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We consider proximinality and transitivity of proximinality for subspaces of finite codimen-
sion in generalized direct sums of Banach spaces. We give several examples of Banach spaces
where proximinality is transitive among subspaces of finite codimension.
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1. Introduction. Let X be a Banach space and let ¥ be a closed subspace of X. We
recall that ¥ is said to be a proximinal subspace of X if for any x £ X there exists a
eV such that d{x,¥) = [|[x —¥|.

In the first part of the paper, we study proximinal subspaces of finite codimension
in generalized direct sums of Banach spaces (a concept due to Vesely (9], see below for
the definition). Our motivation comes from some recent work of Indumathi [4] where
she considered these questions for co-direct sums of a family of Banach spaces and
proved the following,

THEOREM 1.1. [et X = (8X,)., where each X, is a Banach space for each A € A. Let
Y be a closed subspace of X of [inite codimension vt in X. Then Y is proximinal in X if
and only if the following two conditions hold for every basis {f; 11 =i = n} of ¥+, where
fi={firdren forl =i=n:

(i) foreveryi | =i=mn, fiy is nonzero only for finite number of indices A,
(i) Yo =N ker fia is proximinal in Xy for each X € A.

In the present paper, we prove an analogoe of the above result for generalized direct
sums. We next consider transitivity of proximinality among subspaces of [linite codi-
mension in op-direct sums. Here the motivation comes from [G] where transitivity was
established among finite codimensional subspaces of ;. We give several new examples
of spaces where transitivity of proximinality holds among subspaces of linite codimen-
sion answering [3, Question 2] in the affirmative. We give a partial positive answer o
this question in cp-direct sums. For a Banach space X, let N A(X) denote the set of norm
attaining elements of X*. We recall from [3] that X is said to be an R(1 )-space f Y ¢ X
is of finite codimension and ¥+ < NA(X) implies Y is proximinal. We show that this
property is preserved by cp-direct sums but not by £,-direct sums. We only consider
these topics for Banach spaces and leave the formulations in the more general setting
of locally convex spaces open. An interested reader can consult the monograph 5] for
a comprehensive treatment of proximinality in locally convex spaces.
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We now deline generalized direct sums. Let A be a nonempty set. Let {Xa: A = A} be
a family of normed linear spaces. By ex, we denote the characteristic function of the
singleton {A} C A, thatis, ex(A') = &y

Let ¥ be a linear space, Ay C A, ¥ € YA We denote by ¥ |4, the element of ¥* defined

by

(1.1
0 otherwise,

_}"{ A AeE A,
Ylag = ‘{
Hence vy, is the canonical projection of v onto the subspace of functions whose
support is contained in Ay and Y% = {y 2 ¥4 | supp(y) © Ayl
By a sequence space on A, we mean a normed linear space {(V,y) such that V is a
linear subspace of BY,

DeEFINITION 1.2. Let (V,y) be a sequence space on A such that y is monotone on
the nonnegative elements on V. Denote by (28X, )y the linear space

(@Xn), = {x eluXal*:x(N eXy YAeA, ||x(-)|| e L-'} (1.2)

equipped with the norm x|y = y{[x{-)]) where |x(-)]| means the function A —
l2 (A s,

Let 77 : B* — [0, +20] be a norm on B which is finite on the elements with finite
support. By S, (A), we denote the linear space §,(A) = {F € RY : 7 (F) < +} equipped
with the norm 1.

DEFINITION 1.3. A norm ;B — [0, + o] will be called
(i) proper if it is finite on the elements with finite support,
(i) finitely determined if for every E = BY,

mi{E) = sup {mw(E s, ) : Ay is a finite subset of A}, (1.3

(iil) monotonic if w(E) = m{n) whenever [E| = || E,n € RY,

{iv) dual norm of a sequence space on A if there exists (V,y) sequence space on
A (as defined above), containing basic vectors ¢, as unit vectors and such that
its dual V* is isometric with Se(A) and the isometric correspondence between
v*eV*and w = SplA) is given by

v*(E) =Y E(Mw(d) whereEeV. (1.4)

AEA

When V = 55 (A) we will write (£ X, ), instead of (2X),.

