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Abstract

Linear feedback shift registers (LFSR) are important building blocks in stream cipher cry ptosys-
tems, To be cryptographically secure, the connection polynomials of the LESRs need to be primitive
over GF(2). Moreover, the polynomials should have high weight and they should not have sparse
multiples at low or moderate degree. Here we provide results on r-nomial multiples of primitive
polynomials and their products. We present results for counting r-nomial multiples and also analyse
the statistical distribution of their degrees. The results in this paper helps in deciding what kind of
primitive polynomial should be chosen and which should be discarded in terms of cryptographic

applications. Further the results involve important theoretical identities in terms of r-nomial multiples
which were not known earlier.
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1. Introduction

Lincar feedback shift register (LESR) is one of the most imponant building blocks in
stream ciphers. In almost all the well-known stream cipher designs, LESRS play a very im-
portant role. The connection polynomials of the LESRs are usually polynomials over GF(2).
The relationship between a polynomial and the connection pattern of the corresponding
LFSRE is explained in [3,2,16]. 1t is important o note that wwards resisting eryplanalylic
attacks, the LFSRs should be designed keeping the following points in mind [15,1].

(1) The connection polynomial must be primitive over GF(2).

(2) The weight of the connection polynomial must be high.

(3) There should not be any sparse multiple of moderate degree for the connection
polynomial.

Note that throughout this paper we only consider polynomials over GF(2). We always
assume o =2 for a pnmitive polynomial of degree d, 12, (x 4 1) 15 not considered as a
primitive polynomial in this paper. [Ls Known that for a primitive polynomial f{x)of degree
d and any multiple g(x) of fix), the recurrence relation {of the LFSR whose connection
polynomial is f{x)) induced by f(x) will also be satisfied by g(x). In particular if g(x) is
of moderate degree and with low weight, then one can very well exploit the attack proposed
in [15] by choosing the recwrrence relation induced by g{x). Whatever be the weight of the
primitive polynomial fix) (it does not matter whether it is of high or low weight as we
have a low weight multiple), it is possible 1o attack the system using gix). Note that we
are interested in sparse multiples gix) with constant term 1, ie., g{0) = 1. The reason is
if g{0) = 0, then g{x) can be written as x'h(x). This h(x) satisfies the same recurrence
relation as gix) and also of lower degree. With this context we analyse the sparse multiples
(with constant term 1) of primitive polynomials. Similarly, it is also important in some
silwations o find out sparse multiples of product of primitive polynomials [1]. We also
analyse that case in detail.

The main issue is, one should not use a primitive polynomial which by itself is of low
weight or which has a sparse multiple at lower degree. We discuss this in Section 3. In this
direction, we identify aclass of primitive polynomials having sparse muliples at a very low
degree. If fix) is a primitive r-nomial of degree d, then there exists primitive polynomial
of degree d with a r-nomial multiple of degree sd where ged(s, 2 — 1) = 1. Using this we
show that there are trinomial multiples of degree sd (which is low when s is small) for a
large class of primitive polynomials of degree d. These primitive polynomials should not
be used in stream cipher systems.

Given a primitive polynomial f(x) of degree o, we will present a recurrence formula
for the number of Fnomial multiples (with constant term 1) of f{x) having degree at most
24 _ 2. We denote this number by | ¢ and it can be seen that

-2 1=l el
iea )= Nasm1 — =127 — 1+ 1)Ng -2
W = .
’ t—1
with mital conditions Ny 2 = Ny = (0L Section 4 discusses this resalt and related ssoes.

Note that the count in more general setting has been discussed in [9]. Further the count
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can easily be achieved from the weight enumerator of Hamming code [13, p. 129]. Sull we
discuss these results in our framework to motivate the resulls in the later sections.

In Section 5 we consider the f-nomial multiples of product of primitive polynomials.
Consider £ many prmitive polynomials fiix), faix), ..., Sfieix) over GF(2) having degrees
dy,da, oo, dy such thatdy, da, .., dy are pairwise coprime. We analyse the multiples of
Srixyfalxd -« fe(x). It is shown that the number of r-nomial multiples with degree =
Qh 1) Q%) of

&
Filx) falx) -« filx) s at least ((r — D] Ny -

r=I

In fact the section discusse s more generalized resulis in this aspect. Consider k many poly-

nomials fiix), f2ix), ..., Sfelx) (not needed to be primitive) over GF(2) having degrees
di.dz, ..., dy and exponents ey, €2, .. ., e respectively, with the following condinons:
(1) ey.ex. ..., £) are pairwise coprime,

2) iD= (== f(N=1,

(3) ged( frlx), folx)) = 1for 1<r 5 5 <k,
(4) number of Fnomial multiples (with degree < e ) of fox)isn fote

Then the number of +nomial multiples with degree < £)¢3 - - - g of the product polynomial
Frx) fo(x) -« folx) is atleast ((t — DO ~ngy gy oo ongp s

Though in Section 3 we show that a class of primitive polynomials have sparse mul-
tiples in lower degree, this is, however, not the general trend. In Section 6 we analyse
this case in detail. It is identified that the distribution of the degrees of -nomial multiples
(having constant term 1) of a degree d primitive polynomial f{x) is very close with the
distribution of the maximum of the tuples having size (r — 1) in the range 1 to 29 — 2.
Some experimental support helps in observing this initially. However, we substantiate this
claim using theoretical resuls afterwards. The results involve important identities in terms
of degrees and square of degrees of r-nomial multiples which were not known earlier. As
example, take any primitive polynomial f{x) of degree «. Consider that the degree of the
trinomial multiples (having degree <29 —2) of fx)ared|.da. ..., dp, . Then we show
that % d2 = (2/3)(2¢ — 1)(3- 2972 — )Ny .

Similar kind of results have been discussed for multiples of products of primitive poly-
nomials in Section 7. In this case the analysis becomes more complicated. In course of
presenting the statistical trend of the degrees of r-nomial multiples of product polynomials
we gel the following two important identities.

(1) Consuder apolynomial f{x) over GF(2) with ¢xponent e such that 14 x does not divide
fix). Then the average degree of t-nomial multiples (with degree = ¢ and constant lerm
Lyof fis [(r — 1)/r]e. This shows that generally the multiples occur at higher degrees.

(2) Take fmany primitive polynomals fiixy, f20x), ..., Jelx) over GF(2) having degrees
dyida, ooy dy. (pairwise coprime) and exponents e, = 2% — 1, for | <r <k. Then sum
of squares of degrees of rinomial multiples of f{x) = fi{x) faix) - -+ frix) withdegree
< ¢ = g|ez--- e 18 fixed and equal 1o

‘“-"_131—| k =1 _ (e — 1)e(2Ze — 1)
6 El'[‘ ik 12
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1 k=l *""]-_[e,:—.-ir 2 -1
oz 37 > {—1}"( I ef) 32 ?

2 r=1 A, Cleg, e, ....ex) e e A, =1

where [A,| =r.

Though the results of Section 3 show that the designer should be cautious in selecting a
primitive polynomial, the average case analysis demonstrates that it is generally not expeciled
Lo have a sparse multiple at a lower degree. Roughly speaking, given a randomly chosen
primitive polynomial (or a polynomial which is product of mndomly chosen primitive
polynomials of degrees mutually coprime) of degree 4, it is expected that the minimum
degree +nomial multiple will be available at a degree around 24/0-1,

The definitions and basic concepts are available in Section 2. Section 8 concludes the
paper.

2. Preliminaries

In this section we make precise certain terms and also present some basic resuls. Most
of these concepts are taken from [11,13]. We will denote the field of p elements (pis prime)
by GF{p) and the extension field of dimension d over GF( p) by GF{ p). In this paper base
field is GF(2) if not otherwise stated.

Definition 1. For every prime p and positive integer o there is exactly one finite field (up
to isomorphism) of order p?. This field GF{p?) is usually referred to as the Galois Field
of order p?, and p is called the chamctenstic of GF(p¥). The nonzero elements of GF{p?)
forms a cyclic group under multiplication. So it will have a generator  which will genemie
all the elements of GF{ p ) except zero and «P—1 = 1.These generators are called primmtive
elements of GF{p¥).

