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Combining all the probabilities, we prove thatAdv(t;m) is bounded
by

bt=c�c+ 2m

jPW j
+O

(t+ c�m)2

2n

as stated.
For the lower bound, we describe two strategies from which the ad-

versary can pick the one yielding better success probability depending
on the parameters. In strategy A, the adversary computes separate paths
of length c� for b(t � c�)=c�c passwords pikskc� using t � c� Type
1 queries. He then makes a Type 2 query asking for y = F �

p (s; c�).
With probability b(t�c�)=c�c=jPW j, vertex y coincides with the end-
point of one of the paths, thus revealing the password p0. In such an
event, the adversary then makes c0 more Type 1 queries to compute
y00 = H(c )(p0ks0kc0) and answers 1 if y00 = y0. All together the
adversary used at most t Type 1 and one Type 2 queries to achieve suc-
cess probability of b(t � c�)=c�c=jPW j.

In strategy B, the adversary constructs Q1 to be a single path
of length t starting from an arbitrary pkskc. With probability
1 � O(t2=2n), the path will be cycle free. Its first t � c� vertices
piksikci have their full paths Tp ks kc completely contained in Q1.
Assuming m to be much smaller than t � c�, the adversary can pick
m vertices piksikci along the path with distinct pi and make at most
m Type 2 queries with the corresponding (si; ci)’s. With probability
m=jPW j, it can identify the password. This completes the proof of
Theorem 2. QED

VIII. CONCLUSION

Password-based KDFs are necessary in many security application.
Despite their importance and widespread usage, rigorous analysis of
such functions seems to have received relatively little attention in the
literature compared to many other cryptographic schemes.

In this paper, we define a general security framework for password-
based KDFs where salt and iteration count are included as parameters.
Under this framework, we focus on the most commonly used construc-
tion H(c)(p k s) and prove that the iteration count c, when fixed, does
have an effect of stretching the password by log2 c bits. Our analysis
is done using a random functional graph representing H , conditioned
upon a query graph representing information revealed to the attacker.
It provides insights on the exact way that each parameter contributes to
the overall security.

We then analyze twowidely deployed KDFs defined in PKCS#5.We
show that both are secure if the adversary cannot influence the param-
eters, but are subject to attacks otherwise. We also consider how such
security weaknesses can be exploited in practice.

Finally, based on the insight gained from our earlier analysis, we
propose a new password-based key derivation that is provably secure
even when the attacker has full control of the salt and iteration count.
The new proposal achieves stronger security while preserving the same
efficiency as existing KDFs. We expect that the new proposal will find
its application in practical implementations.
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Toward a General Correlation Theorem

Kishan Chand Gupta and Palash Sarkar

Abstract—In 2001, Nyberg proved three important correlation theorems
and applied them to several cryptanalytic contexts. We continue the work
of Nyberg in a more theoretical direction. We consider a general functional
form and obtain itsWalsh transform. Two ofNyberg’s correlation theorems
are seen to be special cases of our general functional form. S-box lookup,
addition modulo 2 , and X-OR are three frequently occurring operations
in the design of symmetric ciphers. We consider two methods of combining
these operations and in each apply our main result to obtain the Walsh
transform.

Index Terms—Boolean function, correlation, linear approximation, S-
box, symmetric cipher, Walsh transform.

I. INTRODUCTION

Symmetric ciphers are a basic cryptographic primitive. In practice,
symmetric ciphers are designed using nonlinear Boolean functions and
S-boxes. One of the most effective methods of attacking symmetric ci-
phers is the technique of linear cryptanalysis [5]. The efficacy of this
technique depends upon the ability to obtain good linear approxima-
tions of the constituent Boolean functions and S-boxes.
Linear approximations are studied using the technique of Walsh

transform analysis. While it is usually easy to apply the Walsh trans-
form to an individual constituent of a symmetric cipher, in general it is
more difficult to apply the technique when a combination of primitives
are used. This requires the development of a general methodology of
Walsh transform applications.
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One such important work has been done by Nyberg in [8]. This work
unifies some of the previous approaches and obtains three key results
on the Walsh transform of various functional forms. These are then
applied to several typical cryptanalytic context.

