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Estimation from two-stage unequal
probability sampling with missing units

Abstraet A formula is presented for an unbiased estimator for the varance of an
unbiased estimator of a survey population total as well as for an unbiased estimator
of its vanance based on sampling in two-stages following Rao et al. ] Roy Stat Soc
B 24: 482491 (1962) scheme in both stages when the originally selected units
in both stages cannot be fully covered in the survey bul are o be randomly sub-
sampled. The development is helpful w0 wekle non-responses if assumed 1o have
occurred at random in either or both the stages.
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1 Introduction

Stratified two-stage sampling with unit-wise varying probabilities of selection for
the first stage units (fsu) and also for the second stage units (ssu) or equal selection
probabilities for the latter is a common Survey Sampling practice.

Rao et al. (1962) scheme, applicable when normed size-measures for the units
are priody available, is both convenient and suitable because it is easy 1o imple-
ment, yields only distinet units in a sample, admits a simple unbiased estimator for
a population total as well as a simple uniformly non-negative unbiased estimator
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for the variance of the estimator of the total. If the Rao—Hartley—Cochran (RHC)
scheme is employed in both the first and the second stages of sampling then thanks
to Chaudhur et al. (2000) works, these advantages still continue Lo exist.

A problem arises however, if, becanse of resource crunches, unanticipated at
the design stage but unavoidably faced when the field work for the survey is about
to start, the sample-sizes in one or both the stages need to be cut down allowing
the survey to be completed in time consistently with resource constraints.

It may be of mierest o illustrate a practical application. The Indian Statstical
Institute (151), Kolkata, undertook recently 1o assist the government in implement-
ing ‘intemal audit’ by sampling entres from account books in various offices in
17 districts. Initially, a sample of 79 offices spread widely in 7 sampled districts
was chosen adopting the RHC technique to accomplish the task within a stipulated
tme. After some initial time and resources were exhausted in course of the plan-
ning, it was badly needed o cut down the sample-size 1o 63, consistently with the
resource constraints. District-wise simple random sampling without replacement
(SRSWOR) from the originally chosen RHC samples was adjudged 1o be feasi-
ble retaining unbiasedness in estimation of totals and of vanances of estimates
of totals. Of course the sub-sample of 63 out of 79 offices could be chosen with
unequal probabilities as well. But to ensure simplicity this was avoided.

Anextension of this principle is also feasible ifone encounters ‘non-respondents’
in an initial RHC sample, assuming the incidences of non-responses o occur only
al random. In this case, however, & more complicated probability system in the
‘non-response behaviour mechanism’ could be envisaged leading w complicated
analytical developments. Consideration of simplicity guides us 1o restrict in the
present work 1o ‘equal-probability sub-sampling” alone.

In the section 2 we present the details to show the necessary changes if simple
random samples (SES) of suitable sizes be drawn without replacement { WOR)
from the initially chosen samples in both the stages. By simulation we illustrate in
section 3 how the efficiency level declines with increasing sub-sampling rates.

2 Sample selection and estimation

Let U denote a finite population of & units labelled i = 1, ... | N bearing values
vi of a varnable of interest v and the known nomed size-measures p; (0 = p; <
1,3} pi = 1, writing ¥ for sum over i in [7). Let again this i, to be called fsu, in
its turn be composed of ssu, M; in number. The ssu i f has y-values y;; and normed

size-measures p (0 < p; < 1, Zj.'L py=D.j=1,..., Mif=1... N.
Let the problem be to unbiasedly estimate ¥ = E'Ll Zf:’l ¥y = E':l Vi
where v, = Z"’il vij.ontaking (1) asample of nunits from & = (1, -------- - )

by the RHC scheme and i 2) independently choosing from each sampled fsu, i, say,
again by the RHC scheme a sample of m; ssu’s, { € 5, wriling 5 as the sample of
the n fsu’s chosen.