For example if p =2 andd =4, GF(2Y) = {0, ", o' o, ..., T

Definition 2. A polynomial fi{x) € GF(p?)[x] is said o be irreducible over GF(p?) if
Fix) has positive degree and fx) = glx)hix) with g(x), A(x) € {iF{p"']l[.rl tmplies that
either gi{x) or A(x) is a constant polynomial.

For example x* 4+ x 4 1 is an irreducible polynomial of degree 4 over GF(2) but x* +
x4+ 12 + 1is not irreducible because ¥ + P + 12+ 1= {.1“1" + x4+ 10x 4+ 1)

Definition 3. An ireducible polynomial of degree o is called primitive polynomial if its
roots are primitive elements in the field GF(p*) . It can be proved that there are ¢ p? — 1)/d
number of primitive polynomials, where ¢ is Euler phi-function.

Forexample if p = 2andd = 4, {2 — 1)/4 = 2, i.e., there exists exactly two primitive
polynomials of degree 4 over GF(2).
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Definition 4. Let fix) be a polynomial of degree d = 1 with £{() # 0. Then there exists a
least positive inleger ¢ ép"r — 1 such that fix) divides x* — 1, ie.,x° = 1 mod fi{x). This
e is called exponentforder of the polynomial f{x) and we say the polynomial f{x) belongs
Lo exponent &.

It can be proved that if f(x) is primitive polynomial of degree d then e = 29 — 1. Thus
for a primitive polynomial x* + x + 1, we have ¢ = 15. However, the result is not similar
for imeducible polynomials. As example, the irreducible polynomial x* + 1% 427+ x4 1
belongs 1o exponent 5, sinee = lmod {.r4 +ri 4+ 4+ 1).

Definition 5. A polynomial with ¢ nonzero terms, one of them being the constant term is
called r-nomial, or in other words 8 polynomial of weight ¢ with nonzero constant term.

As example, x* 4+ x® 4 1 is 3-nomial (trinomial), and x* 4+ x® 4+ x* 4 1 is a 4-nomial,
where a # b # ¢ € N. For cryptographic purpose, by a polynomial with sparse weight
generally means ¢ < 10 [15, p. 160].

3. On r-nomial multiples at lower degrees

Given a primitive polynomial it is important 1o discuss the issues on r-nomial multiples
when 1 is low, as example, 3<r < 10. If one can find a Fnomial multiple of a primitive
polynomial {may be of high weight), where 1 is low, then the system may et suscepti-
ble to cryptanalytic attacks. In this direction we provide the following result which is a
generalization of [7, Theorem 7).

Theorem 1. Let there exists a primitive t-nomial f{x) of degree d. Then there exists a
degree d primitive polvnomial g(x) which divides some t-nomial of degree sd (5 odd) when

ged(s, 24 — 1) = 1. In fact the primitive polynomial g(x) = ged{ f(x*), X2 ).

Proof. Let fix) be a primitive r-nomial of degree d and # be a root of it. Cleady x is
a primitive element of GF(2%). Let s be an odd integer such that ged(s,2¢ — 1) = 1.
Let fi be the sth root of , ie., ff = x As ged(s, 27 — 1) = 1, there exists 5* such that
ged(s'.29 — 1) = 1 and 55" = 1 mod29 — 1. Now fi* = « gives ﬁ“""l mod (1) _ *, ik,
f =" Since ged(s’, 2% — 1) = 1, ff is a primitive element of GE(24).

Note that, minimal polynomial g{x) of § is primitive polynomial and is degree is d.
Now, f(f") = flo) = 0 ie., fis arootof f(x*). On the other hand g(x) is the minimal
polynomial of i, Hence g(x) divides f{x"). It isclear to see that f{x*) is r-nomial and its
degree is sd. Hence one can produce a primitive polynomial g{x) of degree o which divides
a r-nomial of degree sd.

There is only one element f satisfying f = #* in the finite field GF(29) with s¢' =
1 mod 24 — 1. Therefore ged( f(x*), P 1) must be a primitive polynomial of degree
d since ffis a primitive element in GF(29). O

Note that in the above theorem we have taken s odd as we are working over GF(2). If 5
is even, then we can write v = 275, where 5 is odd and replace s by 5| in Theorem 1.
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The importance of Theorem 1 is that there exists a lotof primitive polynomials of degree d
which have sparse multiple atalow degree making them susceptible to cryplanalyte attacks.
As example, consider a primitive trinomial of x7 4 x + 1. Also we have ged(3,27 — 1) = 1.
Now consider the trinomial x*' + x* + 1. Theorem 1 guarantees that there exists a primitive
polynomial of degree 7, which divides the trinomial ™' + * + 1. In fact, the primitive
polynomial is x7 + x® + x* 4+ x + 1, which is also of high weight. Hence when we are
choosing a primitive polynomial of some degree o, even if we go for a high weight, it is no
way guaranteed that it will not have a sparse multiple of low degree sd.

Let us consider the case for primitive polynomials with degree d = 23, Note that
ged(3,22 — 1) = 1. Now look into the weight distribution of degree 23 polynomials
[21]. There are 4 primitive trinomials. Hence there must be 4 primitive polynomials of
degree 23 which divide trinomials of degree 3 - 23 = 69, Similady, there are 292 primitive
S-nomials of degree 23, Thus, there are 292 primitive polynomials of degree 23 which di-
vides S-nomials of degree 3 - 23 = 69, Once again, there are 4532 primitive 7-nomials of
degree 23, This gives that, there are 4532 primitive polynomials of degree 23 which divides
F-nomials of degree 3 - 23 = 69,

This has different implic ations 1o the attackers and designers. For the existing systems, the
attackers may ry to find out t-nomial (small 1) moderate degree multiples of the primitive
polynomials. On the other hand, the designers should not use the primitive polynomials
with sparse multiples. That is, given a degree d, the designer should find out the primitive
polynomials f{x)of low weight. Thenif ged(s, 2¢ — 1) = 1, for some small s, then compuie
gix) = ged( fix), P 1). Clearly from Theorem 1, gix) is a primitive polynomial of
degree d Now, this primitive polynomial gix) (even if of high weight) should not be used
in the system. Thus, using this idea, one can identify a large class of pamitve polynomials
of high weight which have sparse multiples at a moderate degree. These should not be
recommended in a cryplographic scheme.

Hence, one may choose a primitive polynomial f(x) of centain degree d of lower weight
and a smallnumber s satisfying ged(s, 2/—1) = 1. Thenacaleulation of ged( f (%), 2 ~1—
1} yields another primitive polynomial of degree o, may be of high weight. Sothe algorithm
to generate a database of primitive polynomials that should not be used is as follows.

(1) Selectsome small values of s such that gedi s, 24 _ 1) = 1 and select some small values
of t. The different values of s, + chosen will be dependent on user requinement.
(2) Foreach pair of (s, 1)
() Generate each of the primitive Fnomials of degree d, say fix).
(b) Compute the pomitive polynomial gix) = ged( f{x"), A‘l'\l_l — 1M
ic) Put gix) in adatabase Dy,

We can generate the complete list of polynomials over GF(2) of low weight ¢ (say 3 or 5)

and then check for prmitivity of each of these. This needs (’I'r:i

) primitivity esting and
may be executed for small ¢ Once a primitive polynomial fiix) of degree d is chosen for
application in some cryplosystem one should check whether it is in Dy IF it is there then
ong should not use that and try for a different one.