The purpose of this correspondence is to continue the direction of re-
search initiated in [8]. We obtain the Walsh transform for the following
general functional form:

h(x1; . . . ; xt+1) = f(g1(x1; x2); g2(x2; x3); . . . ; gt(xt; xt+1))

where each gi is a map from IF
m +m
2 to IFn

2 and f is a Boolean
function from IFn +���+n

2 to IF2. We obtain a closed-form expression
for the Walsh transform of h in terms of the Walsh transform of f and
g1; . . . ; gt. We show that two of Nyberg’s results in [8] are special
cases of our theorem. This underlines the importance of our result in
the context of symmetric cipher cryptanalysis.

We also consider two applications of our result. The operations of
S-box lookup, X-OR, and addition modulo 22k typically occur in the
design of block and stream ciphers. We consider two possible ways
of combining these operations. The first method is the situation where
an S-box is applied to the X-OR of two outputs of the application of
the S-box to two input bit strings. The second method considers the
situation where an S-box is combined with addition modulo 22k . In
both cases, we obtain complete expressions for the Walsh transform.

II. PRELIMINARIES

Let IF2 = GF (2) be the finite field of two elements. We consider
the domain of an n-variable Boolean function to be the vector space
(IFn

2 ;�) over IF2, where� is used to denote the addition operator over
both IF2 and the vector space IFn

2 . The inner product of two vectors
u; v 2 IFn

2 will be denoted by hu; vi. We will denote the weight of a
binary string x by (x).

An n-variable Boolean function is a map f : IFn
2 ! IF2. The Walsh

transform of an n-variable Boolean function f is an integer-valued
functionWf : IFn

2 ! [�2n; 2n] defined by (see [4, p. 414])

Wf (u) =
w2IF

(�1)f(w)�hu;wi: (1)

The Walsh transform is called the spectrum of f . The inverse Walsh
transform is given by

(�1)f(u) =
1

2n
w2IF

Wf (w)(�1)hu;wi: (2)

An (n;m) S-box (or vectorial function) is a map g : f0; 1gn !
f0; 1gm. Let g : f0; 1gn ! f0; 1gm be an S-box and f : f0; 1gm !
f0; 1g be an m-variable Boolean function. The composition of f and
g, denoted by f � g, is an n-variable Boolean function defined by
(f � g)(x) = f(g(x)).

Linear cryptanalysis [5] is a very powerful cryptanalytic method for
block ciphers. The study of correlation between linear combinations of
input and output of an S-box is therefore very important. If two func-
tions are highly correlated, then they are “close” to each other and can
be approximated one for the other. The correlation between two n-vari-
able Boolean functions f and g is defined in the following manner (see,
for example, [8]):

c(f; g) = 2�n

x2IF

(�1)f(x)�g(x): (3)

We have the following relationship: c(f; g) = 2�nWf�g(0) and
c(f; lv) = 2�nWf(v), where lv is the linear function defined as
lv(x) = hv; xi for x 2 IFn

2 . Thus, correlation between a Boolean
function and a linear function can be conveniently studied using Walsh
transform analysis.

III. CONVOLUTION AND COMPOSITION THEOREMS FOR S-BOXES

The convolution for two n-variable Boolean functions is well known
(see, for example, [1]).

Theorem 1 (Convolution Theorem): Let f and g be n-variable
Boolean functions and h(x) = g(x) � f(x). Then

Wh(u) =
1

2n
v2IF

Wg(v)Wf(v � u): (4)

We next prove a generalization of the Convolution Theorem.

Theorem 2 (Generalized Convolution Theorem): Let g1; . . . ; gk be
n-variable Boolean functions and h(x) = g1(x)� � � � � gk(x). Then
for u 2 IFn

2

Wh(u) =
1

2s
v2IF

Wg (u� uk�1)Wg (uk�1 � uk�2)

� � �Wg (u2 � u1)Wg (u1)

=
1

2s
v2IF

k

i=1

Wg (ui � ui�1)

where s=n(k � 1); v=(u1; . . . ; uk�1); uk=u; and u0=(0; . . . ; 0)
with each ui 2 IFn

2 .
Proof: We prove Theorem 2 by induction on k. For k = 2, the

result follows from the Convolution Theorem. Assume that result holds
for (k� 1) � 2. We now apply the Convolution Theorem on the func-
tions gk(x) and f(x) = g1(x)� � � � � gk�1(x). This gives

Wh(u) =
1

2n
u 2IF

Wf (uk�1)Wg (u� uk�1)

=
1

2n
u 2IF

Wf (uk�1)Wg (uk � uk�1):

Now we invoke the induction hypothesis for (k� 1) on the function f
to get

Wh(u) =
1

2n
u 2IF

Wg (uk � uk�1)

�
1

2n(k�2)
(u ;...;u )

k�1

i=1

Wg (ui � ui�1)

=
1

2s
v2IF

k

i=1

Wg (ui � ui�1):

This proves the result.