2.1 Estimation from first stage sampling allowing random sub-sampling

In choosing an RHC sample s of i distinet units the procedure is to first randomly
divide [ into n non-ovedapping groups taking N, units in the ith group choosing
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them subject to 3, N, = N, wnling } , to denole summing over the n groups.
Wnting (2, as the sum of the p-values for the fsu’s falling in the ith group thus
formed, from this group one unit is 0 be chosen with a probability equal w this
unit’s pi-value, divided by );; and this is to be independently repeated for each of
the n groups formed. Writing, for simplicity, p;, v as the p;-value and y-value for
the unit actually chosen from the ith group, RHC s unbiased estimator for Z.N=| Vi

15
o
f = P =—
¥ nl
Writing
_ BN N

B = .
N:—¥ N

BEHC s unbiased estimator for the variance of ¢ 1s

v(t) =B[E. < (%)3_,2}

Supposing inadequacy in resources o cover all the n fsu's in a field survey let
an SREWOR of m fsu’s be chosen from . Then, writing 3~ for the summation
over these m sampled groups out of the original n groups, let

n 0,
ot bt 2.1.1
& m Z:.lrr ¥ P E }

be taken as an estimator for ¥ = Etl Vi.
Writing £ g, Vi as the operators for expectation, vanance with respect o this
SRSWOR selection we have

o it A A 20l
Erle) =1, Va(e) =n (m n) in—1) [Z“ (L Pi ”) :| 1

then, an unbiased esumator of Veie) s

wid 1 1 s (3N g3
Yalgm (;_;) {:ir—l}[z”’ @ (E) - (;)j| 212

for which E gugle) = Vile).
Writing £, V) as the expectation, vanance operators with respect to the above
RHC sampling it is known that

Y 3 2

¥ N:—N
Vilt) = A E:—rl ) ey e RN
= P NN —1)
Again, on writing

E=EEy, V=VEpr+ E Vg,

the variance of e is Vie) = V, Egle) + E, Viled = Vi) + E, Egugie) and
an unbiased estimator for Vie) is vie) given below with the following result in
Theorem 1.
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Theorem 1 Evie) = Vie)

where
n ¥ 2 3
vie) =il + Blugle)+ B [; zm } (E) - e"j| (2.1.3)
Pmaf Let
iit) =3[ Z 0, ( ) —{F—Lx{f}'}i|
and

P = — vilel

Then, Eg(f’) =1 because Egle) =1,
Evi(t) = E(|Egit(t)] = Evit) = Vit

S0, for

= (1+ Blugle) + 3[ = Z 0, (;_) _EE} = v(e)

wie have

Evie) = E1Egvie) = Eyvlt) + E |\ Egugle)
Vilt) + EVr(e) = Vie)
e, Evie) = Vie).

2.2 Modification in two-stage sampling with random sub-sampling in both stages

Al this stage let us suppose that for i ins, v, = E_‘:L vij. the ith fsu wtal is not
ascertainable and needs to be estimated through sampling of ssu’s from the selected
fsu’s in 5. We suppose that every sampled fsu is sub-sampled according to RHC
scheme, taking mr; ssu's from the M; ssu's in the ith fsu. Using parallel notations
as ».  for 3 . @ for Q;, My; for N; and E>, Vi for E;, Vi we may wrile as
follows:

n=) . v ('”. Ey(r) = v, (2.2.1)

M, }'3. Z M2 — M,
Valr;) = A; =L P, it e B 2.2.2
alrid ;p‘j ¥ MM, — 1) [ )

.!'112' L i
valri) = By [Z oy Qo = Bi= Ez_— A
‘ ij ! i

Q
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then,
Exwna(ry) = Va(r)) = Ex(r]) — ]

and this leads w _ﬁf - rf — va(r; ) satisfying Eg{_i"f} - 1,‘J

Let again, it be impossible, with the resources at hand, to complete the survey
of all the m; ssu’s, fori in s and it be decided 1o choose by SREWOR method only
{; of the ssu’s out of m; for i in 5. Then, with the notations ¥, paralleling ¥
E., V, paralleling Ep, Vi we may write as follows: :