To give a practical example, consider degree d = 257, Note that ged (3,277 — 1) = 1.
We choose a primitive tinomial fix) = 27 4 x'2 4 1. Thus, ,,f'{.r}}l S L T
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Computing ged{ f{x"), 21 1) we geta primitive polynomial g(x) of degree 257 having
weight as large as 129, The polynomial

255 252

g{r}—r +r +.r + x° +.r:4"1+.r146+.r:45+x +r +.r‘
frH PR B0 PB PAB B Ty x-"’ + x—” + x-”
+r 211 +_r_lt]+_r3]}?-+_r2t].".t+_r1!]4+x"_’£]3+_r +_r +_r +.t’
+.t’ +x l+xl‘l]+rl}§}§+rl%+xllﬁ+xlﬁl +_r|m+x|73+xr.r4
+x ITl+_rth]+rlﬁ}§+_1lﬁ4+_1_llfﬂ+xlﬂ]+xlﬁﬂ+xlf}}§+r157+rlﬁs‘a
+T: +x +x +x +_rl43+_rl4‘l+_rl4l+_rl-1{]+xl.19+xl.13
+_rll.".\+xl.13+xlll +x|3!]+_rI1‘9+_1.I1"}+_rll4+_rlll:]+xll$ +x||ﬁ
+x||5+_rll4+rl|2+_rllt]+x|i]‘§+_rlt]1§+_rl!]?+xlﬂﬁ+_rIE].'!-+_rl!]I
+_r9}§+_rw+_r9ﬁ+_r95+_r94+_r91+x‘1]+x}§‘?+r}ﬁ+r3ﬁ
A ™ T T O T T T +x7’+A"f‘
+.r‘+r' +r" +r' +r' +r" +r"+r" +r +r
R T e e e e e oo
o e e L I I L e o

17

This g{x) hasa sparse muluple .f'{xl}l =" 4+ 2 4 1 and hence should not be used for
cryplogrmphic purpose.

4. Enumerating r-nomial multiples of a primitive polynomial: revisiting some hasic
resulis

Consider a primitive polynomial f{x) of degree & and its multiples up to degree 24 — 2.

This constructs a [2"r —1 9= 3] linear code, which 1s the well-known Hamming
code [13]. By N, we denote the number of code words of weight (number of 1's in the
code word) £ in the Hamming code [29 — 1,29 — d — 1, 3]. Now we present the following
technical result which connects Ny, and Ny .
Theorem 2. N5 =[(27 — 1)/1]Ny,,.
Proof. Consider a primitive polynomial f(x) of degree d over GF(2). Now, N7 | is the
number of multiples of weight 1 with degree <29 — 2 of f(x). Note that, for each of these
multiples, the constant term can be either 0 or 1. On the other hand, Ny ; is the number of
t-nomial multiples (thaving constant temm 1} with degree < <24 _ 2 of Fix).

‘&upp-nu,_f{.r}dwld,h 1 +.r‘1 x4ty it for 1< <fp < -or < fa <
fo1=2 — 2 Then #(1 + 2 4+ 22 4+ . 4 22 4 %1} is a multiple of weight 1 of
Fix) for 0= i< 29 — 2. Thus, there are {7"' — 1) number of dlhllnLLmulllpLh of weight
{having constant term either O or 1), corresponding to 1 + 1 4+ x2 4. .. 4 22 4 gl
Out of these (24 — 1) multiples, there are exactly f many multiples having constant term 1.
This happens with the original r-nomial and wheni +i, = 29 — 1, forr = 1, .. ., =L
Thus, corresponding o each of the Ny, number of multiples having constant term 1, we
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get (24 — 1)/t number of distinct multiples of weight t having constant term either O or 1.
Hence the resolt. O

Theorem 3.

2 f—1 gad
2 )—1 di—1 — ;=3l2% — 1+ 1INy ;2

N =

£—1
Proofl. From weight enumerator of Hamming code [13, p. 129], we get

] aJ
(:—I )_‘ g1 =25 =t + DN, 5
r—1 '

¥

a1 =

Hence, using Theorem 2 we obtain the result. O

1t should be noted that a much more general result related 1o counting -nomial multiples
over arbitrary fields has been considered and solved in a very elegant way in [9]. However,
the discussion in this section will help in understanding our results in the next sections.

Corollary 1.

Najw _ Nazi1

i 21—

Proof. Itiseasy wseethat Ny = N7, | which gives the result using Theorem 2. [

Corollary 2.
ol
L dp = —— (2" = DN

Proof. Consider a t-nomial multiple 1 + x 4+ £ 4+ . 4 22 4 =1 of a primitive
polynomial f(x) having degree d. Now, it is clear that x' (1 +x% 422 4. 4 xl-2 4201
gives 29 — 2, | many multiples of weight r of f{x) with constant term () for 1 <7 <29 —
2 —i;_1. Thus, each r-nomial multiple, of the form 14" + 22 4 .. 4 x%2 4 -1 counted
in Ny ; produces one t-nomial multiple (itself, with constant term 1) and 74,9 — iy many
multiples of weight ¢ with constant term 0. So, Z:‘L {2" — 1 —d)=1 :.‘_I, where d,. 1s
the degree of f-nomial multiples (with constant term 1), Then using Theorem 2 we get the
result. [

From the above theorem we get that the average degree of a t-nomial multiple is[(r — 1)/1]
{24 — )N, ; divided by Ny ., ie., [(r — 1)/](2¢ — 1). This gives that plenty of +nomial
multiples are available at higher degree, whereas there are very few at the lower part.
A more general result in this direction is presented in Theorem 7 in Section 7.
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5. Enumerating r-nomial multiples of product of primitive polynomials

We have already mentioned in the Introduction that it is important to find r-nomial mud-
tiples of product of primitive polynomials futher (o t-nomial muftiples of just a single
primitive polvnomial. Let us now brielly descnbe how the exact eryptanalysis works. For
definitions and more details about the cryptographic properties of the Boolean functions
mentioned below, see [1]. Consider F(X, ..., Xu) 18 an p-vanable, m-resilient Boolean
function used in combining the output sequences of n LESRs & having feedback polyno-
mials c;{x). The Walsh transform of the Boolean function F gives, Wi (3) £ 0 for some
with weight wr () = m + 1. This means that the Boolean function F and the linear func-
tion €B)_, 5 X; are correlated. Let ey, = --- = ¢0;_, = 1. Now consider the composite
LFSE § which produces the same sequence as the XOR of the sequences of the LFSRs
Siy.. ... 8, - The connection polynomial of the composite LESR will be ]:[j-":ll ci;(x).
Since Fand 65)_, oy X; are correlated, the attacks target to estimate the stream generated
from the composite LESR § having the connection polynomial fhix) = I—[j-':l o lx).

The attack heavily depends on sparse multiples of i (x). One such attack, presented in
[1], uses t-nomial multiples for + = 3, 4, 5. In nonlinear combiner model of stream cipher,
generally the degree of the primitive polynomials are taken to be coprime o each other [12,
p-224] w achieve better cryplographic properties. We here take care of that restriction also.

Note that in [ 1, p. 5811, it has been assumed that the approximate count of multiples of
primitive polynomials and multiples of products of primitive polvromials are close. However,
this is not always true. In fact, itis possible to find products of primitive polynomials having
same degree which do not have any r-nomial multiple for some r. The construction of BCH
code [13] uses this idea. On the other hand, if the degree of the primitive polynomials
are pairwise coprime, then we show that it is always guaranteed to get r-nomial muliples
of their product, provided each individual primitive polynomial has -nomial multiple(s).
Moreover, in Section 7 we will show that the approximate count of the r-nomial multiples
of a degree d primitive pofynomial and a degree d polvaomial which is product of some
primitive polynomials each having degree dy, ie., ¥ d, = d are close when the degree
dy s are mutually coprime (see Remark 2 in Section 7). So for this case the assumption of
[1, p. 381] 15 a good approximation. Let us now present the main theorem.

Theorem 4. Consider k many polvnomials fi{x), faix), ..., Julx) over GF(2) having
degrees dy,da, ..., dy and exponenty ey, ez, ..., ey respectively, with the following condi-
tons:

(1) &1, 8x,. 04, £ aie pairwise coprime .,

(2) AO) = f(0)=---= fi0) =1,

(3) ged(fo(x), filx)) = Lfor | <r # s <k,
(4) number of t-nomial multiples (with degree < e, ) af fr{x)sng ;.

Then the number of t-nomial multiples with degree < ez - - - e of the product polynomial
S1(x) f2(x) - filx) is at least (¢ = DD 'n gy an pyg--onge

Proof. Consider that any polynomial f,(x) has a r-nomial multiple x' + x>/ + ... +
xh-tr 4+ 1 of degree < e, Now we try 1o get a r-nomial multiple of fi{x) fa(x)--- fi(x)
having degree < e1e2 - - - €.
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Consider the set of equations Iy = 1 ,mode., r = 1,..., k. Since e, ..., £ ane
pairwise coprime, we will have a umique solution of Iy mod ejez - - - e by the Chinese
remainder theorem [B, po 53] Similarly, consider I; = i;, mode, for r = 1,..., k
and j = 1,..., t — 1. By the Chinese remainder theorem, we get a unigue solution of
fimodeyer---ep.