EXAMPLE 1.4. Let 1l < p < +o0o. Lot 71 : B — [0, +e0] be the classical £7-norm. Then
1T is monotonic, proper, and finitely determined, and we have SpiA) = £PIA), (8 X, ), =
(X3 ) e,
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Each classical £7-norm is a dual norm of a sequence space on A, with the predual V
given by

cold) Wp=1,
L1
V=18A) iF1 y—+—=1, 1.5
(A P 4o p+q 11.5])
FUAY if p=+oo.

The following lermma was proved in [9].

LEmMmaA 1.5. Letw (RY — [0, +00] be a norm which is monotonic, proper, and finitely
determined. Let X5 be a Banach space for every A= A, Then
(a) (8Xy )y and Sp{A) are Banach spaces,
(b) if7r is a dual norm of a sequence space on A, then the space (8X] )y I8 isometric
fo a dual space.

2. Proximinality in generalized direct sums. We need the following theorems of
Garkavi (see |7, pages 94-95]).

THEOREM 2.1. Let ¥V be a closed subspace of finite codimension in a normed linear
space X. Then Y is proximinal if and only if for each ® = (Y )%, there exists x = X such
that |®| = |x|| and ®{f) = fix) forall f =Y+,

The following result is easy to deduce [rom the above theorem.

THEOREM 2.2. Let X be a normed linear space and Y a closed subspace of finite
codimension in X. Then Y s proximinal in X if and only if every closed subspace 2 2
of X ix proximinal in X,

As an immediate consequence one has that if a finite codimensional subspace ¥ C X
is proximinal, then ¥+ c NA(X).

We extend Indumathi's result on cg-direct sums which is mentioned in the last sec-
tion, to generalized direct sums. We now introduce the notations that we are going o
use in this result,

Let {Xx: A € A} bealamily of Banach spaces. Let (V,y) be a sequence space on A and
1 adual norm of a sequence space on A such that X* = (8X} ) where X = (@X,),. We
recall from Definition 1.3(iv) that this in particular means that ¥V has the canonical basis
vectors as unit vectors. Let ¥ < X be a closed subspace of finite codimension. Let f; =
{fixdaen wherei=1,...,n bein ¥+ such that ¥ = n! | ker f; and let Zy =N, ker f; 5.
Assume that each Zy is proximinal in corresponding X,. Now we have the following,

THEOREM 2.3. Every finite codimensional closed subspace Y of the above form is
proximinal in X for every dual norm  if and only if all but finitely many X;"s are {0}.

ProOOF. First suppose that all but finitely many Xy 's are trivial spaces. Let ¥ C X be
of finite codimension. By our assumption, £, 15 proximinal in respective X, Since all
but finitely many X, 's are trivial, f;'s have only finitely many nonzero terms. Consider
A=ul {AeA: fiy # 0} We have that |4 < oo,
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Let & be a subspace of X such that G = {x|, :x € X} and 2y = N}, ker fix ford = A
For & = A, each £y is a proximinal subspace of finite codimension in X». Further if
Z =1{®Zy )y, then we show that £ is a proximinal subspace of finite codimension in (.
Let g = (gy) be in G. For every gy we have 2 in Z, such that gy — 20| = digy,Z,).
Let 2° = (z{) € Z. Now |g—2°llv = y(lgr—281) < y{llgr—2al) for z=(2)) € Z, by
monotonicity of y. Thus Z is proximinal in . Set Yy = Nl {x|, :x = (x3) € X and
Facafialxa) = 0} Then ¥, is a subspace of &, Z ¢ ¥y C . Now by Theorem 2.2, we
conclude that ¥y, is proximinal in & Againusing the monotonicity of the norm y it can
be easily seen that this implies that Y is proximinal in X.

