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Key pre-distvibution is an important area of reseaveh in Distribuced Sensor Networks (DSNL Two sen-
sor nodes ave considered connected for secure communication [ they share one or more commaon
secirel key(s) It is imporviant to analyse the largest subset of nodes ina DSN where each node is con-
nected o every other node in that subset {Le., the lavgest oligue ). This pavameter (lavgest cligue size) is
important in terms of vesiliency and capability towards efficient disteibuted computing in a DSN. In
this paper, we concentiate on the schemes where the key pre-disteibution strate gies ave based on trans-
versal design and study the lavgest clique sizes We show that merging of blocks to construct a node
provides larger cligue sizes than considering a block itself as a node in a transversal design.
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1. Introduction

A sensor node 15 a small, inexpensive and resource constrained device that operates m RF
{radio frequency) range. 1t has limitations in different aspects such as communication,
computation, power, and storage. A DSN (distributed sensor network) is an ad-hoc net-
work consisting of sensor nodes. The sensor nodes are often deployed in an uncontrolled
environment where they are expecled w operate unatlended. In many situations, the DSN
is also very large. In either case, though one might try 0 control the density of deploy-
ment, the only deployment option 15 o randomly scatter the nodes wo cover the targel area.
The consequence is that the location or topology 15 not available prior to deployment.

Given the various limitations, the security of the DSN hinges on efficient key distri-
bution technigues. Even with the present day wehnology, public key cryplosystems are
considered too computation mtensive for DSNs and typically a DSN establishes a secure
network by the use of pre-distrbuted keys. The following four metres are often used 1o
evaluate key pre-distnbution solutions.

1. Scalability: The distribution must allow post-deployment increase in the size of network.
2. Efficiency:

(1) storage: Amount of memory required to store the keys.
i(b) computation: Number of cycles needed for key establishment
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(¢} communication: Number of messages exchanged dunng the key genembon/
agrecment phase.

3. Key Connectivity (probability of key share): The probability that two nodes share
ong/more keys should be high.

4. Resilience: Even if & number of nodes are compromised, ie., the keys contained
therein are revealed, the complete network should not fail, ie., only a par of the
network should be affected.

One of the challenges in DSNs is 1o find efficient algorithms o distribute the keys 1o
sensor nodes before they are deployed. The solutions may be categorized as follows:

1. Probabilistic: The keys are randomly chosen from a given collection of keys and
distributed o the sensor nodes.

2. Deterministic: The key distnbution 1s obtaimed as the output of some delerministic
algorithm.

3. Hybrid: A combination of deterministic and probabilistic approaches.

A trivial (and obviouws) deterministic solution to the problem is w put the same key in
all the nodes. However, the moment a single node is compromised, the network fails. To
zuard against such a possibility, one can think of using distinet keys for all possible pair of
nodes in the DSN. The very good resilience notwithstanding, the solution is not viable for
even networks of moderate size due o the limited storage capacity of the nodes. If there

are N nodes, then there will bc(’?r) keys mototal and each node most have N — 1 many

keys. It is not possible to accommaodate N — 1 many keys ina node given the curment mem-
ory capacity of sensor hardware when N is moderately large, say = 500,

Let us now briefly refer a few state of the ant key pre-distribution schemes. The well
known Blom’s scheme [1] has been extended in recent works for key pre-distribution in wire-
less sensor networks [5, 7). The problem with these kinds of schemes is the use of several mul-
tiplication operations (s example see [3, Sectuon 52]) for key exchange. The randomized key
pre-distribution is another strategy m this area [6]. However, the man mobvaion 15 o maintain
a connectivity (possibly with several hops) in the network. As an example [6, Section 32], a
sensor network with 10000 nodes has been considered and 1o maintain the connectivily, it has
been caleulated that it 1s enough il one node can communicate with only 20 other nodes. Nowe
that the communication between any two nodes may require alarge number of hops. However,
only the connectivity erterion (with wo many hops) may not suffice in an adversaral condi-
tion. Further in such a scenario, the key agreement between two nodes requines exchange of the
key indices. The use of combinatorial and probabilistic design (also a combination of both -
termed as hybrid design) in the context of key distribution has been proposed in [2]. In this case
also, the main motivation was 1o have low number of common keys.