5
i

n, Y
=72 w— El)=n (2.24)
i é Pij
2; 7>
11 1 O i Wim
Vilg) = £ TRt | e -‘._-"_; 225
(g) = m: (‘,‘ m‘) P Do | 3 o . (2.2.5)

2
@y Ly

11 1 )
T ST Y U E : i _ ‘ 226
Hor) = (f, m,) U= 1) & | 7, l; B el

then,
E,uig) = Vilg) = Egh) —r]
hence

7 =g — v.(g) satisfies E, (7)) = r.

n h n Q| m; (L
i b R R S, 227
m Eur g Pi m moy [ f‘ I; ¥ii Pij ] E }

Then this f is our proposed unbiased estimator for ¥ = Z‘”:' Z;’i‘, vij because
for this we have the following result in Theorem 2.

Theorem 2 £, EgE.E.(h)y =Y.

Pmaof
n 0
E,- hy=— -l_‘
(f) = Emr =
n 2
EE.(h) = = E" n==e
.Ek.EjEr”I} = -E,R‘{"-'} =1
S0,
N N M,
E\EpBE () =E()=) n=) ) m=VY.
=1 =1 j=1
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Occasionally in what follows we shall wrile £y = E\Eg, Vig = ViEp +
E\ Vg, By = E2E, Vo, = ViE, + E3 V.
Let us further note that

win=(2) %, (2) ve

and

satisfies E.v.lh) = V.(h).
Mow,

Vo (h) = VLE,(h) + EaV.(h)

n e .
Va [; E,., " ] + E3E, [v,(h)]

i
2

(i)z Zm (%) Vairi ) + Ea E [ v (R)]

m
2 ) 2
&3 (%) Zm (%) EFE (Talr)) + E2E [, (h) ] (2.2.9)

where thir) = B [% 3, Qi ﬁ_‘— — Ff] and from (2.2.9) we get

ny? 3, ? 4
vtk = (=) Z(i—) Ba(r3) + v, (h). (222.10)
Again we have
Vo h) = E2E(h*) — [ELE (h) P
= E>E. (k") — &, (2.2.11)

Thus from (2.2.9) and (2.2.10) it follows that

& =h*— v (h) (2.2.12)
and
E:E 6% =& .
MNow
2 0
Prle) =n’ (i _ 5) - = - [Z (%) 5 _m:_i} (2.213)
where

3, == balry) (2.2.14)

and tair;) 15 as defined earlier.
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Then we have

=2
¥

=(l+ B)i? - B, [% Z; O ;—Jj| (2.2.15)
i ¥ Ch

a2 a2
and E.(¥;) = 0. E2E.(%;) = ¥*.
This implies that

T PR [ s OY" 2 (Y
ErE, vp(e) = vple) = n (m :i){!n—l}[zm(ﬂa) ¢ "‘(”):|'

Mow, in vie) of (2.1.3) let us replace _vf, & and vgie) by their respective unbi-
42
ased estimators just derived above, namely, ¥, , &2 and tple) in (22.15), (2.2.12)
and (2.2.13) respectively.

Then, let us write

s
=k

Be) = (1+Bie@+B |- 0, -

ul
I
n

Then we propose
v(h) = vy, (h) + vile) (2.2.16)

as our unbiased estimator for the variance of i because we have the following result
in Theorem 3.

Theorem 3
E\EgE-Evif) = Vih)
Proof We may note, writing V = EpVa, + Vg Ea, that

Vih) = E| Eg[Ex (12, (h))] + Virl Ex(h)]
= E\Eg[Ey (v, (7))] + Vigle) since Ex(h) = e.

MNow by using Theorem 1 we get

Vih) = E) EgE2E [va (M) |+ E | Eguie)
— E,ERE>E, [vs, (M) + E, EgE, E,[#e)] since Ea, [H(e)] = vie)
= E\EpE2E, [va,{h) + tle)] = E| EgEx E,[uih)].