Conversely we assume that every finite codimensional closed subspace ¥ < X of the
form considered earlier is proximinal in X. Suppose infinitely many X,'s are nontrivial.
Then as in [4], we give an example of a subspace ¥ of X of codimension 2 such that ¥V
is not proximinal in X,

CONSTRUCTION OF THE EXAMPLE. Let y be a norm whichis not equal 1o the oy norm.
In particular we take y = £,. Assume without loss of generality that A = and X = £,
Then X* = £,. Take f; = (1,0,3/4,4/5,...,n/in+1),...) and fo = (0,1,3/4,4/5,...,
njin+1),..)in NA(X) = {{x,) €4 : there exists ng € M such that [|[{ o)l = |ota,, |}
Let x =(1,1,0,0,...)0. Then fiix)=1and foi{x) =1

Since f; and f» are in NA(X), ker f| and ker f» are proximinal hyperplanes of X. Let
Y = n;_ kerf; so that dim({X/Y) = 2. We show that ¥ is not proximinal in X. Clearly
dix, Y= |lxly | = 1.

We now claim that dix,¥) = 1. Select x, in B such that x; =1 = x» and for n = 3,
put x, = —(1+ 1)/n. Define 34 in X for k = 3 by

tail xn ifneil,2k}, 1)
n) = A
i 0 otherwise,

Then filye) =01fori=1,2 and 50 3 = Y for all k. Further |x— 3| =(k+1)/k -1
as k — oo, Henee dix, ¥ = 1. Now if there is a v, € Y such that |x — wll = dix,Y) =1,
then fi{x —3) =1 =[x -l and filx - 9) =1 = |x — 3ll. Since the first equal
ity implies vy = ¢, clearly the second equality cannot hold. Thus ¥ is not proximinal.

O

We next show that any proximinal subspace of finite codimension in X = (@X, ), is
also a proximinal subspace of W = (28X, . The proof uses ideas similar to the ones
given above and the well-known facts, X is a proximinal subspace of W (this can be seen
by verifying the “3-ball property” and concluding proximinality as in [2, Proposition
[L1.1]) and that if Z, and Z» are two proximinal subspaces in X, and Xa, then 2y &, 2y
is proximinal in X, &, X,.

COROLLARY 2.4. Let X = (@X)y),, and let W = {@X,), . Let ¥ be a proximinal sub-
space of finite codimension in X. Then Y ix proximinal in W.

Proor. We follow the notations used during the prool of the above theorem. Let
Xy =1{(@®Xyaea)p, and let Xy = (88X 3¢4),,. Then one can see as in the above proofl ¥,
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is proximinal in X. Also as remarked above, X is proximinal in {@Xaea)p, . It is easy
1o see that ¥ = Yo @, Xz, Therelore ¥V is proximinal in X &g, (8 Xaeadp, = W, O

REMARK 2.5. Let ¥ be a proximinal subspace of finite codimension in X = (X, ).
Let ¥, be the finite codimensional subspace in W = {(&X, ), obtained by intersecting
the kernals of the same functionals that determine Y. Then by Theorem 2.3 we have
that ¥, is a proximinal subspace of W. We also getl from the above corollary that ¥ is
proximinal in Y.

Our next result substantially improves on the above corollary when the component
spaces are scalars. We retain the notations used above,

PROPOSITION 2.6. Let Y < £.(I) be a subspace of finite codimension determined by
finitely supported functionals in £1(1). Then Y is proximinal, under the canonical em-
bedding in £%*(1).

PrOOF. We have that ¥ is a weak*-closed subspace and hence proximinal in £, (1.
Let X, = (@Ryycale, and Xo = (@R pea)p,. We have as before ¥ = Y, @, X» and
Podl) = Xy @y, Xu. We next recall the well-known fact that any space of continious
functions on a compact set is proximinal in its bidual, see [8). Thus X. which can be
identified as the space of continuous functions on the Stone-Cech compactification of
the index set, is proximinal in its bidual. Also X is a linite-dimensional space. Therefore
Y is proximinal in X, @p, X7% = £E5(1). O

We now consider transitivity of proximinality among subspaces of finite codimen-
sion. We use the notation YE X toindicate that ¥ is a proximinal subspace of X.

DEFINITION 2.7. A Banach space X is said to be a P-space (Pollul space) if proximi-
nality is transitive for subspaces of finite codimension, that is, YE Z EX , and the fact
that both ¥ and Z are of finite codimension implies ¥ Ex.