In [8] transversal design (see Subsection 2.1 for more details) has been used where
the blocks comrespond o the sensor nodes. In our recent works [3.4], we have proposed o
start from a combinatorial design and then apply a probabilistic extension in the form of
random merging of blocks o form the sensor nodes and in this case there is good flexibil-
ity in adjusting the number of common keys between any two nodes. In our earlier works
[3.4], we dealt with the cases of

(i) unconstrained random merging of blocks and

(i) random merging of blocks with the restriction that the nodes are composed of disjoint
blocks (do not share common keys among themselves). The computation o iind outa
shared key under this framework is of very low time complexity [8, 3, 4], which
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basically requires caleulation of the inverse of an element in a finite ficld. That is the
reason this kind of design becomes popular for application in key pre-distibution.

In the domain of digrbuted computing, the nodes forming a complete graph is an “ideal situ-
ation”. As mentioned earlier, one gains a lot in terms of resilience. Moreover, the communication
complexity decreases because fewer messages ae exchanged between the nodes moorder 1o gener-
atefagree upon akey. In such a scenaro, there is no question of “multi-hop™ paths and since there is
a unkgue key shared between any two nodes, the computational complexity decreases as well.

Thus, in a DSN, it s important o study the subset of nodes (chigue, in graph theoretic wmuinol-
ogy) that are connected o each other. By connectvity of two nodes we mean tha the nodes share
one or more common secrel key(s) for secure communication. In this paper we study the basic
combinatorial designs [8] and their extensdons in terms of merging [ 3, 4] w estimate the cligues of
maximum siae. We show that if one uses a(v= ik, b= rl, ¥, &) configuration, where each block cor-
responds 1o a node [8], then the maximum clique sizeis r=./b . We also study the extension of the
basic design where a few blocks are merged W geta node [3.4] and show that in such a stategy the
clique size becomes considerably larger than what is available in the basic design [8].

2. Preliminaries

2.1 Basics of Transversal Design

Let A be a finite set of subsets {also known as blocks) of & set X, A ser svstem or design is
a pair (X, A). The degree of a point x € X 15 the number of subsets containing the point x.
If all subsets/blocks have the same degree k, then (X, A) is said to be uniform of rank k. If
all points have the same degree r, (X, A) is said 1o be regular of degree r.

A regular and uniform set system is called a (vb k) — 1 design, where X1 = v, Al = b,
ris the degree and & is the rank. The condition bk = vr is necessary and sufficient for exist-
ence of such a set system. A (vb,rk) — 1 design is called a (v, b,r,k) configuration if any
two distinet blocks intersect in 2ero or one point.

A (v bk, L) BIBD is a (wbh,rk) — 1 design in which every pair of points occurs in
exactly & many blocks. A (v, b rk) configuration having deficiencyd=v—1—-r{k—-1)=
Oexists il and only if a (v, bk, 1) BIBD exists.

Let g, w, & be positive integers such that 2 = & < w. A group-divisible design of type g"
and block siee £ s a tnple (X.H, Ay where X is a finite setof cardinality gu. 9y is a parti-
tion of X into u pans/groups of siee g, and A is a set of subsets/blocks of X. The following
conditions are satisfied in this case:

L |[HNA LIV HeH, VAe A,

2every pair of elements of X from different groups occurs in exactly one block in 4.
A Transversal Design TINk n) is a group-divisible design of type n* and block size k.
Hence HOA=IVHeH.VAe A

Let us now describe the construction of a transversal design. Let p be a prime power and 2

=k = p. Then there exists a TINKE, p) of the form X.H.A) where }{:g«"f',ch XEP' ForO=x=k

-1, define ={x L, and H={H :0=x<k-1}
For every ordered pair (i, j) (1), define a block A ;= {x, (ix + )mod p : 0= x = k- 1}