S0,

E\EpEsE vih) = E\Eg[Var(h)] + Virle) = Vih).
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3 A simulation exercise to illusiraie loss of accuracy in estimation due to
sub-sampling

We reat N = 14 mural administrative blocks in a particular district in India as the
fsu’s. The villages within them are weated as the ssu’s with their numbers M as
illustrated in Table 1.

Using the block population according 1o 1991 Indian Population Census as the
size-measures for an RHC sample of size n = 6 from these blocks the total arca
under cultivation, namely ¥ = 3008360 {in hectares) is estimated, by ein (2.1.1)
with vie) in(2.1.3) as the vanance estimator for e,

Treating = (e — ¥)//vie) as astandard normal deviate (e — 1,96,/ v{e), e+
1.96./vie)) is ken as 8 95% confidence interval (CL) for ¥. Measures of perfor-
mance of ¢ are taken as the average coefficient of vanation { ACV), the actual cov-
erage percentage ( ACP) and the average length ( AL) of the Cl respectively, which
arethe average over B = 1000 replicated samples, of the value of 100 x {4/ vie)/e),
the percent of these replicated samples for which the Cl covers ¥ and the average,
over these B = 1000 mweplicates of the lengths of these C's. Vanations due Lo
sub-sampling (of m fsu's out of n) only of the fsu’s are illustrated in Table 2. Of
course the closer the ACP to 95% and the smaller the ACV and the AL the better
the estimator.

In Table 3 we illustrate two sets of choices of [;"s as Land 11 for certain given
m;'s and using the same data the perdformances are compared in Table 4 when ¢
is replaced by fof (2.2.7) and vie) by vih) of (2.2.13), but keeping m = n, i.e.,
when no sub-sampling is done at the fsu level and three specified choices of {; and
myfori =1,2,..., 14,

In Table 4 m; = I; refers to the situation where no sub-sampling needs 1o be
done at the ssu level.

Table 1 Composition of first stage units

Serial number of Number of Serial number of MNumber of
fsus () 55075 (M) first stage second stage
units (fsu's) ir) ssu's (M)
1 36 B 3l
2 22 9 18
3 28 10 43
4 69 11 43
5 72 12 L
6 23 13 22
7 38 14 30

Table 2 Loss in efficacy on sub-sampling of fsu's

Sub-sampling ratio Average coeflicient Actual coverape Average length
(=) % 100 of variation (ACW) percentage (ACP) {AL)

0 10.8 97T 20065.6
20 13.7 90.2 21048.6

30 14.2 897 258451
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Table 3 Sub-sampling from sampled ssu's

Serial number of fsu’sif} m; I
| 11
1 7 6 4
2 4 3 2
3 5 4 3
4 13 11 5
o) 14 12 il
6 4 3 3
7 7 6 4
2 6 5 4
9 3 2 2
10 8 7 3
11 8 T 5
12 7 6 4
13 4 3 3
14 6 5 4

Table 4 Relative efficacies on sub-sampling of ssu’s: Hlustrating performances corresponding
o the situations in Table 3

Situation ACY ACP AL

I 12.2 923 24865.6
Il 12.5 1.1 25386.6
I (with my = i}} 12.0 97.1 236179

Our Table 2 above backed by Table 1 shows that reduced sizes of the samples
of fsu’s due 1o sub-sampling gradually yield diminishing efficacies in estimation
through all the three critena. Similarly, Table 4, supported by data in Table 3 also
demonstrates, as expected, similar tendencies for reduced efficacy-levels caused
by increase inintensity in sub-sampling at the second stage alone as well.

Acknowledgements Helpful comments and recommendations from two referees leading 1o
improvement on our earlier drafts are gratefully acknowledged. The research by Arijit Chau-
dhuri is partially supported by CSIR Grant Mo, 21 (0539 02EMR-1L

References

Chandhuri &, Adhikary AK, Dihidar 5 (20000 Mean square error estimation in multi-stapge sam-
pling. Metrika 52(2):115-131

Rao JNK. Hartley HO, Cochran WG (1962) On a simple procedure of unequal probability sam-
pling without replacement. J Roy St Soc B 24: 482491



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg

