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Let @.® bi: nonzero rations] numbers and Clyd a polynomial with rational
cocllicients. We study the Diophantine equaiions

Al (x)=bf iy + Oy
and
af(xh=H8,% | Cl¥)

with s 2 s = deg €42 for solitions o intepers o, v Here £{7 = x(o+ 13- dx+
st — 1} undd the Bermoulli polynomials 8, () aro defined by the generating series

L L)
fet - r
R
.
H=Il

Then, f,(x}= 3", {")B, .;»" where B, = £,(0) is the rib Bernoulli mumber. In

= f
fact, B are rational nurnburs defined recursively by By =1 and ¥ 72, VB =1 for
wll m 2 2, The odd Bernoulli nwmber R =0 for # odd = 1 el the fimst few are:

Bn=1, By=-1/2, f.=1i6 B.=-1/30,
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The Bernoplli polynomials 8, are related to the sums of rth powers of the first few
naturul numbers ss follows, Foramy e 2= 1, thesum 12+ 2" 4+ - 4+ £ 15 8 polynomaal
function S8 of Eand 8, (x) ={(Bap(x + 11— Baey)in + 1)

One savs that un equatiun £(y) = g(v} has infnilely ey cavionl selutions with

bounded denominator H there exist a positive intezer & such thal Fix) = g{¥) has

infinitely many rational solutions x, ¥ satisfying «. v € 2& and, more generally, we

lowrk for rattonal solutions with bounded denoiminators,
Farler, we have studied the equations of the type f(x} = p(3) fon

() fixd=x(x+1}---{x +nr — 1) and a general g [2.4] and
(1} Fiv)=aBn(x), gly) = 2B,0v)+C(y) where m 2 n > deg(C) + 2 151,

Here, we prove the fiollowing two thearems:
Thenrem 1. frm o = deg({Ch =+ 2, the equation
a B (xy = by + 000

Rey andy finitel) many rational selutions with bourded denominator exce in the
foffowerng sitwatinas:

() m=n,m+ 1 iva perfoct square, a =blSm T 1Y,

(i} mt=2m, (74 13/3 is a perfect sguare, @ = b h‘l{—l ¥
I eack case, there iy @ uniguely determined pofynomial C for which he equation

has infinifely mony rationsd solitions with a bounded denominator. Further, C s
identically zero when m=n =3 and hus degreen dwhenn = 3,

Theorem 2. Fowm 2 n = deg(0) 4+ 2, the equation
f"fm I:_I:} =h B.ra E_]']' + C'[I'L’:l

has onfy finitely many rational sofutfons with bounded denominntor excepting the
Jfoflowdng sitwations when if Fes Infiitely many

m=mn, m- 1isaperfoctaquare, b= u.{w' 4 | }m.

It there siruations, the polvomind C Is alve wmiguely delermined o be

T o
Cx) :aj;,‘({:l;v’m ol l'”%) BByl

and has degeee m - 4,
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Remarks, (a) The condition 7 = dep{C} + 2 in the two theorems is sharp 2s can
be geen rarn the fact thal the equation

Byly =2 = fily) + 29" + 65 + %{?
holds for all ».
(bl A (common} particular case of the theorems was proved i [1].
(c} In the exceptional cases {i) and (ii) in the first theorem, the unique polyno-
mial € for which the squation has infinitely many solutions, is given as follows:
T cuse (1),

T+imEim+ 11— 112
oim+ 1

In case (ii), writing o + | = 3® and writing ¢ (x} for the unique polynomial of
degree & for which ¢(x7) = S, (x + 1723,

€1x) =c.;Hm( )—b_fm{x‘].

. 2y 4 6w + 24u® - 6u — 16 :

(d) It should be noted that when a =, the compuiations are much casicer and
vighd in all cases that there are only finitely many solutions,
() Evidently, one may assume a = 1 by replacing & by &/a and 0 by €y a.

We shall make extensive use of the following theorem of Bilu and Tichy [3]:

Theorem A. For aod-comstant polyeomials (x) and gix) € (JIx], the following
are eguivelent.

fa} Fhe equwation Fix) = g(y) has infinitely many rationd solutions with g bounded
eenamingtor,

by e harve f =@ A0 and g = e () where Alx), () & OIX| are linear
pobrmamials, S{x) ¢ QX and (fi0x), 21020 is o standard paly over § such
that the equation Fi(x) = g1y} hos Infinitely many ratioral sofutions with a
bownded derominator

Standard pairs gre defined as follows. In what follows, @ and # are nonzero
elements ol some ficld, s and # ure positive integers, and pix) iz 4 nonwero
polynomial (which may be constant}.

STANTRATLID FALILE

A stundard pair of the first kind is
I[:r*,u.x’p(.\:]‘]l or {ax’ p(xy, 1)

whers s e <8, (n ) =1 and r + deg pix) = (L
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A standard pair of the second kind is
(2% tax® + AdpixF) or (lax® 4+ Bpl’, %),
A standard pair of the third kind is
(D (x.a' ) Dh{x,a™))

where (&, )= 1. Here £ id ihe eth Iickson polynomial

les2

e, e = Z é(r : i) (—epiyt &

=l
A standard pair of the fourth kind is
{a "D ah b0y, a))

where (£.¢) =2,
A atandunl puir ol the fifth king 15

{{“":2 — 157,37 42"} or (3{1 — 42", jax® — lflﬁ_]'.

Ay e standaved pede over o fleld &, we mean that o, b e &, amd ple) 2 R[£].

The therem of Bilw and Tichy above shows the molevanes of the folliwing
delimition;

A decompesition ol o plynomial Foed < Cxr] i an equality of the fornm Fix) =
0G0, where G)ix), Gaix) £ Cly] The docomposition s called sonirivial it
deg Gy = 1o dew e = 1L

T desompumsitions Fix) = Gr{G (x)) aned Fix) = BoHaix are celled eguiv-
ehent 11 there cxist g linear polynomial fx) © Cly] such that G = H (20}
andd Falx} = WG (0 1) The polynomial called decomposeble iT 10 hiy al least one
nembivial decompogition, and indecomposabie olherwise.

Wi shill s lso wse the fdbowing result due o Bilu et gl [1]:

Theorem B. Lef e = 20 Then,

(1) Bpdx) is indecomposabie ifm is odd and,
(i) ifm = 2k, then amy nonrrivial deconposition nf B (v is equivalemt to B, (x) =
hi(x—1/2%.

The equaticn 5, (¥) = 5,00 has been studicd in [ 1], This i a particwlar case of
our Teslt,

W firsl eonsider the first theorem, Lvidently, we may assume o =— | and we look
at the equation fy (o — bG00 | SO where Sl =xx+ 1) (x+r—1vand
m oz = deEy —2.
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Frool of Theorem L, 4% remarked in the beginming (remark (e)). we may assume
thut g = 1.

Tase I; Let us fivst consider the case when m =n =124

1f the: equation has infinitely muny solutions, Lthe Bilu-Tichy theorem gives A =
go flohand bfog+ C=¢ oz o p whete A, g are lipear polynomals over {f and
{f1.g ) s a stanudard paer over 130 Since we know from [1] that the only nontrisial
decomposivon of A up lo equivalence whees has {05 = (2 - 1722, it follows
that either:

{2) deugy =1, o0

(b) deg ¢ —d and Bos(x) = o{idn + /13 — 172)7) and bfoatx) + € = @ka® +
{x+t) and the equarion (x - 1;2% =% v | Ty 7 has infinitely many solontions,
0T

(e) depd =24 in which case

Baylrx + 3y =Dbfau(xh—Crix)

Flrst, suppose (a) holds, Le., dege == 1. This means that (/7. ¢} 15 a standacd
pair with depr ; = deg gy — 24 = 2. This is impossible as seen by locking at the
conditivms o the deggrees of stmdand paivs,

Next, we congider (b), L., the possibilicy whete @ hat degree o

We usa the following observarion, see [5]:

Lemma. Jf Bypirx +51=g((x - Lt Jov somte v g 2 2 with v £ 0, Hhen (R, 0 —
(1,00 ar 1=, 13, In particalurn, Bgix) = ¢y — 12070

Therefore. Haz(x) = ¢ri{{x — 1205 and Afagix) + Ot = giks” 4-1x | 1),

Considering the coefficients of £2¢, x2¢=1, x™2 and ¥ ol the second cyua-
tiom, wi gt 1he followinge expressions.

CoeMicient of 27 35 b = gak’! = 17 {the fuct that ¢y = | we know fTom the first
equation).

Cocticient of x gives § — £(2:d2 — 1.

Coc fclent of ¥27 2 gives 1 — k{(d — 132d — 1)/3— (2d — 1)/12

Coalficient of x7 gives

21

a3 d - 1n24 - 1R =)
6

. f . i
2 f(d — g ﬁfz+(3)1-.d-ir-* g 10d - DR

g3+ &

white czq. 3 18 the coefhicient of +3% 7 in Cix).

From the squation Bx(x) = ¢l - 1/D7), we obain ¢y = 1 and ¢y | =
—af (2 1312, Using this and he values of 50k ¢ 7, we obtain cor 2 — 0. Thas.
dep = 24 — 3.

We now proceed to show that & must be of a special foem and io that caze € must
be deerminod uniguely 1o be of degree 24 — 4.
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The intfinitude of the number of solutions of

(x — /2% =k + 1y +¢

kfd — 1){2d — :
=k}r2+k{2¢inl)}.l__{ H2d 1}+2;j 1

3 [
=ty +d— 1y - HAT DD | M

[orees that 2(24 4+ 1) == 1 and that £ 8 a sguare in <}, Therefore, we get o = 2¢(r =}
for woime natral pamber r.
Then ¢ is uniquely determined to be

x-b 22+ 3 1 .
2?"+ l_" R {2!’-;— l-;]_q_r,:‘_r_” f;err+|jfx}-

Uiz} = Byt lj(
The elaitm that deg(Cy = 2d — 4 when o = 2r(r + 1), cle., 1% seen as follows,
W use Lhe property Bag(x —- 1) — Baa(x) = 247! ol the Bernoulli polynomi-
als. We have

x+2rd 43

Ar? pde— |
= Ay -
S ) Cix 4+ 2r = 10— Cix)

() 4rir + ]}(

+ m{fmr Pl 2r 41— f4rl;r+1J(-‘5}) e
Afready, trom this one can see that C' cannot be a consiant; otherwise 4 comparison
with x = 0 gives

(2 + 202 +F) e (40260} = dre + D22+ Er}""l”’" .

The bast identity {s impossible sinee 2 prime p exists with 20% - 3r = p < de> + 6r
and thiz divides the lefl side and nol the dght.

To use the above identity (+) to find the coefficient of +29—% = x** = or Cix),
we find the coefficient of x*° 5 on both sides. Clearly, on the lefi side, i is
(4rd 4 4r — DH(2r + 11Cy2 4 4,_g Thus, we need to check that the cocflicient of

413 s nonzero. This is computed to he

4rir + 1) Aripdr—1 {2#2 L4 )4 tiF]
(2r +]]4r1+4r—l( 4 = [P | Fpbrrth

where uir) is the coefficient of X7 +7=3 iy Frrg 40l =20 + 1) — Frrpepnix), i,
wir) is the coefficlent of z¥ ¥ 2 In (x + Zr + Dx+ Zr + 21 (x + &7 4 o) —
fir—1)-- x4+ 444 — 10
2 o  a o d et
Tt iy = (27 4+ Nde® L E0)28° 4 37) [ B }
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TTsing MAPLE, we can cxplicitly compute w(r) and v{r) as polynomialsin r.