G.j)e L, =L,

In this case, 4= {AU. :(i,_j}eEp >< Er' 1 It can be shown that (X, KA is a T, .
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Now let usrelate a(v=kr, b= r, k) configuration with sensor nodes and keys. X is
the set of v = kr number of keys distributed among b = #* number of sensor nodes. The
nodes are indexed by ¢ jye Z, x Z, and the keys are indexed by G.j)eZ, xZ, -
Consider a particular block An_ﬁ. 1t will contain & number of keys | (x, (xo + ) mod r)
O=x=k—1}. Here Xl = kr = v, |'H, | = r, the number of blocks in which the key (x, ¥)
appears for _\-EEJ_,|AJIJ.|=,{-, the number of keys mna block. For more details on combina-
torial design refer to [9, 8].

Note that if ris a prime power, we will not get an inverse of xeZ| when xis not a
unitof Z, ie, gedix, r) > 1. This is required for key exchange protocol. So basically we
should consider the field GF(r) instead of the dng . However, there is no problem
when r is a prime by itself. In this paper we generally use Z,. since in our examples we
consider r 1o be prime.

2.2 Lee-Stinson Approach

Consider a (v =k, b = r!, r, k) conliguration. There are b = " many sensor nodes, each
containing & distinet keys. Each key is epeated in r many nodes. Also v gives the total
number of distinet keys in the design. One should note that bk = vrand v — 1 > r (k- 1).
The design provides 0 or 1 common key between two nodes. The design (v = 1470,
b= 2401, r= 49, k= 30) has been used as an example in [8]. The important parameters of
the design are as follows.
The  expected pumber of  common keys  between  any  two nodes 18
s I)ZL n the given example, p, =i =16,

b-1  r+l 4941
There is a good proportion of pairs (40% ) with no common key, and two such nodes
will communicate through an imtermediate node. Assuming a mndom geometric deploy-
ment, the example shows that the expected proportion such that two nodes are able o
communicate either directly or through an intermediate node is as high as 099995,

Under adversarnial situation, one or more sensor nodes may get compromised. In that
case, all the keys present in those nodes cannot be used for secrel communication any
longer, e, given the number of compromised nodes, one needs o caleulate the propor-
tion of links that cannot be used further. The expression for this proportion is

m=

ﬁ;f{(;,-Fl—[l—;;-—:].: where is the number of nodes compromised. In this particular

example, faid(10) =0.17951. That 15, given a large network compnsing as many as 24401
nodes, if 10 nodes are compromised, almost 18% of the links become unusable.

3. Analysis of Clique Sizes
First we study the maximum clique seee where the (v = ok, b = 7 r, k) configuration is used
and each block m the design comesponds to a sensor node, which is the idea proposed i [8].

Theorem 1. Consider a DSN with b many nodes constructed froma v =k, b = r & el
configuration. The maximum cligue in this case is of size r.

Proof. First we prove that there is a cligue of size r. 1L is known that a key is repeated in r
many different blocks. Fix a key. Thus, there are r many distinet blocks which are con-
nected 1o each other by the fixed key. Hence there is a clique of size r.
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Now we prove that there 1s no clique of size v + 1, because that will rule out the possi-
bility of cligues of larger size. Let there be a cligue of size r + 1. Note that the (v, b, r, &)
configuration results from TINE, r) (see Subsection 2.1). In this case each block is identi-
fied by two indices (i, j), 0= i, j = r — 1. Further two blocks having same value of i (i.e., in
the same mow) can’t have a common key. The moment one chooses r + 1 blocks, at keast
two of the blocks must be from the same row (by pigeon hole principle as there are al most
rmany rows) and are disjoint, which is a contradiction to the basic assumption of a clique
having steer+ 1.