Now we provide the Walsh transform of composition of an S-box
and a Boolean function. A similar result is stated in [1] in terms of
correlation matrices.

Theorem 3 (Composition Theorem): Let g : f0; 1gn ! f0; 1gm

and f : f0; 1gm ! f0; 1g. Then for any w 2 IFn
2

W(f�g)(w) =
1

2m
v2IF

Wf (v)W(l �g)(w)

where (lv � g)(x) = hv; g(x)i.
Proof: From the inverse Walsh transform (2) we know

(�1)f(x) =
1

2m
v2IF

Wf (v)(�1)hv;xi:
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Let y = g(x). Then

(�1)(f�g)(x) = (�1)f(g(x)) = (�1)f(y)

=
1

2m
v2IF

Wf (v)(�1)
hv;yi

=
1

2m
v2IF

Wf (v)(�1)
hv;g(x)i

=
1

2m
v2IF

Wf (v)(�1)
(l �g)(x)

:

So we have

Wf�g(w) =
x2IF

(�1)(f�g)(x)�hw;xi

=
1

2m
x2IF v2IF

Wf (v)(�1)
(l �g)(x)�hw;xi

=
1

2m
v2IF

Wf (v)
x2IF

(�1)(l �g)(x)�hw;xi

=
1

2m
v2IF

Wf (v)W(l �g)(w):

This proves the result.

IV. CORRELATION THEOREM

In this section, we prove themain correlation theorem. Let g1; . . . ; gt
be S-boxes, where for 1 � i � t; gi : IF

m +m
2 ! IFn2 . Let

f : IFn2 ! IF2 be a Boolean function, where n = n1+ � � �+nt. Let
m=m1+� � �+mt+1 and define a Boolean function h : IFm2 ! IF2 in
the following manner:

h(x1; . . . ; xt+1) = f(g1(x1; x2); g2(x2; x3); . . . ; gt(xt; xt+1))
(5)

where xi 2 IFm2 for 1 � i � t + 1. Our task in this section is to
compute Wh(u) for u 2 IFm2 . In Theorem 4 (see later) we show that
Wh(w) is given by the following expression:

Wh(w) =
2m +m

2n+m
v2IF

Wf (v)

�

u2IF

t

i=1

W(l �g )(wt;i � wi�1;i; wi;i+1)

where v = (v1; . . . ; vt) with vi 2 IFn2 ;M = m � m1 � mt+1;

w=wt=(wt;1; . . . ; wt;t+1)withwt;i2IF
m
2 ; u=(w1;2; . . . ; wt�1;t)

and for 1� i� t; wi�1;i2 IFm2 with w0;1=(0; . . . ; 0).
This result is obtained through a series of simplifications. Let g0 :

IFm2 ! IFn2 be an S-box defined by

g
0(x1; . . . ; xt+1) = (g1(x1; x2); . . . ; gt(xt; xt+1)): (6)

Using the Composition Theorem we have the following result.

Proposition 1: Let h be defined by (5). Then

Wh(u) =
1

2n
v2IF

Wf (v)W(l �g )(u):

For v 2 IFn2 , write v = (v1; . . . ; vt), where vi 2 IFn2 . We can write

(lv � g
0)(x1; . . . ; xt+1) = lv(g

0(x1; . . . ; xt+1))

= lv((g1(x1; x2); . . . ; gt(xt; xt+1))

= lv (g1(x1; x2))� � � � � lv (gt(xt; xt+1))

= (lv � g1) (x1; x2)� � � � � (lv � gt) (xt; xt+1): (7)

For 1 � i � t, we define

h
0
i(x1; . . . ; xt+1) = (lv � gi)(xi; xi+1): (8)

Given bit strings u1; . . . ; uk we define �(u1; . . . ; uk) = 1 if each
u1; . . . ; uk are all-zero bit strings; otherwise, �(u1; . . . ; uk) = 0.