47104 . 231424 149248
ulr) = 4{}% i+ 20 P ST 20684 1 —
hﬁ:‘:ﬁlﬁ 1 2336544 1 LODISKI6 o 6033008
T 45 43
6376 15 . 146144 , 433384 126929 , 643973
Tttt e AT E T as T wmn
QISR T2, 30647 1081,

3 H "_
T el T

4096 5 ATI4 | 231424
37 T3 7t 3
636384 1,

4- 206845+18 @rﬁ

645056
— 5491212 =y F12 — p1486ar Y + 52—

mry =
97544 L

+—47120¢Y 1 45247 — 633607 — 3047 + 32477

Thus, in fact, the first four coefficients of w(r) and v} mach!
However, MAPLE shows that they are never cyual because

e+ 1{r? +r—1)
360

+ 976640:% + 21523207 + 3022205 + 25ROBRRFT

+ 1250288 + 297852 + 29844r? + 1019 +72)

v(r) — 1) = (204811 - 4300817 + 278528

which is obviously positive For all positive r.
Thug, Ca g 47 0. le,depl =20 -4
Finally, we consider the possibility (), Le.,

Haglrs + 8y =Bfaa (s —Cle)
Comparing the coafficients of x2¢, 2 ! and £2¢ 2 we gat

2 1 rd—1)i6d —1
.r_d E}, Py — ] = rl::d — l}, 52 T L ‘}: .(_. __.ﬂ:—:}1
6 f
This gives

(4d + 2057 — (4d + 205 — 2d* 432 =10,

This ig poseible for 2 ratonal number & 10 and only 1F, 2d — 1 12 a perfeot square,
say (2i 4 17, We obtain

e 1 4t +4r—1 b 1
¥l TTIT TG T ag e

With these values of r, v, we find that C [s the same as it was for cass (h), Therefore,
the sume compulation shows that © has dogree 2d — 4,
This completes the caze | when m = n i3 even,

57



Casell: Lot —n beodd and = deg (' 4+ 2,
As before, infinimde of soletions impplics the existence of a decompasilion

Bo (3] = o fleilsl biwlz) + Cixl =doyg apix)

with &, o linear. Mow, as m 15 odid, By s indecomposalle, Hence either dep ¢r = m,
deg fi — lordeger — 1, deg #) =

First, let us suppose that deg g — 1. Then deg f) =m = dig g, . The yemdard pair
{f1.21) must, theretore, be of the first kind. So, for some ro5 2 with ¢ £1), we
have zither

Hoilrx + 5 =g+ g x™
¥
Bflrx )+ COy + 53 =60 | hra™.

If the first possibility occars, we cquate the coslicients of x™ 72 and get 657 65 |
1 10, s £ 3, witich is not possible.

Suppose the second possibility ccours. Let us compare the coellicionts of x*7,
v~ and v We have
(e L2 1D

1 —m 5 : (
3 n 4 (- }+f—}.

br™ — gy, L=

respeetively. Substivuting the value of v into the last equation, one gets w= = 1
which is impossible.
Thus, we suppose thal deg ¢ = m. Then, we have v, w2 € 0 with o 220 sych thae

Cled = B ls + 01 — I fis{x),

Comparing the coeflicients of £™, ™ 1, x™ ¢ on bath sides and noting that the left
side does not contribute anything, we have;
mr—1 1 1
Wt =5, '=—-—u+ -, i e
g 22 2 m—|

Thus, first of all, this forces m to be such that s | | is a perfect square, sav. 47,
This also detormines w. v 0 wrms of 7 as o =+ 170200 und v = (277 — D — 1 /2,

Henee © s umiguely delermined o be the polynomial

T+ T4 —1 1
) Jarz (2],

Llx) =By l(i 57 = 2

Notice that the expression for C we obtained in case | and the xpression here have
the common [urm

Cix)l=al.,
{xl=ah, ( Novei
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A calculation exactly as in the case of even m shows that the coctficient of x™ ¥ oo
the right side is zern. Therefore, €2 must either be zero or have degree smaller than
m— 3

I =3, we must have © =1 and

A} = -srfj(_,f).