It should be observed that the chque size ris exactly the square-root of the number of
nodes b = /. Note that in such a case two nodes/blocks either share a common secret key
or not. Consider the graph with b many nodes/vertices where each block corresponds o a
node. Now two vertices are connecled by an edge if they share a common secret key, oth-
erwise they are not connecled. Now a block contams & many distinet keys. For cach key, a
cligue of size r is formed. Thus a vertex/node in this graph paricipates in & many cliques
cach of size exactly r.

Given two keys, which never occur together in the same block, will form cligues
which are completely disjomt. On the other hand, two keys may occur wgether al most in
a single block. In such a case, the two different cliques generated by them can inlersect on
a single node/vertex corresponding Lo the block that contains both the keys.

3.1 The Merging Approach

To overcome certain restrictions in the strategy provided in [8] (explained in the pre-
vious subsection), we have provided a strategy o merge certain blocks to construct a
[ . . a e .
sensor node [3, 4. The basic idea is to start from a (v = vk, b = v, r, &) configuration.
Then we merge £ many blocks o form a single sensor node. Thus the maximum num-

: F . .| r f
ber of sensor nodes available i such a strategy 15 | — | - We have studied a random

merging strategy in [3], where randomly chosen z many blocks are merged Lo gel a

sensor node. In such a scenario, we found that the number of common keys among
’ . . — .k

any two nodes approximately follows the binomial distribution B z°,——|. The

el

r+1

7

expected number of common secrel Keys among any two nodes is *—'{1 {see [3, The-
r+

orem 1] for more details). It has been shown that this strategy provides favorable
results compared to [8]. Note that in [3], the blocks are merged randomly. So it may
happen that the blocks being merged may have common secret key(s) among them-
selves. This is actually a loss, since we really do not need a common key among the
blocks that are merged to get a single node. Hence, in [4], we improved the strategy
such that only disjoint blocks are merged to construct node. This provides little better
parameters compared o [3] In this paper we will show that our strategy [3.4] pro-
vides better clique size than that of the design presented in [8].

Now we concentrate on the chiques where blocks are merged wo get a node [3, 4], It is

A

worth mentioning that the number of blocks is -4 (1) 1n this case. From [3, Theorem 1],

s

cach key will be present in @ many nodes, where average wvalue of @ is
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a‘ :L[ \‘E J][ :,{'—[‘E] LJ*—-#’. So cligues of size = r are available in the design where
kr r+1
merging strategy 15 employed.

We like to highlight that the value of 2 is much less than r (as example, r = 101, 2
= 4 though it is not a serious restriction in the proof of owr results in the following
discussion.

Thus we like to point out the following improvement in the merging stralegy over the
basic technigue.

s

1. In the basic design, there are P many nodes (each block corresponds Lo a sensor
node) and the maximum clique size 15 r.
-
2. Using the merging strategy, there are \‘—| many nodes (2 many blocks are

merged o get a sensor node) and the maximum clique size 15 = r. Thus there 15 an

improvement by a factor of .7 in the size of clique.

Let us present some examples o dlustrate the companson. The design (v = 1470, £ =
2401, r =49,k = 30) has been vsed as an example in [8]. Hence there are 2401 nodes and
the largest clique size 1549, Now considera(v= 101 .7, b= 1{}11, r=101,k =7) configu-
ration and merging of £ = 4 blocks to get a node. Thus there will be 2550 (we take this
value as it is comparable to 2401) many nodes. We have cligues of size = 101 on an
average, which shows the improvement.

MNext we provide a more improved result by increasing the clique size beyond v We
present o merging strategy where one can get a clique of size r + 2 — 1 2rforz 2 1. The
result is as follows.

Theorem 2. Consider a (v.b,r.k) configuration with b = r*. We merge z many blocks to

b
form each node in achieving a DSN having N = |:—] many sensor nodes. Then there exists

an initial merging strategy which will always provide a cligue of sizer + 2 - 1.

Proof. Let's denote the nodes by v, vy Initially choose the first column of the
TNk, r) and place the r blocks (indexed by (i, 0) for 0= i = r — 1) successively to fill up
the first slot (out of the 7 slots) of the first r nodes vy, va,...v. That will obviously yield a
cligue of size r as any two blocks in a specific column always share a common key.