The Walsh transform of h0i is given by the following proposition.

Proposition 2: Let h0i be defined by (8). Then

Wh (u) = 2M W(l �g )(ui; ui+1)�(!i)

where u = (u1; . . . ; ut+1); Mi = m � mi � mi+1, and !i =
(u1; . . . ; ui�1; ui+2; . . . ; ut+1).

Proof: We compute as follows:

Wh (u)=
x2IF

(�1)h (x)�hu;xi

=
x2IF

(�1)l (g (x ;x ))�h(u ;...;u );(x ;...;x )i

=

y 2IF

(�1)h! ;y i

(x ;x )2IF

(�1)l (g (x ;x ))�h(u ;u );(x ;x )i

=W(l �g )(ui; ui+1)

y 2IF

(�1)h! ;y i

=2M W(l �g )(ui; ui+1)�(!i)

where yi = (x1; . . . ; xi�1; xi+2; . . . ; xt+1). The last statement fol-
lows from the fact that

z2IF

(�1)hw;zi = 2r�(w):

This completes the proof.

Now we obtain the Walsh transform of (lv � g0).

Lemma 1: Let g0 be defined as in (6). Then

W(l �g )(w)=
2m +m

2m
u2IF

t

i=1

W(l �g )(wt;i�wi�1;i;wi;i+1)

where M = m �m1 �mt+1; w = wt = (wt;1; . . . ; wt;t+1) with
wt;i2 IFm2 ; u=(w1;2; . . . ; wt�1;t); and for 1� i� t; wi�1;i2 IFm2
with w0;1 = (0; . . . ; 0).

Proof: Using (7), (8), and the Generalized Convolution Theorem,
we have

W(l �g )(wt) =
1

2m(t�1)
(w ;...;w )

t

i=1

Wh (wi � wi�1)

where wi 2 IFm2 for 0 � i � t � 1 and w0 = (0; . . . ; 0). For
0 � i � t, write wi = (wi;1; . . . ; wi;t+1) with wi;j 2 IF

m

2 . Set
�i;j = wi;j � wi�1;j and �i = (�i;1; . . . ; �i;t+1) = wi � wi�1.
Set �ti = (�i;1; . . . ; �i;i�1; �i;i+2; . . . ; �i;t+1). Using Proposi-

tion 2, we obtain

W(l �g )(wt) =
1

2m(t�1)
(w ;...;w )

t

i=1

Wh (�i)

=
1

2m(t�1)
(w ;...;w )

t

i=1

2M W(l �g )(�i;i; �i;i+1)� �
t
i

=
2m +m

2m
(w ;...;w )

t

i=1

W(l �g )(�i;i; �i;i+1)� �
t
i :
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The proof now follows from the following claim.

Claim: For t � 2, we have

(w ;...;w )

t

i=1

W(l �g )(�i;i; �i;i+1)� �
t
i

=
(w ;...;w )

t

i=1

W(l �g )(wt;i � wi�1;i; wi;i+1): (9)

Proof: The claim is proved by induction on t � 2. Let Lt

(resp., Rt) be the left (resp., right) side of (9).
Base: Case t = 2. In this case, the left side becomes

L2 =
w

W(l �g )(�1;1; �1;2)� �
2
1 W(l �g )(�2;2; �2;3)�(�

2
2):

Note that �21=�1;3=w1;3�w0;3=w1;3 and �22=�2;1=w2;1�w1;1.
Substituting the value of �’s, we write the preceding expression as

L2 =
w w w

W(l �g )(w1;1; w1;2)

�W(l �g )(w2;2 � w1;2; w2;3 � w1;3)

� �(w1;3)�(w2;1 � w1;1)

=
w w

W(l �g )(w1;1; w1;2)

�W(l �g )(w2;2 � w1;2; w2;3)�(w2;1 � w1;1)

=
w w

W(l �g )(w1;1; w1;2)

�W(l �g )(w2;2 � w1;2; w2;3)�(w2;1 � w1;1)

=
w

W(l �g )(w2;1; w1;2)W(l �g )(w2;2 � w1;2; w2;3)

which is equal toR2, i.e., the right side of the claim for t = 2.
Induction hypothesis: Assume that the claim is true for t� 1.
Induction step: We now prove the result for t. We will use the in-

duction hypothesis in this case. The main difficulty arises from the fact
that the length of thew’s and the �’s increases by one. We have to take
care of this while applying the induction hypothesis. First note that for
1 � i � t� 1, we have �(�ti ) = �(�t�1i )�(�i;t+1). Now we compute