Letwm = 3.
O course, one can easily check as in the even cuse that O canoot be o constant.
[ndecd, 17110 were, we would haee

Ptz

2r— {2 e = T s e 22 23y @ 2 =2,
Put, if r = 1 {which is the case when m = 3), there isapeime pwith 272 = ¢ — 1 =
p = 4r | 2r — 2; this divides the right hand side and not the left hand side. In fact,
the polynomial ¢ has degree s — 4. To see this, we may proceed as in the o even
case using the property Hyix | 1) — Bla) =ms™

Ciege 1z Let e e odd and = # > deg O + 2.

A belore writing By, =d o F o &, we huve either dege = 1 or — av. Since By, 4
C =@ o g o has depree oo wn, the degree of o muwst be |, Thus, the standacd pair
€ /1. 1) muat be of either ehe first or the thind kind.

It it 15 of the first kind, the above arsument for m = » carries owere verbalim 10
give = |, which is a contradiction.

If il iy the thind kivd, we have Bolrx = s) = Dpile, o) and we have alecady
derived a contrudictivn by coneluding s = 942 in this case.

Finally, we are lell with;

Corwe TV Let s be oven and == dog | 2,

Writing A, =4 a fla and fy, = ¢ ¢ g1 o {1, we must have either deggd — m or
degdh — lordegg —m/2and fi = (x — Li2)",

Note that in the last caze k. —m /2 shice m = »and k15 e multinle of deg & — /2.
Also, then deg g = 1.

Since m - 8 2 deg g, the possibility degg — ar cannol oceour

Mewy, B deweeh = 1, then ( f1, £)) 15 a standard pair with deg ) =1, dep g =5

We have already seen in case I thyt il this pair is of the first kind, woe get a
cotiradiction to either of the equakions

D lre + 1) =y + g™
ur
Blulre —5) 4+ Cirx + 51 =g + do 2™,

Since m, p o= 2, 1his stndard pair cannot be of the second kind.
Suppose it is of the third kind. Then,

filed = Polx, a), g1ixh = Da(x, 2™}



where {m, 1) = 1, Now, Byiry ~5) =du+ ¢ { D i, o)
This means

| i2]

Z (P:i) Bio—i(rx |- 8 = gy + by Z i (2™ _;u],
=0} i—0

st (")
mo-iN
Wi will compare the coefficients on both sides.

Equating the coefficients of x™ on hoth sides, we have r™ = ¢

The coefficient of +™ ! on the right-hand side is zero and, so we get {7 )"~ !5+
I:mnlljglrm_l =0.

This gives s = L2,

The coefficients of x® 2 give

e
which on simplification yields " = (m — 1}/24.

By vonsidering the coeflicients of x™~* and on using the values of ¢, r2a®, we
gelm =972 which is a contradiction. Tence £, g¢) can not be a standard pair of
the: thivd kind alsa,

The same argument poes through if the pair is of the Tourth kind as the number
o above is simply replaced by o ™2gy.

Fivally, if {f1, g1) is of the fifth kind, then m =6, n =4 and

A =lest -1, g =3" — a5’
S0
Byix) = g0+ 1 {orirx + 57 — 1),

This means that the derivative #:4c) bas a multiple root;, however, Blix) = 685(x)
and one knows that Bugy{x) has only simple roots by a result of Brillhart.

Allcrnatively, even by direct computation, comparison of coefficients of x%, &7
anel 5% wives #2 = 1250, s = —-r/2, & = (5/12)° and then the coefficients of x2 dn
nol match,

Mers, we are 1eil with the case deggp=m/2 and fi = (v — 1720 so m = 2n
and g; is inear, Clearly, f(x) = g (¥} has infmitely many rational solations with g
boundid denominastor.