The rest of the available blocks will always be traversed in column-wise manner. That
is the next available block is now the one indexed by (0, 1). Let us refer to the next avail-
able block by (i, j) for the rest of the present discussion. Once a block is used, we apply the
update function on its index to get the next available node. Update (i, j) to ((i + 1) mod
nj+d)whered=0ifi<r—1landd = 1wheni=r—1

We go on adding new nodes for 1= 1 1o 7 — 1 to generate a clique of size r + 7 — 1 at
the end.

To add a new node v, , , proceed as follows. Choose the first available block (7, j)
and put itin v, . Place the next available blocks in v, vy v as longasi=r — L.
After using the last element of current column, the update function provides the first
block of the next column. In that case, we add this new block (0, j) to the node v, .
Then again the next available blocks are pul into the nodes v vy, 5. in Lhe simi-
lar manner. Once the blocks in that column gets exhausted, we again add the first
block of the next column o v, ; and the following blocks to the nodes as long as we
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reach v, _ ;. Thus it 1s clear that all the nodes v....
increasing the size of the cligue by 1.

In this strategy, the value of ¢ is bounded above by 7 — 1 as otherwise the number of
blocks in a node will increase beyond z. The remaiming blocks will be aranged mndomly

v 41— dart connected o L

2

o have z blocks in each node to get {r_} many nodes in completing the merging stralegy.
z

Now we present an example comesponding to the strategy presented in Theorem 2.

Example 1. Consider the TDEr = 25). Let £ = 2. Consider the 57 blocks of the TD
arranged in the form of 4 5 x 5 matrix. If we adopt the strategy outlined in the proof of
Theorem 2, initially, the following chique is oblained: v, — (00}, v, — {(1.OY}, vy —
2,00}, vy = (030}, ve— (400}, Next (0,1) is put in the new node vy and then (1,1) is
added to vy, (2,1) is added 1o vy, (3,1) is added to vy, (4,1) is added to v, As the second col-
umn gets exhavsted, (0,2) 15 added 1o the new node v, and then (1.2) is added to v, Thus
we get, vy = [IL0LCL L) va — (OLOMG200 ) vy — (200G 1N vy — (30004101,
v — A0LI120), vy — ((0,1).00.2)} and they form a clique of size 6.

MNext we observe that the chique stee we present in Theorem 2 15 not the maximum
achievable one. One can indeed find a different merging strategy that provides a clique of
larger size. Here 15 an example.

Exampfe 2. Taking a different arrangement compared to Example 1, we get a clique
of size 7 as follows: v — 00,2, 1)}, va — W10 D} vy — 2000400}, vy —
P02}, v —= [AOLIL2N ) v — POLTL2.20E, vy — (1L 1003.2)).

Thus it will be interesting 1o devise o merging strategy which will provide the largest
cligue size when the (v, b k) configuration and z are fixed.

Theorem 3. Consider a (v,b,rk) configuration with b = r*. We merge 7 many blocks to

b
form each node in achieving a DSN having N = |:j] many sensov nodes. Then there

existy an initial merging strategy which will always provide a cligue of size 2, _[ |:l D

Proof. Let the nodes forming the clique be vy, va.. vy . Each node has z number of
emptly slots. These slots are 1o be filed up by the properly chosen blocks. The TD may be
considered as a r % r matrix filled with the values 0 to # — 1. The value at the (ij)-th posi-
tion of the matrix is i - r+f and that entry is used as an identification of the comresponding
block in the TD. We try to form a clique with r + f nodes, ¢ < r. The value of ¢ will be
clearer as we go through the prool.

A column in the matrix (comresponding to the TD) is chosen first and the r blocks are
placed one by one i rblank nodes viz., vy, v, v As all the blocks in the same column
share the same secret key, the nodes vy, va.. v, fomm acligue.