Lt =
(w ;...;w )

t�1

i=1

W(l �g )(�i;i; �i;i+1)� �
t
i

�
w

W(l �g )(�t;t; �t;t+1)� �
t
t

=
(w ;...;w )

t�1

i=1

W(l �g )(�i;i; �i;i+1)� �
t�1
i

�
(w ;...;w )

�(�1;t+1) . . . �(�t�2;t+1)

�
w

W(l �g )(�t;t; �t;t+1)�(�
t
t)

=
(w ;...;w )

t�1

i=1

W(l �g )(�i;i; �i;i+1)�(�
t�1
i )

�
(w ;...;w )

�(�t;1)�(�t;2) . . . �(�t;t�1)

�
(w ;...;w ;w )

W(l �g )(�t;t; �t;t+1)�(�1;t+1) . . . �(�t�2;t+1):

Note that �1;t+1 = w1;t+1 � w0;t+1 = w1;t+1 and for
i > 1; �i;t+1 = wi;t+1 � wi�1;t+1. Thus, the expression within the

last sum evaluates toW(l �g )(�t;t; �t;t+1) only under the condition
w1;t+1 = � � � = wt�2;t+1 = (0; . . . ; 0). Also, the expression within
the second sum evaluates to 1 only under the condition wt;i = wt�1;i

for 1 � i � t � 1. We invoke the induction hypothesis on the first
sum to obtain

Lt =
(w ;...;w )

t�1

i=1

W(l �g )(wt�1;i � wi�1;i; wi;i+1)

�
w

W(l �g )(�t;t; �t;t+1)

= Rt:

This completes the proof of the claim and the lemma.

Finally, using Proposition 1 and Lemma 1we obtain theWalsh trans-
form of Wh.

Theorem 4: Let h be defined as in (5). Then

Wh(w) =
2m +m

2n+m
v2IF

Wf (v)

�

u2IF

t

i=1

W(l �g )(wt;i � wi�1;i;wi;i+1) (10)

where v = (v1; . . . ; vt) with vi 2 IFn
2 ;M =m�m1 � mt+1; w =

wt=(wt;1; . . . ; wt;t+1) with wt;i2IFm
2 ; u=(w1;2; . . . ; wt�1;t) and

for 1� i� t; wi�1;i2 IFm
2 with w0;1=(0; . . . ; 0).

V. NYBERG’S CORRELATION THEOREMS

In [8], Nyberg stated three correlation theorems—Theorems 3, 4,
and 5—which have important applications to cryptanalysis. Of these,
Theorem 4 has been proved in [7] and the other two theorems are
proved in [8]. In this section, we show that Nyberg’s correlation the-
orems—Theorem 3 and 5 of [8]—can be obtained as special cases of
Theorem 4. First, we rewrite Theorem 4 for t = 2.

Theorem 5: Let h be defined as in (5) and t = 2. Then

Wh(w2;1; w2;2; w2;3)

=
2m +m

2m+n
v2IF

Wf (v)

�

w 2IF

W(l �g )(w2;1; w1;2)

�W(l �g )(w2;2 � w1;2; w2;3) (11)

where v = (v1; v2) with vi 2 IFn
2 .

A special case is obtained when f is the linear function

f(a1; . . . ; an) = a1 � � � � � an:

In this case, Wf (1; . . . ; 1) = 2n and Wf (v) = 0 for v 2 IFn
2 n

f(1; . . . ; 1)g. Also v1=(1; . . . ; 1)2 IFn
2 and v2=(1; . . . ; 1)2 IFn

2 .
We denote by 1kkk the all-one vector of length k. When the value of k is
clear from the context, we will simply write 1. We have the following
corollary to Theorem 5.

Corollary 1: Let h(x1; x2; x3) = h1nnn; (ggg1(xxx1; xxx222); ggg222(xxx222; xxx333))i.
Then

Wh(w2;1; w2;2; w2;3)=
2m +m

2m
w 2IF

W(l �g )(w2;1; w1;2)

�W(l �g )(w2;2 � w1;2; w2;3):

Substituting n1 = n2 = 1 we obtain

h(x1; x2; x3) = g1(x1; x2)� g2(x2; x3):
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Further, substituting w2;2 = 0 in Corollary 1 we obtain the following
result of Nyberg [8] (stated in terms of Walsh transform).