First we like to show that f(x) (forr = 1,..., k) divides x'' + 22 4. 4 2B 41
The exponent of f;(x) is e,. So we need to show that f; (x) divides xt ™der 4 plmode, |
oo glormode L] We have i, = Iymode, forr=1,.. ., P T I t — 1. Thus,
ghmede, 4 phmode, 4 phoimode 4 s nothing but x4+ x27 4 ... 4 x-1r 41,
Hence f,(x) (forr=1,..., k) divides x! 4 xfr ... 4 xh0 41,

Here we need to show that v 4+ % + ... 4+ %' 4+ 1 s indeed a t-nomial, 1.¢.,
I; # Imodey ---ep for j & L If1; = I, then it is easy to see that i, = iy, mod e,
and hence, ¥ 4+ x27 4+ ... 4 112 4 1 itself is not a +nomial for any r, which is a
contradiction.

Moreover, we have gedi f{x), filx)) = 1 forr # 5. Thus, fi(x) faix)--- filx) divides
a2 ot 41 Alsoitisclearthat degree of x7' +x2 4 42l 4 ] is less
than ejeax - - - ey

Corresponding o the r-nomial multiple of fi(x), ie., 2 4+ 220 4o f -0 L ] we
fix the elements in the orderiy 1, i3, ..., fr—1.1- Letus name them pyo, pag. ..., Pr=11-

Forr = 2, ...k, the case is as follows. Comresponding to the -nomial muliple xr +
x4l of f (x), we use any possible permutation of the elements iy 4, i1, ...,
filp 88 Ply, Pors--es Pi—1,r- Thus we will use any of the (r — 1)! permutations for each
f-nomial multiple of f{x) forr =2, ... k.

Now we use the Chinese remainder theorem to get [; having value < eje;---¢; from
Pjr's forr=1,..., k. Each p;, is less than e, Here py . pop.. .., Pr—1p (melated 1o
frix)) can be permuted in (r — 1)! ways and we consider the permutation related to all the
t-nomials except the first one.

Corresponding Lo k many r-nomial muliples (one each for fi{x), ..., felx)), weget (i(r—
131! many r-nomial multiples(degree < €5 - - - e ) of the product £ (x) f>(x)--- filx).
Using the Chinese remainder theorem, it is routine to check that all these ((r — 1))*~!
multiples are distincL.

Since, each fo(x) has n g, distinet +-nomial multiples of degree < ¢, the total number
of t-nomial multiples of the product fiix) fa(x)--- fi(x) having degree < ejez--- e 18
(r— I}E}k_ll'!‘r]_r.l'!‘r;_,_: R g

To accept the above count is a lower bound, one needs to show that the t-nomials generated
by this method are all distinet. Consider two collections of t-nomial multiples v+ 4 %7 4
ceed x%=tr 4 1 oand 2P 4 oxPe 4Pt Ll of fix)forr=1,..., k. There
exists at least one s in the range 1, ..., k such that % 4+ % 4 ..o 4 %1l ] and
P b 4 Pt 4 are distinet. Let us consider that one of the common multiples
form these two sets of rnomials are same, say x40 4 x%20 4.0 4 x40 4] (from the
sel x84 x4 4o p®ete 4 [y and o8 4 B 4o 4 2Bl 4 ] (from the set
P b gt 4 1).

Without loss of generality we consider 4, > A2, = -+ = A, and By, = B2, =
cee o= By Sinee these two f-nomuals are same, we have Ajp=Bjymodeer---ep.
This immediately says that A;, = B; , mod e, which impliesa; , = b; , mod e, for each
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jiml, ..., t—landeachrinl, ..., k. This contradicts 1o the statement that v+ 4 x%% 4
ceex®-te 4 ]and P 4 P2 oo xB1s 4] are distinet.

Thus it is clear that the number of r-nomial multiples with degree < ejez --- g of
Frlx) fax) - folx) is atleast ((t — DO~ ngy gy eoonpyp O

Corollary 3. Consider k many primitive polvnomials  fiix), faix), ..., Jel(x) having
degree dy ., da, ..., dy respectively, where d) . da, ..., dy are pairwise coprime. Then the
number of t-nomial multiples with degree <= (290 — D22 — ... 2% — 1) of

Flx) falx) - - felx) is ar least {{f — 1}!}"‘" HLI Ng_ 1. where Ny is as defined in
Theorem 2.

Prool. Since we are considering the primitive polynomials, the exponent e, = 2% — 1.
Also, givend), da, ..., dy are mutually coprime, e, €2, .. ., ey are also mutually coprime.
Moreover, There is no common divisor of any two primitive polynomials. The proof then
follows from Theorem 4 putting ny, , = Ny, ;. 0

Corollary 4. In Theorwem 4, for t = 3, the number of trinomial multiples with degree =
eler---ep aof the product frix)fa{x)--- filx) is evacdy egual to Ek_lnh Mg

SRR 5

Proof. Consider a trinomial multiple "' 4 x 4+ 1 with degree < €)¢3 - - - &; of the product
frix) fa(x) -« fi(x). Since, the product fi(x) fa(x)--- fi(x) divides x™ + x2 + 1, it is
clear that f,(x) divides x/' 4+ x' + 1. Hence, f,(x) divides xTt ™ e 4 phmode, 4

having degree < e, Now take, i; , = Iymode, and iz, = ILymode,, forr =1, ..., k.
It is clear that 1) # Irmode, (e, i), # i2,), otherwise f,.(x) divides 1, which is not
possible.

Also note that either i1, or iz, cannol be zero, otherwise f; (x) divides either x2+ or
x'7 whichis not possible. Thus, f, (x) divides x'' 4+ x2 4 1. Then using the construction
method in the proof of Theorem 4, one can get back x'' 4+ x2 + 1 as the multiple of
fi(x) fa(x) -+ fi(x) which is already considered in the count 2" 'ng g, ---njg , as
described in the proof of Theorem 4. Hence this count is exact. [

Corollary 5. Consider & many primitive polynomials f{x), faix), ..., Jelx) having de-
greed| da, ..., dy respectively, where d|, da, ..., dy are pairwise coprime. Then the num-
ber of trinomial multiples with degree < {2"'1 — 1}{2"'3 —1)--- {2"'1 — Ly af filx) fz(x)
- felx) iy exacly equal to ge=l Hi:l Ny, 1, where Ny, 1 is as defined in Theorem 2.

Prool. The proof follows from Corollaries 3 and 4. [

Corollary 4 shows that number of trinomial muliiples of fiix) faix)--- fi(x) is
exactly Ek_l:i‘,r,.yiﬂ_;---:iﬂ_;. However, it is imporiant o mention that for r =4,
(it — l}f}k_lnfjlrn for oo g is indeed a lower bound and not an exact count. The reason
is as follows.

Suppose fp(x) has a multiple ™ + x% + ... 4+ 2% + 1. Note that for 1 = 5, we
zet {t — 2)-nomial multiples of f,(x) having degree <= e,.. Consider the {t — 2)-nomial
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Table 1

Count for s-nomial multi ples of pmduct of primitive polynomials

i 3 4 3 L] 7

Prduce of degree 3, 4

Lower bound 42 a7 I 0 146 160
Exact count 42 1460 35945 TIT356 11853632

Prduct of degree 3.5
Laowarer bound a0 3360 ]
Exnact count a0 f56d 344625

Prmduct of degree 4.5
Laowarer bound 210 2352 1 125960
Exact count 210 32508 3723685

multiple as ¥ 4+ %20 4 ..o 4 %30 4 1 Now, from the (f — 2)-nomial multiple we
construct a multiple ¥ 4+ x% 4o 4 y® s 4 ] owhere a2, =a;_1, =w < g Then
if we apply the Chinese remainder theorem as in Theorem 4, that will very well produce
a rnomial multiple of fi{x) fa(x)--- fi(x) which is not counted in Theorem 4. Thus the
count is not exact and only a lower bound. For the case of 1 = 4, we can consider the
multiples of the form x + x 4+ 1 + 1 of f; (x). These type of multiples of f; (x)’s will
contribute additional multiples of the product f(x) fa(x) - - - fi{ x) which are not counted in
Theorem 4.

Corollary 6. In Theowm 4, for 1t 24, the number of t-nomial multiples with degree =
e1ea - --eg of the product i (x) faix) -~ fo(x) is strictly greaterthan ({1 — I}E}k_ ln F it o

creMfy e

Let us consider the product of two primitive polynomials of degree 3, 4, degree 3, 5 and
degree 4, 5 separately. Table 1 compares the lower bound given in Theorem 4 and the exact
count by running computer program. Note that it is clear that fort = 3, the count is exact as
mentioned in Corollary 5. On the other hand, for ¢ = 4, the count is a lower bound (strictly
greater than the exact count) as mentioned in Corollary 6. In Table 1, for a few cases the
lower bound is zero, since Nis = Nig =0.

We already know that the lower bound result presented in Corollary 3 is invardant on the
choice of the primitive polynomials. We observe that this is also true for the exact count
found by computer search. As example, if one chooses any primitive polynomial of degree
3 and any one of degree 4, the exact count does not depend on the choice of the primitive

polynomials.
Thus we make the following experimental observation. Consider & many primitive poly-
nomials fi{x), fa(x), ..., Sfitx) having degree oy, da, .. ., dy. respectively, where |, da,

«o oo dp are pairwise coprime. Then the exact number of r-nomial multiples with degree
= (24 — 1)(2% — 1)... (2% — 1) of the product f(x) f2(x)-- - fr(x) is same irrespective
of the choice of primitive polynomial f,.(x) of degree d,..
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5.1, Exact count va lower bound

Note that the values in the Table 1 shows that there are big differences between the
exact count and the lower bound. Note that the lower bound in some cases 15 zem, sinee
Nis = Nig = 0. We will now clarify these issues. Let us first present the following
result.

Proposition 1. Consider two primitive pofyvnomials fi(x), f2(x) of degree d|, d2 {mutually
coprime) and exponent €1, ez, respectively. Then the exact number of 4-nomial multiples of
Srlx)falx) is 6Ny aNg, 4 + ey — Diea — 1) + (3ley — 1) + DNy, 4 + (3{ez — 1)+ 1)
1"'“::'] A

Proofl. The term 6Ny, 4Ny 4 follows from Theorem 4.

Consider ' 4+ %% 4 2892 L 1 where i < ee2, imode; # 0, i mod ez # 0, and
i =kwexmode; = kiegymoder, ky = e2, kx = ep. Thus i1t s clear that for a fixed i, we
will get unique &, k2. Now there are (ejex — 1) —{fl —1i—iex—1)=de; — 1lex— 1)
possible values of i, Note that in each of the cases, x' + x%1°1 4 %2 | | is divisible by
Filx) faix). So this will add o the count.

Fix a multiple v + x/ + 2’ + 1 of fa{x) where i, j, [ arc unequal and degree of x* +
&' + x' 4+ 1 is less than e2. Now consider a multiple x° + x% 4+ x" 4+ 1 of fi(x). Asa
varies from 1 1o e — 1, for each a, we will get three different multiples of f{x) f2(x) by
using the Chinese remainder theorem. The reason is as follows. Fix the elements a, a, 0 in
order. Now i, j, & can be placed in % = 3 ways o gel distinet cases. Varying a from 1 1o
€] — 1, we get 3{e; — 1) multiples, Moreover, if a = 0, then also x® 4+ x* + x” + 1 and
o 4+ o/ + & + 1 will provide only one multiple of f(x) f2(x). Thus, considering each
multiple of f3(x) we get 3(e; — 1)+ 1 multiples. Hence the total contribution is (3(e; —1)+1)
N, 4.

Similarly fixing a multiple x* + x/ 4+ 2/ 4+ 1 of fi(x)and x* 4+ x® + 2"+ 1 of fa(x) we
get the count (3(ez — 1) 4 1)Ng, 4.

1t is a routine but tedious exercise w see that all these 4-nomial multiples of f(x) f2{x)
are distinet and there is no other 4-nomial multiples having degree = ;. O

Note that using this formula of Proposition 1, we get the exact counts for 4-nomial mul-
tiples as presented in Table 1. However, extending the exact formula of 4-nomial multiples
of product of two primitive polynomials seems extremely tedious. In fact, for eryptanalytic
purposes, we do not need the exact count; the requirement is only some sparse multiples at
lower degree.

Consider that fi(x) faix)-- - frix)is isell a r-nomial with constant werm 1. From crypt-
analytic point of view, itisinteresting o find r-nomial multiples of fii{x) f2{x) --- fi(x)only
when t = 7 (in practical cases, + <€ 1). Now we like 1o present an interesting expernimental
ohservation.

Conjecture 1. Lerx"'+x24.. 4551 1 be the least degree t-nomial multiple (4<1t < 1)
aof fiix) falx)- - fol x) which itselfis a t-nomial. Each polynomiaf f,.(x) is a primitive poly-
nomial of degree d, (degrees are pairwise coprime) and exponent e, = 2% — 1. Moweover,
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Ny r>=0.Then I, % Iymode, forany lsv#£ wst— landforanyr=1,...,k That
i, the least degree t-nomial multiple of fiix) f20x) - - - filx) is the one which is generated
as described in Theorem 4.

As example, consider (' +x+ Dix* +x+ D) =27+ 7+ 2 + 27+ 1 which is itselfa
S-nomial. Now the least degree 4-nomial multiple of 7 +x7 4+ 4+ 17 4+ 1, as generated in
the proof of Theorem 4, is x° + x* 4+ 27 + 1. Note that 7 ™7 4 pdmed? | JGmed? 4
x1+x4+x3+ 1 and x‘?mﬂlf}+x4nlxllf} +r1|‘.rmd|.5+ 1 =x‘;‘+x4+x3+ 1. Thus the
multiple x¥ + x* 4+ x* + 1 is generated as in Theorem 4. On the other hand, the least degree
4-nomial multiple of x* 4+ 27 + 2% + 27+ 1is x'% 4+ ' 4 x¥ + 1, which is not counted in
the proof of Theorem 4. In this case, x10™0d7 4 pldmed7 4 Omed T g — 2 4004 224
(basically ). This supports the statement of Conjecture 1.

We have also checked that the Conjecture 1 is true considering products of two primitive
polynomials fix), fpix) having degree d), o2 (mutually coprime) for d, d2 < 6.

Remark 1. Let vs once again consider the model where outputs of several LFSRs are
combined vsing a nonlinear Boolean function of n vanables o produce the key stream.
Consider that the combimng Boolean function s (& — 1)th order correlation immung
isee [1]). Thus it is possible o mount & comrelation attack by considering the product
of polynomials fi{x),r = 1,..., k., corresponding to k inputs of the Boolean function.
Thus to execute the attack one has o consider the r-nomial multiples of nf‘:l feixh
Al this point consider the f-nomial multiples obtained in Theorem 4. Once we get a -
nomial multiple x™ + 22 4+ ... 4 x40 4 1 of ﬂf=l Jelx), we know when we reduce
it as pfimode, | phmode, 4 phoimedes L] then we will get a r-nomial multiple
(having degree = ¢ of f(x). On the other hand, if we consider any -nomial multiple
L T R R R R B | I—[i=| Sfrix), which is not considered in Theorem 4, then for
some r, xl1mede, 4 plhimode 4 4 phoimede 4y Gillnot be a “genuine” r-nomial multi-
ple (having degree < e, ) of fi(x) (i.c., all the emms will not be distinet). That is we will get
either some wsuch that [, = Omod e, or get some v #= v, such that [, = I, mod e, . Further
it can be easily seen that the degree of any multiple of fix) f2(x) - -+ fi{x) which we have
not been counted in the proof of Theorem 4 is greater than 2% — 1, where d; is minimum
of dy,da, ..., dy.. So if we consider moderately high degree polynomials, practically these
multiples are of very high degree and are not of our interest from cryplanalylic purpose.
Thus from cryptographic point of view, only the multiples considered in Theorem 4 are to be
considered.