Nosw Bz, (ex 4+ ) =g ((x — 1 /2% and by the lemma abserved while discussing
case I, we know that we must have B, (wx + 1) = Ba.(x).

Hence we have B2, (1)} = (v — 1/2¥)y and B fpirz —s) + Cirz +51 = ¢o{x) for
somc ro8 £ 03 with v £ 0 Thus, we have

Baolx) = Bfalrix — 1/27 —5) = Cfrix 15207 | 5).
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Using the identity Ba,(x + 1} — B2.ix) = 2rx® 1, we have, for some ¢, 7 £ £} with
=1l

2ex% L= byt —rx 1) —bfu{rx® —rx + 1)
+ Cl[r,\'z +rx+t]— E'I{J".a:2 —rx -I—r].
In fact, t =rfd + 3.
The coefficients of %5~} and x"= wive:

1—n r

2w

B =1, §=

Comparing the eneficients of £ 7 and substituting the above value of 7, we have

a nin + 1}
T
In other worda (n + 1)/3 must be a square i .

Note that since n = deg € 4+ 2 = 2, this means & = L1, Wiiting » + | = 3u? wilh
i = 2, we have

_ #(3ut — 1) _ b T
- 3 TR g
PTG G T e
Y 2 b3 (3= — 1)

Also, the coeflicient of x" ™% In C(x) = @iix - 5)/7) — bf(x) is soun 0 b 7emo by
sibrsh bt g the values oF dy, e [ de-a. dy— 3 oblained Foms the sgualtion B (s) =
Bllx — 1727,

deg € 5 found o be s — 4.

Therefore, Theorem | is proved. M

Proof of Theorem 2. Once again, we may assieme « = 1 and look at the equation
Fold) = 8Baly) + Cty).

We shail use our earlier genaral result on equations of the form £, (x) = giy) foran
arbitrary polynonmal:

Theorem C fof {40, Suppose fu(x) = (v} has infinitely many ratioral solstions
X, ¥ with o bounded denominator. Then we are n one of e jollowing cases:

(L) glvd = Fulg (¥} fror soime g1 (v} € QY]

(2) m evem and gi¥) = (1(y¥)) where dLX) = (X — (L/DPWX — (3/20%)--- (X -
(im — 13/207) and (¥} € QY| iv a pelpaomial whose square-free part has of
MESE Do Zermes.

(3) 1 =4 ard g(y) = 9716 + BE(¥Y where 5 i3 o finear pofynomial
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Here, g{yy =b8,(yy— Ciy) where m = = degif) + 2,

The last inequalily shows thai g = 2 and so, we are not in case (3) above.

Ifwe are in case (1], then again m 3= 1 shows Lthit m = 5, Then, we have r, » = 50
with r =£ 0 =0 that

b B.r.- (x4 {Tj = fr' (ry -+ 5:}

where n = deg(C) 4+ 2,
Theretore, we have

bz‘- () il b= rx — 8 rx— 5+ 1) fry+rn— |
[
i=n +

Comparing the cozlMcienis ol 2%, 27~ 3%72 we g

R

b= r=-2—n+1,

respectively, and a sueaightlwward caleulatiom gives

Fr=n 1,

Thus m— 1 has 1o be a perlioel sguare.
Theralwe, the equation

Fodoe) = B0y {x) + C(x)

s minitely many soluwdos 3 and only 05 4+ | s g square, r=/m+ 1, h=+¢"
inel C s the polyvtmmial

"

. l F :
C[.I}=_ﬁ:(f'-’»’— — ) — R

In fact, it turns out that ¢ has degree ¢ 4: & comparizon of the coefficivols oy
yields ¢, 3 =0 und that of x4 i not veTo.