Then another column 1s chosen and the blocks are placed in the next ¢ nodes, one
cach. In other words, the blocks are put in the nodes v ;v ... v, and they form a
cligue among themselves. The rest r — ¢ blocks are added in the first v — ¢ nodes, viz,
Vi Va.. v (in the second slot). Thus each of Vi:Va - Voo pels connected to each of
Vorl s ¥eua oo Yeud,

In a similar fashion, the third column is chosen, and the blocks are placed in
Vel s Y2 oo Viogi, one each (in the second slot). The rest v — ¢ blocks are placed in
Veas 1 Vo2 -+ Veourr (in the second slot). Thus each of v .V, 5. Vo, Zels con-
nected o each of Veep Vi < Ve
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We will continue the above process as long as the second slots of the first e nodes are
eventually filled up. However, the continuation can be performed al most £ many limes as
anode may accommodate at most 2 blocks. Each time r — ¢ new nodes are connectled out of
a target of v nodes. Thus, in order o complete the above process, we must have

r<ar—Ns<r—[2],

Example 3. The technique in Theorem 3 outputs cliques of size r + 1 where

t= r(r’—]) Let us consider v =5 and 2= 2 as in the previous examples. This technigue

: g 5 : : e
outputs a chique of size 5 + ¢ whene ¢ = 5—(|_3-|) =2 1e., we get a clique of size 7.

The technigue constructs the cligue as follows:

v = {00030} v — ((LOLA D} vy = [200(3.2) ), vy = 1(3.0),(4.2)}, v —
0102}, v = [((L1ML2) ] vy — [(2,10(2.2)),

Note that in the basic (v,b, k) configuration or after our merging strategy, the size of
cligues are not dependent on the number of keys in each block/node. It is clear that the
connectivity of the DSN increases with the increasing number of keys in each node. How-
ever, increasing the number of keys is constrained by the limited memory capacity of a
sensor node. [Lis a nice property that the clique siee does nol increase with the number of
keys in each node (using our strategy ) as otherwise one may be tempted w obtain cligques
of larger sizes by increasing the number of keys in each node {i.e., by increasing the edges
in the graph).

3.2 Configurations Having Complete Block Graphs: Projective Planes

Since we are talking about cligques, we should also revisit the designs where the entire
DSN forms a chque. In [8, Theorem 11, 12], it has been pointed out that the block graph of
a sel system is a complete graph if and only if the set system is the dual design of a BIBD
and in particular, there exists a key pre-distribution scheme for a DSN having g° + g+1
nodes, in which every node recerves exactly g + 1 keys and in which any two nodes share
exactly one key. It is also stated that such designs are not recommendable as a key pre-
distribution scheme in large DSNs becanse of storage hmitation in cach sensor node. We
like 1o point out that even if the storage space is not a limitation, then also this scheme is
not suitable. The reason is as follows.

In this design any two nodes share a common key. However, for better resiliency one
may like o have more common keys among any two nodes (this 18 one important motva-
tion for our merging strategy [3.4]). Even if one maintains multiple keys against each
identifier, the projective planes do not help because compromise of a single node results in
discarding the identifiers contained in each node (block) and all the comesponding keys
for each identifier also get discarded. Thus the resiliency measure fail(s), (the probability
that a given link is affected due to the compromise of ¥ number of randomly chosen nodes)
does not improve (1., does not reduce ).

4. Conclusion

In this paper we consider the DSNs where the key pre-distribution mechamsm evolves
from combinatoral design. Such schemes provide the advantage of very low complexity
key exchange facility (only inverse calculation in finite fields). In terms of distrbuted
computing and communication among the sensor nodes, it 1s mmportant to study the subset
of nodes that are securely connected to each other (clique). In this paper we have studied
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that in details. We swdied the cligues comresponding 1o the (v,b,r, k) configuration where
ecach block cormesponds w0 a node. Further we study the scenario when more than one

b

i

locks are merged o generate a node. We show that the cligue size gets improved in such
seenario. An interesting future work in this area is to implement a merging strategy such

that one can get cligques of maximum size after the merging.
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