However, in Section 7 we will consider all the multiples (not only those referred in
Theorem 4) for the degree distibution.
6. Degree distribution of +-nomial multiples of a primitive polynomial

Algorithms for finding sparse multiples of primitive polynomials are discussed in

[18.17.1,20]. The currently best known time and space complexities have been achieved
in [20], though the results are still of exponential complexity. In this paper we are not
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concentrating on providing algorthms to find sparse multiples. However, we need o state
the following exhaustive algorithm for statstical estimation. A trivial algorithm to find the
least degree -nomial multiple of a degree d primitive polynomial f{x) is as follows.

Algorithm fmd-t-nomial-multiple

Fori =dtwo2d - 2,

(a) Consider all possible t-nomial g{x) of degree i.

i(b) If fix)divides g(x) then report this r-nomial and lerminate.

If we consider that the least degree ¢ nomial multiple has the value oy ¢, then the algorithm
will run fori = doi = ¢y ;. In each step we have w consider (;:.I_,) tuples. This 1s because
we consider the t-nomial multiple 1 +x 4. 4+ 21 where 15§ <iz < --- <= i_3 =<
i;_1= 2! — 2. Now we have the value 1 and the value i, _; =i fixed for the ith step. Thus
we need to check whether fix) divides g{x) for Zi_,-' (i:ll) different f-nomials in total.
We like to estimate the value of oy ;.

Once a primitive polynomial f{x) of degree  is specified, it is very clear that f(x) has
Ny, many t-nomial multiples. Note that any -nomial multiple 1 + % 422 4 ... 422 4
x¥-1 can be interpreted as an (r — 1)-tuple (i), i, ..., fr—z, ip—1t. We will show that by
fixing fix), if we enumerate all the Ny, different {(r — 1) tuples, then the distribution of
the tuples seems mndom. To analyse the degree of these -nomial multiples, we consider
the random variate X which is maxiij. iz.. ... f_3.0_1), where 1 + x™ + x2 4+ ... +
x4 4 ¥l g a r-nomial multiple of f(x). Also the value of max{i;. iz, ..., fr_2, fr—1)
is i;_1, since we consider the tuples as ordered ones. Let us look at the mean value of the
distribution of X. From Corollary 2, it is clear that the average degree of a -nomial multiple
is [(r — 1)/ 1]{2¢ — 1)Ny ; divided by Ny ,. Thus we get the mean value X = [{(r — 1) /1]
(29— 1.

This mean value X clearly identifies that the r-nomials are dense at higher degree
and there are very few atl lower degree. On the other hand, for cryplanalysis, we are
not interested in getting all the f-nomial multiples. The crypltanalyst only concentrate
on the least degree r-nomial multiple gix) of fix). Thus our motivation is o gel an
estimate on the degree of g(x). This is not clear from the distribution of X and that is
why we like 1o look into another distribution which seems o be close to the distribution
of X.

Let us consider all the (r — L)-tuples (i), iz, ..., fyr—z2, i~} with component values in the

=¥

2 < :
range 1 1o 2¢ — 2. There are (_:—1 ) such wples. We consider the wples in ordered form

such that 1 =i = f2 = -+ = i;_3 < iy_; =24 — 2_ Now consider the random variate ¥
which 1s max{iy, i, ..., fr_3, 1), where {fy, f2, ..., ip—2.i;—1}isany (f — L)-tuple from
the values 1o 29 — 2. Also the value of max(iy. iz, ..., fr_z, i) 18 £p_y as we consider

the tples as ordered ones. Note that there is only one wple with maximum value (f — 1).
There ame té) tuples with maximum value ¢, (:iz) tuples with maximum value ¢ + 1
and so on. Thus, the mean of this distribution is

T o L 243
Y= ] 5
Z(2)/ G5
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T ofi—1 b B ) 24— 1
J'ﬁz—lf(f_z)_{r_l}f::—l(r_l)_{r_l}( t )

Thus, ¥ = [{r — 1)/1]{2¢ — 1). Note that this is equal to the value of X. Thus we have the
following result.

Proposition 2. Given any primitive polvaomial f{x) of degree d, the average degree of
its t-nomial multiples with degree <29 — 2 is equal to the average of maximum of all the
distinct (t — 1) tuples from 1 1024 — 2.

With the result of the above theorem, we assume that the distributions X, ¥ are indis-
tinguishable. Later, in this document we will provide more support for this assumption.
Consider Ny ; tuples which represent the actual r-nomial multiples of f(x). Since the dis-
tribution of these tuples seems andom, if we select any tuple, the probability that the
tuple will represent a genuine r-nomial multiple is Ny / (2:__12 ) . Thus we can estimate the
expected number of Fnomials with degree less than or equal to ¢ as

c 24 2
LT .
(r—l) "/(r—l )
Al this point let us summarize our assumption for this estimate.

Assumption RandomEstimate. Let f(x) be a primitive polviomial of degree d. Consider
the set of all t-nomial multiples of f{x) which are of the form 1 + x'' + x2 4 ... 4+
22 ol e 1 = B o= oo = Bia = 1529 — 2. Interpret each t-nomial
multiple as an ovdered (t — 1) tuple {iy, iz, ..., ir—2,i;_1}. Note that the degree of this
f-nomiad s iq_1. Let J"u':,r.,{::}l denotes the number of t-nomial multiples which have the
degree at most . Now we expect that

& 2::’ Ly
Naile)/Nay = (, —1 )/ ( t—1 ) '

Given some twe [ike to get an estimate of ©, such that

(:£mef (C20) =

This value of ¢ will give an expected value of ¢y, the degree of the feast degree t-
nomial muldtiple of fix).

Nexl we present some experimental resulls in support of our assumption in Table 2.
We consider the trinomial multiples for this.
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Tahle 2
[Degree distribution of tinomial multiples

(1) Reswlts far degree 8 primitive polveomials

A 32 =T g2 107 132 157 182 207 232 254 Total

B 205 4.1 6.15 922 11.25 14.35 17.85 1548 ey K 2195 127
C 2 5 3 11 1] 12 20 20 20 | 127
D 32 i3] 116 146 182 228 84 IRE ME 342 232
E 2 4.12 7325 912 11.38 14.25 1775 18 21.75 238 127

{11) Resnlrs for degree W primitive polvromials

A & 1 16d) 210 2ol 310 Jad 410 460 510 Total

B 305 2.08 131 18.15 23,19 n.an 3220 383 4307 4758 255
c 3 8 12 2 et 25 32 I8 43 47 255
D 166 a8 629 LE ] 116 1337 1566 1818 2032 22498 12 244
E 346 £.29 131 1833 »nxn RS 3282 3787 42.34 4787 255

(111} Results for degree 10 primitive palynamials

A 111 212 33 414 513 Gle 7 BLE 919 122 Total

B a2 1505 26.1 3014 46. 18 5.2 06,26 L B5.34 98 .39 all
cC 5 1i] 26 35 49 > k] T 1] 98 511
v 360 938 1566 2142 732 33ka 39a2 4544 5168 5862 3160
E L] 15.63 26.12 357 45.53 5043 6.3 7573 ga.13 g7 511

In Table 2, we consider the case for degree 8, 9and 10, In the first row A we provide some
intervals. These intervals represent the degree of the trinomial multiples. In the second row
B we provide the expected number of trinomial multiples less than or equal o the degree
ziven inrow A, As example, from the Table 2(i) we get that there are estimated 2.05 trinomial
multiples at degree less than or equal to 32, 4.1 trinomial multiples in the range of degree
32 = d< 57, 6.15 rinomial multiplesin the range of degree 537 = o </ 82, ete. Note that these
values are caleulated from our assumption RandomEstimate and that is why these values
are fractional. In the third row C, we present the result corresponding 1o a randomly chosen
primitive polynomial. As example, from the Table 2(i) we get that there are 2 trinomial
multiples at degree less than or equal 1o 32, 5 tinomial multiples in the range of degree 32 <
d =237, 5 winomial muliples in the range of degree 57 < o < 82, ete. 1o the fourth row D,
we present the result corresponding to all the primitive polynomials. That is for degree 8, we
considerall the 16 primitive polynomials and check the result in aggregate. Asexample, from
the Table 2(i) we get that there are 32 wrinomial multiples at degree less than or equal to 32, 66
trinomial multiples in the range of degree 32 < J <57, 116 trinomial multiples in the mnge
of degree 57 = 4 < 82, ete. corresponding to all the primitive polynomials of degree 8. We
normalize the result of the fourth row D in the fifth row E. We divide the entries of the fourth
row by 16 (total number of primitive polynomials of degree 8) o get the values in the fifth
row E.

