depressive disorder. In order
to correspond to our formalization of the present models, we denote treatment
A control and B fluoxetine. We have a categorical covariate with values 0 and
| dividing the patients by sleep dysfunction before the trial The response is the
negative of the change in HAMD,,, a measure of depression. Since HAMD,, is
measured on a 33-point scale, we treat it as a continuous variable. Large values are
desired. There are 88 observations, since one observation in the data set does not
have a response.

From the data we observe that the covariate follows a Bernoulli (0.5)
distribution, 1 =0.7862, i, = —11.0288, ji; = —7.4255, and & = 51.0808. Using
the BB rule, we find the allocation probabilities to treatment A for different o,
for the 89th patient. Also, using these estimates as true values, we simulate the
allocation probabilities for the 89th patient by the CCDL rule for the same o,
values. The computations are given below.

T 1 3 5 10 15 20 30
BB 0.0002 01149 02356 03593 04051 04285 04522
CcCchL 04468 04502 04550 04583 04686 04754 (04758
(e =0)

CCDL 04074 04156 04204 04372 04496 046062 04748

(e = (j1q + fig)/2)

From the allocation probabilities we observe that the BB rule is more ethical than
the CCDL in the sense that a smaller proportion of patients are treated by the worse
treatment by the BB rule (than the CCDL). Although the variability of the CCDL
rule is slightly less, one or two 5D less than the expected allocation for the better
treatment for the BB design are often higher than CCDL. Again, if 7, is poorly set
{without having much idea about the variahility of the response distributions), the
allocation proportion in the BB rule can become negligibly small {e.g., for o, =1
in the above computation). This is undesirable, as one of the major goals of any
clinical trial is to make inferences about the treatment difference, which can be done
by having reasonable allocation to both the treatment arms. Thus, one needs to
be cautious about setting o, in the BB design. On the other hand, the allocation
in CCDL is quite robust with respect to the choice of o,. But we observed from
Table 2 that the BB procedure is more powerful than the CCDL rule.

6. CONCLUSIONS

The present work assumes a very simple structure having continuous responses
and covariates. In this paper we introduced drop-the-loser type designs for
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continuous responses with covariates. These designs are then compared with the
existing adaptive design of Bandyopadhyay and Biswas (2001). Although the designs
are for phase 111 clinical trials, they may be applied in suitable form for phase 11
or phase IIB clinical trial designs as well. In the present context, so far as the
comparison of the adaptive designs for continuous responses is concerned, we
observe that:

o The BB design is more ethical in terms of allocating a larger proportion of
patients to the better treatment.

s Variability for the drop-the-loser-type rule is less, but a much higher proportion
of allocation by the BB rule indicates that even an allocation of one/two SD less
than the expectation for the BB rule is more ethical than the DL rule for many
CaSeSs.

o The test following BB design-based allocation has much higher power than the
test following CCDL allocation.

We recommend the Bandyopadhyay and Biswas (2001) design for practice.
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