Finally, suppose we are i cust: {27, Then, cither m = » und g has degeee 2 or
a == 2nand g7 1s lingur,

Let us comsider the former possibility firsl The, mois oven, and  fiix) —

${f1(x)) where

- _.I 2
fl(.c}—(a: . m_} ) and

Fa

oomo- (@) ¢ (7))

Therefore, writing g {vh = kiy -- 17 4 r umel assumning thal #(x) = g4x) has
irdimitely menty sodudons sith a bounded denomioavor, 1t fiollows thut ¢ =0 und
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k is a wquarc: that 39, g (¢h 19 the square of 2 polynomial. Hence, we have r, 5 £ 102
with » = (0 and

Fulrr + 5= 08.0x) + Cix)

Thiz s cxactly the same sxpression considered in case (1), Thus, in this case wlso,
we must have that # + 1 is o perfect square and © is detenmined uniguely w he a
polynomial of degree r — 4,

Lol us nowe comsider the laiter possibility; that is, suppose m - 20 and deg g = I.

Theai,
BB.(x)—€ (x}:(rx+.t— (E) )(m_:_ﬁ _ (E) )
(H'+'~'—(2ﬁ 1)2)
et . ;

Comparing the coefficients af x7, <™ !and 27 2, we get b=#",

—Fr =123 —iZn—=11Zn -1

and
wn— 11 . min—01 . {n—DrZa+13Edn—1)
T T 12 *
B2+ 172 — 17 aldBet — 40e® —7

vespectively, and a atraighiforsward calouwlalton mves

2 de4+1H2r 4+ 132 — 13
o= .
15

We claim thal thig gives a conwadiction. Indeed, woe assert:

Claim. (s — D20 — 13020 — 10715 ix sacw e Sipuictres 6n 0.

Letuswriten -1 =an’ Zrn+1=Fe?, 20— 1 = cw® wherea, b, o arc square-free.
Mot thil 2n-- 1 iz coprimeto s | 1 as well as to 2n — 1 and that the two mambers 7 —
1.2r — 1 have greawest common divisor | or 3, Thus, if (v 4 102e F 1020 — 13715
15 a square, «. &, ¢ are pairwisc coprime and ohe = 15, A mnnber of cuses are
possible,

Clase 12 Suppose 1575,

Then, ¢ =r=1,5 =15, Thiz 1mHvey

At 1=, I— 1=t
Tience 2u — 3 — w? = 150 — 2. %0 m is odd which means

a : a
—vt =15 =n? 2 =3mod §

which 1y impaossible.



Carve 11 Suppose 3| b bur 514,

Then, b=3and either (Y a=5, c=lor{ila=1.c= 5

b case (i), 5% — | = 3v? = w” -+ 2, which means that v, w must be odd. Ilence
1 19 even, 5ay u = 2u ) This gives

200 =3" 4+ 1=1mod 3

an impossibility.
In case (Ii), 302 — S16?% = 2 means v, « are odd. But then

2=3% — 5w’ = 2 mod 8

a contradiction,
CaseHL: 3-hhut 5| &,
Again, b=5and vither (a=3, c=lor{iija=1,c=3
ln case (1), B — 1 = Sol = w? + 2. 8o, o is oven, say o = 2. Thus,

Wt 4+ 3= '_1}1."]2 =lmodd

which gives a conweadiction.
Tn case (ii}. 2u® — 1 = 5¢? = 3w? + 2. This gives v, w are odd. So,

Ml =50’ +1=6mod 8

an itmpossibility,

Cose TV 345,510,

Then, b= | and efther{iya =3, c=5%ur(ila=5c=3w{illa=15e=10or
(vya=I,r=15.

In case (i),

W =5l +2=Zor3mod 4

an Tmpossihility
Tn case (ii),

W =3t L2 =20r5mod §

an impossibility.
In case (iii), 2 = v? — w® 15 impossible mod 4.
Finally, in case (iv), v¥ — 15w? — 2, which is impossible max] 3.
Therefore, we have shown the clann.
Theorem 2 s proved. L)
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