Theorem 6 (Nyberg [8, Theorem 5]): Let

h(x1; x2; x3) = g1(x1; x2)� g2(x2; x3):

Then

Wh(w2;1;0; w2;3)

=
2m +m

2m
w 2IF

Wg (w2;1; w1;2)Wg (w1;2; w2;3):

Now we turn to Theorem 3 of Nyberg [8]. For this we make the fol-
lowing substitution in the definition of h : m2= 0; g= g2; g1(x) = x

and hence, n1 = m1. Thus, h is now of the form h(x1; x3) =
f(x1; g(x3)). In this situation, we have

w 2IF

W(l �g )(w2;1;w1;2)W(l �g )(w2;2 � w1;2; w2;3)

= W(l �g )(w2;1)W(l �g )(w2;3):

Since g1(x)=x, we have (lv �g1)(x)= lv (g1(x))= lv (x)=hv1; xi
and hence,W(l �g )(w2;1) = 2m �(v1�w2;1) = 2n �(v1�w2;1),
since m1 = n1. Thus, W(l �g )(w2;1) = 2n if v1 = w2;1 and is
equal to 0 otherwise. Let the right-hand side of (11) beA. In this case,
A becomes

A =
1

2n +n
v2IF

Wf (v)

w 2IF

W(l �g )(w2;1; w1;2)

�W(l �g )(w2;2 � w1;2; w2;3)

=
1

2n +n
(v ;v )2IF

Wf (v1; v2)W(l �g )(w2;1)W(l �g )(w2;3)

=
1

2n
v 2IF

Wf (w2;1; v2)W(l �g)(w2;3):

Now we have the following result of Nyberg [8] again stated in terms
of Walsh transform.

Theorem 7 (Nyberg [8, Theorem 3]): Let

h(x1; x3) = f(x1; g(x3)):

Then

Wh(w2;1; w2;3) =
1

2n
v 2IF

Wf (w2;1; v2)W(l �g)(w2;3):

VI. APPLICATIONS

In this section, we consider two other applications of Theorem 4.
These are based on operations which typically occur in design of sym-
metric ciphers, namely S-box lookup, addition modulo 22k , and the
X-OR operation. We consider two possible ways of combining these
operations and obtain the Walsh transform in each case.

A. Brick Layering

In this subsection, we consider a map of the form

h(x; y; z) = g(g(x; y)� g(y; z)): (12)

Fig. 1 gives a diagrammatic view of the map. The term brick lay-
ering was used in [1] to denote a map which consists of several par-
allel applications of different S-boxes on disjoint subsets of the inputs
which also form a partition of the input. In our case the X-OR and the
second application of g is used to “glue” the outputs of the first two
applications of g. In block cipher applications, g is usually a 2k-bit
to 2k-bit S-box possibly the inverse function over GF (22k). Hence,

Fig. 1. Brick layering transformation.

we assume that g is an 2k-bit to 2k-bit map and x; y; and z are all
k-bit strings. Let g1; . . . ; g2k be the component functions of g. Let
�i(x; y; z) = gi(x; y) � gi(y; z) and � = (�1; . . . ; �2k). Applying
Corollary 1 with n1 = n2 = 1 we obtain

W� (�1; �2; �3) =
1

2k
u2IF

Wg (u� �2; �3)Wg (u; �1): (13)

Let h1; . . . ; h2k be the component functions of h. We have

hi(x; y; z) = gi(�1(x; y; z); . . . ; �2k(x; y; z)):

Now applying the Composition Theorem, for (
1; 
2; 
3) 2 f0; 1g3k ,
we get

Wh (
1; 
2; 
3) =
1

22k
v2IF

Wg (v)W(l ��)(
1; 
2; 
3): (14)

The next step is to compute the Walsh transform of (lv � �). Let v be
of weight r (i.e., (v) = r) with the bits in the j1; . . . ; jr th positions
to be 1 and all others to be 0. Then

(lv � �)(x; y; z) = �1(x; y; z)� � � � � �r(x; y; z)

where �i = �j for 1 � i � r. Further, let s = 3k( (v) � 1);
w = (u1; . . . ; ur�1), with each ui 2 IF3k

2 ; u0 = (0; . . . ; 0) 2 IF3k
2

and ur = (
1; 
2; 
3). Now applying the Generalized Convolution
Theorem, we have

W(l ��)(
1; 
2; 
3) =
1

2s
w2IF

r

i=1

W� (ui � ui�1)

=
1

2s
w2IF

r

i=1

W� (ui � ui�1):

Substituting in (14) and using (13) we obtain the Walsh transform for
any component function of the map defined in (12).