Well-known examples of P-spaces are oo space, reflexive spaces. Also the space of
compact operators 3 (£3) on the Hilbert space £ is a P-space. To see this, we note that
we have from |1, Lemma 4.2] that N A{H{£3)) is a linear space. Also from |1, Theorem
5.3] we know that H{£2) is an R{1)-space. 1 thus follows from |3, Corollary 5] that
il is a P-space. This answers [3, Question 2]. See [3] for more general results on
transitivity.

The following lemma gives a way of giving more examples of P-spaces.

Lemma 2.8. Let X be a P-space and let ¥ C X be a praximinal subspace of finite
codimension. Then Y s a P-space.

PROOF. Lel Z, & Z, & Y € X, where both Z, and Z, are finite codimensional sub-
spaces of Y. Since X is a P-space, Z, is proximinal in X, Using the same reasoning this
time with Z; and X, we see that £, is proximinal in X and hence in ¥. Thus ¥ is a
P-space, O

To motivate the results that we will be proving next we give the details of transitivity
of proximinality for ¢o. The prool we present here is simpler than the one in [3, 6].
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LEMMA 2.9, LetX = co=(8R)e. Let Z £ ¥ £ X anddim(X/¥) = n < oo, dim(Y/ Z) =
m <eo. Then 2 € X.

ProoF. We will give the proof when n = 1 and given the nature of proximinal sub-
spaces of finite codimension, the arguments are similar when n > 1. Let f € NA(X) be
such that ¥ = ker f. Clearly f has only finitely many nonzero terms.

Let Z £ Y, dim(¥Y/Z) = m.Let fi, for....fm € Z* C ¥* be such that

Z=lyve¥Y:fily)=0%i, l=i=m}. 2.2)

Here fi,...,fm € NA(Y). Let f1,..., fm be norm-preserving extensions of fi,...,fm
onto X. Then

Z={xeX:fix)=0, filx)=0Vi,1<ism} (2.3)

As f1,..., fm are norm-attaining functionals on Y, fl,...,fm are also norm attaining on
X, which implies Z £ X, O

The following corollary can also be deduced from some of our later results. However
we prefer to present a proof here using above ideas.

CorowLary 2.10. Let X = (@X,), , where each X, isa reflexive Banach space. Then
X s a P-space. Any proximinal subspace of finite codimension in X s also a P-space.

ProoF. Wesuppose that Y and £ are closed subspaces of X such that £ E ¥ E X with
dim(X/Y)=n < o and dim(¥/Z) = m < «. Then as belore we can write ¥ and Z as
Y =nlt kerf;and Z=n"ker f; where f1, fo o0 frem € X5 Let Zy = M ker fiy C
Yi = nit kerfiy © Xy Then Z; is proximinal in ¥y as well as in X by reflexivity. So
by Theorem 1.1, £ is proximinal in X which completes the proof. The second assertion
follows from Lemma 2.8, 0

As seen in the above proof in the general case the main difficalty is o prove the
proximinality of Z; in X;. We now give a positive resull for the validity of transitivity
in the case of cy-direct sums. To state the result we need the ollowing notation.

Let X = {®X,).,, where X, is a Banach space for each A € A, Let ¥ and £ be closed
subspaces of X such that ZC ¥ C X with finite codimensions, that is, dim(X/¥)=n <
co and dim{¥/Z) = m < co. Then we can write Z as 7 = n! ™ ker f;, where f, = (fi,) €
ZrcX*forlsi=n+m.letZy=nt"ker fiy for A € A Assume that if z = (z3) = Z,
then zy € £y for every & € A, Then we have the following,.

ProPosITION 2.11. Suppose each X, in the above direct sum is a P-space. With the
above assumplion on Z, if £ (,_-:r Y (,_-:r X, then £ E X.

ProoF. We suppose that Z E YE A={aX))y. Since Z E Yand ¥ EJ{, there exists
fieNAIX) for 1 =i < n+m such that ¥ = 0l kerf; and Z = n{™ ker f; in X. Let
Zy =nit"ker fiy c nl, kerfiy c X,
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We claim that Zy is proximinal in ¥y = nfL, ker fi 1. Indeed let v £ Ya. Now consider
¥ = (0,...,,%,0,...). Then there exists z" = (z3)rea € Z such that d(#,2) = 12" -7].
By our assumption z§ £ Z,. We next show that z{ is a best approximation.