From the datain these three tables for the degree 8,9 and 10, it isclear that our assumption
is supported by the empincal results. With this observation we land into the following result.
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Theorem 5. Given a primitive polvnomial f(x) of degree d, under the assumption Ran-
domEstimate | there exists a t-nomial multiple g(x) of f{x) such that degree of g(x) is less
than or equal to

~d (=1 +loga ir—11+1
Proof. From the assumption RandomEstimate, we need

(5 )me/ (D)

approximately equal to 1. Let us consider the approximation as follows.

(ril) ‘ ’/ (zj—_lz) = (ril) (2:—_22)/(2(2:—_12) = ”)'

In this step we have approximated

2:." . ]
Wi w ( )f{zir—m.

t—2

Mote that
c L EEE 4 L EEE .
2 f—
(r—l)(r—?)/((r—l){ })
e (24 !
_l T—TMe—r <11l (=2 ) _l (cl)
2 @m0 -1 2@ —f4+1DMr—DW29—1)
=0 —r—1

_lee=1) s e—t41) 1 w1( e Y7
T2 =D =Nl My 2N -1 247

Herme we underestimate the expression. Now we need the expression ,l,{I‘_—I}II_l ._,—'ﬂr to be
approximalely equal to 1. This will give the estumate of oy ;. Thus

e ™ 2= 1240 _pd/U-DHep-IHl

Let us also refer o a result on 4-nomial muliples of a primitive polynomial [ 15, p. 174].
It states that given a primitive polynomial f{x) of degree d, it is possible to get a 4-nomial
multiple of f(x) having degree less than 2974 with high probability. This result is not exactly
true. By computer experiment we observe that for a randomly chosen primitive polynomial
fix), in most of the times fi{x) does not have a 4-nomial multiple with degree less than
24/4, As example, given f(x) = x3 4+ x¥0 4+ 227 + B 4 2T P ¥ 3B 4
a2 x4 t0 xM  x 4 x4 1 it has the minimum degree 4-nomial multiple
280 2T L 1D L) Note that 3286 is much larger than 294 = 234 = 215 for
d = 31. On the other hand, our estimate

qdfir—D+Hog(i—1+1 _ ad/3+og 3+1 _ ad/3+loga3+1 _ 4 3+2.585

is much more reasonable. Our estimate gives the value 7740 for d = 31,
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Table 3
Experimental mesults with respect to Theorem 5
Degree o #E 1) Estimated ¢ ; 4 A Estimated ;4 B
] 1] 64 0 38 i
9 48 a0 { 48 i
1 all 128 ] al i
11 176 181 0 76 0
i2 144 256 0 Q6 0
13 iel] 302 ] 120 {0
14 756 512 ] 153 i
15 1800 724 Li] 192 ]
1] 248 124 13 M1 0

Our result in Theorem 5 can be used to caleulate the expected running time of the
Algorithm Find-r-Nomial-Multiple at the beginning of this section. Considering ourestimalte
of Theorem 5, we find that the value of ¢y ;. in the discussion for complexity, should be
estimalted as

~d (= 1)+loga (r—114+1

Thus we need 1o check whether f{x) divides g(x) for

Cde £i1 g4l flr=1-Hogy it =1 p-+1 PO |
Z(r—z)w L (f—z)

i=d i=d
different r-nomials in total. Note that the algorithm can be parallelized easily using more
than one machines for faster solution.

In Table 3 we present some more experimental resulis to support Theorem 5. We consider
the primitive polynomials of degree 8—16 and present the results as follows. For each degree
d we provide how many primitive polynomials of that degree does not have a +nomial
multiple having degree

o i —=1+log,r—1)+1
=L

eiven in Theorem 5. We consider trinomials and 4-nomials. In the first column we present
the degree of the primitive polynomial. In the second column we present the total number
of primitive polynomials of degree d, which is (29 — 1)/d [11]. In the third column
we provide the estimated value of ¢4 3 from Theorem 5. The fourth column A provides
the number of primitive polynomials for which the least degree trinomial multiples have
degree = oy 1. Similady in the fifth column we provide the estimated value of ¢y 4 and the
sixth column B provides the number of primitive polynomials for which the least degree
4-pomial multiples have degree = g 4.

Table 3 strongly supports the estimation of Theorem 5. However, iLis interesting Lo see that
there are indeed a few primitive polynomials which do not have minimum degree r-nomials
in the range of estimated degree in Theorem 5. This kind of primitive polynomials are
more suitable for eryplographic purposes. In fact this motivates us o present the following
criteria in selection of primitive polynomials to be used as LFSR connection polynomials.
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Giiven a set of primitive polvaomials of degree d and weight w, we need to choose the one
out of those whose least degree t-nomial multiple has maximum degree for low values of 1.
Curmrently the only available option to find out such a primitive polynomial is exhaustive
search technigue.

a1, Degree squares of t-nomial multiples

We here provide further experimental results in this direction and strengthen the claim
that the distributions X, ¥ are very close. For this we first find the sum of squares of
max{fy, iz, ..., ir_z, ;1) for the distribution Y.
Lemma 1. The average of squares of the values in ¥ ix

el ad 1 ( rjd 1)
@ ) +1 ’

Maoreover, standard deviation of ¥ ix

1 ,lf
24— 12— — 1)
Vi 1{ A )
Proof. Consider the random vanate ¥ which 1s maxi{i, iz, .... fr_z, fi—1). We know that
i1, 82, ..., ip—z2, i1} s any ordered (r — 1)-tuple from the values 1o 24 _ 2 Note that

there s only 1 tuple with maximum value (f — 1). There are (:1) wples with maximum

value r, ( ;i?) wples with maximum valve r + 1 and so on. Thus, the average of the squares
of the values in the distribution

22 L i1 24 2

r=1'=JZ—lr (r—?)/(r—l)'

_2 s 242

()0 (1) 0 ()

i=r—1 TRy i=r—1 i=r—1
== 3,)-e=n (*])
={r— 1 41 —{r—1) . ;

Simplifying we pet,

g U 5 T | o L) f y [l
2 (r—z)/(r—l)‘" & _”(r+1 1)'

Now standard deviation of

i{?:.‘ : 1}( 124 _1) e (i{?d b 1})2
£ 41 -l

L od _1ye ). O
= —, ] —— 2% — —t — Lt
tV e+ 1
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Tahle 4