Theorem 8: Let h be an S-box defined as in (12) and let h1; . . . ; h2k
be its component functions. Then

Wh (
1; 
2; 
3)

=
1

22k
v2IF

Wg (v)
1

2s+kr
(u ;...;u )

r

i=1 w2IF

Wg

(w � ui;2 � ui�1;2; ui;3 � ui�1;3)

�Wg (w;ui;1 � ui�1;1)

where ui = (ui;1; ui;2; ui;3) with ui;j 2 IFk
2 and for each v 2 IF2k

2 ;

r = (v); ur = (
1; 
2; 
3).

Theorem 8 provides the complete expression for theWalsh transform
of any hi.
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Fig. 2. Substitute and add.

B. Substitute-and-Add

In this subsection, we consider the map obtained by alternate appli-
cation of an S-box and sum modulo 22k . More precisely, we consider
the following map:

h(x; y) = g(x) g(y): (15)

The map is shown diagrammatically in Fig. 2. We obtain the complete
Walsh transform of each component function of h. As before, we con-
sider g to be an 2k-bit to 2k-bit S-box whose component functions are
g1; . . . ; g2k .

For the sake of convenience, we will denote �(x; y) = x y. The
map � is conveniently described by separating the carry part. Suppose
(a1; . . . ; a2k) and (b1; . . . ; b2k) are the inputs to . Then, the carry in
the ith position is given by the function c(a1; . . . ; ai; b1; . . . ; bi) and
�i = ai � bi� ci. The Walsh transform of the carry function has been
described in [11]. Let h1; . . . ; h2k be the component functions of h.
We can now write

hi(x; y) = gi(x)� gi(y)� ci(g1(x); . . . ; gi(x); g1(y); . . . ; gi(y)):

Let

fi(x; y) = ci(g1(x); . . . ; gi(x); g1(y); . . . ; gi(y)))

= ci(�i(x; y))

where �i : f0; 1g4k ! f0; 1g2i is defined as

�i(x; y) = (g1(x); . . . ; gi(x); g1(y); . . . ; gi(y)):

Applying the Composition Theorem for (u; v) 2 f0; 1g2k, we have

Wf (u; v) =
1

22i
w2IF

Wc (w)W(l �� )(u; v):

Let �i(x; y)=gi(x)�gi(y) and, hence,W� (u; v)=Wg (u)Wg (v).
We have hi(x; y) = �i(x; y)� fi(x; y). Using the Convolution The-
orem we have

Wh (u; v) =
1

24k
(u ;v )2IF

W� (u1; v1)

�Wf (u� u1; v � v1)

=
1

24k
(u ;v )2IF

Wg (u1)Wg (v1)

�Wf (u� u1; v � v1)

=
1

24k+2i
(u ;v )2IF

Wg (u1)Wg (v1)

�

w2IF

Wc (w)W(l �� )(u� u1; v � v1):

Thus we get the following result.

Theorem 9: Let h be defined as in (15) and h1; . . . ; h2k be its com-
ponent functions. Then

Wh (u; v) =
1

24k+2i
(u ;v )2IF

Wg (u1)Wg (v1)

�

w2IF

Wc (w)W(l �� )(u� u1; v � v1)

where �i(x; y) = (g1(x); . . . ; gi(x); g1(y); . . . ; gi(y)).

The complete expression for Wh (u; v) is obtained by computing
the Walsh transform of (lw ��i). This requires one more invocation of
the Convolution Theorem and hence involves another summation.

VII. CONCLUSION

We have proved a result which provides the Walsh transform of a
general functional form. As special cases, we obtain two of Nyberg’s
correlation theorems proved in [8]. We consider two applications of
our results. These applications combine S-box lookup with addition
modulo 22k and the X-OR operation. In each case, we obtain com-
plete expressions for the Walsh transform. A possible future research
problem is to apply our techniques to actual block ciphers.
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