Let z, £ Zy and consider z = (0,...,0,23,0,...), z€ Z. Now | —z:l = |l -z =
3 — 2" = || 34— 27| which implies that 2% is a best approximaltion.

Therefore Zy is proximinal in ¥y for all A € A, Thus Z; is proximinal in X; by the
transitivity property of X,. By Theorem 1.1, £ is proximinal in X. Od

Conversely we have the following,.

PROPOSITION 2.12. Let X = (@X, ), be a P-space. Then X isa P-space foreach A € AL

PrROOF. Fix Ay = A and let £ and Yy, be closed subspaces of X, such that £, E

Y, EXM with dim{X, /¥y,) = n < +eo and dim(Y,, /£y,) = m < +co. Now consider
Y=(aYy) and £ = (&) where

(2.4)

Xy if A=Ay, Xy if A=Ay,
Yi= Zy =
Yi, A=Ay, Zy, A= Ag.

Clearly £ and ¥ are subspaces of finite codimension in X, It is easy o see that £ E
Y E X. Therefore £ EX since X is a P-space,

Now we claim that 2, E Ay Letxy, € Xy, Consider xy = (0,...,x3,,0,...) £ X. Then
there exists Z, = {2%) € Z such that ||xy — zyl = d{xy,Z). Now we show that zf{“ isa
best approximation of x\ from Z, . Consider z = (0,...,0,2y,,0,...) where z) € Zy,.
Clearly z € Z. Now || x5, — 2y, | = X0 —2 |l = 125, — 2, || which implies that 2§ is a best

approximation of x, from Z,. Thus £, (,_-:r Xay. Hence X, is a P-space. Since A is
arbitrary, the conclusion follows. O

REMARK 2.13. Identifying H{ce) as (2 1), we see that as £1 is nota P-space (see
[3, page 137]), Hico) is not a P-space.

We now prove that being R(1) is invariant under cp-direct sums. Using the same
arguments presented in the converse part of the following proposition, one can show
that this part holds for generalized direct sums also.

PROPOSITION 2.14. Let X = (@, Xy ),,. Then X is an R{1)-space if and only if each X,
is an Ri(1)-space.

PrOOE. LetY © X be aclosed subspace of finite codimension and Y+ © NA(X). Then
there exists fi1,..., fu = X* such that ¥ = n}_, ker f;.

As f; = NA(X), only finitely many coordinates of f;'s are nonzero for each i, Thus
fi={fixdaen, fin # 0 for finitely many A £ A.

It is easy to see that if a functional in X* with only finitely many nonzero coordinates
attains its norm, then each nonzero component functional attains its norm. Thus since
Y+ o NA(X), following the notation of Theorem 1.1 we see that for any A, ¥i" © NA{X,).
We thus have ¥ is proximinal in X, since each X is an R(1)-space. Nowby Theorem 1.1,
Y is proximinal which implies that X is an R{1)-space.
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To see the converse it is enough to consider the case X = X) &~ X2 where X is an
Ri1)-space. Now let ¥ © X1 be such that Y+ < NA(X1) and ¥* = spani fi,..., fe}. IUis
easy o see that ¥ = span{i(f,0),...,{ fi,0} € NA(X). Thus the preannihilator of ' is
a proximinal subspace of X. Hence Y is proximinal in X;. Therefore X, isan R({1)-space.

O

The following corollary allows us to give more examples of P-spaces. In particular it
shows that {(&H( 1)), is a P-space. As mentioned before it also gives another proof of
Corollary 2.10. We omit its easy proof.

COROLLARY 2.15. Let X = (@X,),,, where each X, s anR{1)-space and N A(X, ) isa
linear space. Then X has the same properties. In particular X is a P-space.

REMARK 2.16. Proposition 2.14 does not hold for generalized direct sums. It is not
true even for £)-direct sums over infinite index. The same example presented in the
proof of Theorem 2.3 works in this case also.
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