Average of s of squares for the degrees of -nomial multiples

Primitive polynomial =3 =4 E=i r=h =1

M rx41 110 13261 148 04 158.96 167.13
x4 +x3 + 1 110 13261 148 1014 158.94 167.13
Estimated L1 132,75 145 158,92 167.14
o 4xt41 47533 5T1.48 63667 6GR2.78 T17.40
PR | 475.33 57148 63667 68278 T17.40
P IRy | 47533 57148 63643 65281 T17.44
e IRy | 47533 57155 63641 652,800 71745
PN RS Ry | 47533 57155 6341 682,80 717.45
AL RS R | 47533 57148 63643 65281 T17.44
Estimated 47533 571.95 63653 68273 717.42
PRy 1974 237163 263676 282751 206095
T R RN | 1974 237108 3671 282754 206099
P | 1974 237163 263676 282751 296098
LN R | 1974 2371.27 2636 46 2877.54 207001
LR RS BRI | 1974 237100 3671 287754 2960.99
Mt x4 1974 237127 2636 46 2827.54 297001
Estimuted 1974 2371.95 263760 2827.50 2970
B | 043,33 95733 1073602 11 50561 1208313
PR B | R043.33 QRSAD2 1073605 11 50562 1208313
I R | 843,33 065637 1073546 11 51565 12 083,16
o 4xt41 B043.33 656,92 1073605 11 505.62 12083.13
BT L RS R | £043.33 DR56.65 1073577 11 50564 12 083,14
L R | 814333 65666 1073587 11 505.64 1208314
LI RIS By | B043.33 DE5T.48 1073560 11 505.61 12083.15
PR I R R | B043.33 DH56.65 1073577 11 505.64 1208314
L BRI R R | £043.33 95782 1073571 11 505,60 12 083,14
441 B043.33 965733 1073602 11 50561 12083.13
P RS B | B043.33 656,59 1073542 11 505.65 1208316
P, DI Ry | B043.33 656,59 1073542 11 505.65 1208316
AL R R | 814333 DH57.48 1073560 11 505.61 12083.15
L JURSS e | B043.33 DH56.66 1073587 11 505.64 1208314
B ER e N B | B043.33 965638 1073547 11 505.65 1208316
R R B | B043.33 965637 1073546 11 505.65 1208316
L R B R R 143,33 656,38 1073547 11 505.65 1208316
Ot e 1 Al essTR2 1073571 11 505.60 12 08314
Estimated 804333 ORSK.35 1073573 11 50560 1208314

Primitive polynomials with degree 4, 5,6, 7 are considered.

Let us present some experimental results in Table 4 for multiples of primitive polynomials
having degree d = 4,5, 6, 7. We take cach of the primitive polynomials and then find the
average of the square of degrees of t-nomial multiples forr = 3,4, 5,6, 7. In the last row
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we present the estimated value

o
’—_l(r’—l)(ﬂ —1)_
t i+ 1

From the above able it is clear that in terms of average of squares, the distdbutions X, ¥
are very close. The most interesting observation in this direction is the sum of square of the
degree of the trinomial multiples. Note that the average of the sguares of the elements of
distribution ¥ {considering ¢ = 3) and the average of the squares of the degrees of trinomial
muftiples are same for all the experiments, which is %{2" — 133 x 2272 _ 1). We now
present the formal proof of the result. -

Theorem 6. Consider any primitive polyvnomial f(x) of degree d. Consider that the degree
aof the trinomial multiples (having degree <29 —2) of f(x) ared).dx, ..., duy . Then

|"||Inl_1|
Y &= - 1327 - DNy s,

=1

Proof. Consider a trinomial multiple of f(x) of the form x’ + x/ + 1, wherei = j.Lete =
21 Leti #2029 —1)/3, j £ (21— 1)/3. Then x4 x*~I 4 land x*~/ 4 x4 1
are two mare distinet trinomial multiples of £{x) (muliplying x’ +x/ 4 1 by 2~ and x*~/,
respectively). Now, considerthe sum of differences (i* — 2 ) +{{e—i+ ) —(e—i)2 ) +{{e—
i)32 —(i — j)?). whichis equal toe?. Further take the case i = 2(2¢ —1)/3, j = (29— 1) /3.
when o is even. In that case all the three trinomials generated in the above manner are same.
Thus we will only consider one difference, (229 — 1)/3)? — ((2¢ — )/H)? = £2/3.

Let the trinomial multiples (having degree < ¢) of f{x) be x* + x# + 1, fors =
. - Ny3. We will consider "2 (i2 — j2). If d is odd we will get Ny 1/3 different
groups each contributing e in this sum. If d is even, we will get (Ny 3 — 1)/3 different
groups each contributing & in this sum except one term which contributes e /3 when
fe=2(29—1)/3, jo = (21 — 1)/ (3).

Thus,

Naa 3 ) 2
Z{J‘: —Ji )= Naze f3.

5=l
Mow add
Ny a '_r 2
2 Gy + i)
=]
in both sides. Then
Maa Ny

2y if = Naa?/3+ L GF+7D.

i=l1 =1
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Note that, considering the values of i, j; for all s we basically get all the integers in the
rang 1 toe — 1. Thus,

Naa ¥ ¥ ¥ ¥ ¥
L e Pap 0 e (g )5

§=1
We already know that Ny 3 = 2971 — 1, Simplifying, we get

.’\",,l_'l.
S 2= @A - DE- 22— Nz O

5=I

This is now theoretically proved that for r = 3, the average of squares of the valuesin ¥,

L&, %{2"’ — 1}{% — 1} is exactly equal to the average of square of the values in X,
6.2, Reciprocal polynomials

Consider two primitive polynomials fix) and gix) of degree d, such that they are recip-
rocal to each other. That is, if « is a root of f(x), then ! = 11“1 =2 15 the ot of glx).
Consider the multiset W({ f{x), 4, 1), which contains the degree of all the Fnomial muliples

(having degree = 29 — 1) of a degree d polynomial f (x). Now we have the following result.

Lemma 2. Let fix) and gix) be two reciprocal primitive polvaomials of degree d. Then
Wifix),d, 1) =Wigi{x),d, 1.

Proof. Note that f(x) divides a r-nomial x™ +x2 4 ...+ x#-2 4 xfi-1 4 | iff g(x) divides a
t-nomial 't 4+ x4 pliTher 4 pii—hen 4] Without loss of generality, we consider
that f| > f2 = -+ = f;_2 = f;_1. This gives the proof. [

From Lemma 2 we get that, since Wi{ fx), d, 1) = Wigix),d, 1), the statistical param-
eters based on W fix), d, 1) or Wig(x), d, t)are also same. In Table 4, it is clear that the
entries coresponding to any primitive polynomial and its reciprocal are same.

7. Degree distribution of r-nomial multiples of product of primitive polynomials

From the cryptanalytic point of view, it is important to find the -nomial multiples (of
product of primitive polynomials) having lower degrees. One way 1o obtain the minimum
degree t-nomial multiple of product of polynomials is W start checking the f-nomials from
lower to higher degrees and see when the first ime we get one r-nomial muliple. This pro-
vides the minimum degree r-nomial multiple of product of the polynomials. Similar method
can be continued further o get more multiples. On the other hand, o resist eryptanalytic
attack, itis important to select pamitive polynomials such that they will not have a +-nomial
multiple at lower degree for small 1, say 1 = 10. Thus it is important to analyse the degree
distribution of r-nomial multiples of product of primitive polynomials.
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Let us now concentrate on the case when the primitive polynomials are of degree
pairwise coprime. We like to estimate how the degree of the t-nomial muluples are dis-
tributed. Consider a primitive polynomial f,.(x) of degree d,. It has Ny ; many
t-nomial multiples of degree = 2% — 1. Now we like to highlight the following
points.

(1) Consider r-nomial multiples of the form x™ 4 x4 .. 4 x4 ] of a prim-
itve polynomial f.(x). Note that py,. pr ..., Pr—y » are not ordered and they are
distinct modulo e, . Expenimental study shows that the valoes py e prre..- o Pr—1, p ame
uniformly distributed in the range 1,2, ..., 2% —2 = ¢, — | for each r.

(2) Then using the Chinese remainder theorem (see the proof of Theorem 4), we find
that fi(x)fa(x)--- fe(x) divides x"' 4+ x® 4 ... 4 xf-! 4 1 which has degree <
€€ --- €. Now in the proof of Theorem 4, it is clear that the value [; is decided
from the values p;,’sforr = 1,..., k. Since, pj,'s are uniformly distibuted and
the Chinese remainder theorem provides a bijection from Z,) % Z., % -2 % Z, 0
Zojoyompy » iU is expected that the values Iy, B, ... Iy are uniformly distributed in the
range 1,2, ..., erex ---ep — L. Here Z,; is the set of integers from 0o a — 1.

(3) The distribution of the degrees of the r-nomial multiples of the product polynomial
Jilxdfa(xd--- filx) is the distribution of max{(fy, ..., Je_p). It can be assumed that
the valoes Iy, B, ..., Iy are chosen uniformly from the range 1, ..., {2"" — 1}{2"'—’ —
1o 2% — 1) — 1.

To analyse the degree distribution of these -nomial multiples of the products of primitive
polynomials, let us consider the random vanate Xl dt whieh is max(fy, ..., 1)
where /' + x® 4+ ... 4 x%1 4 1 is a r-nomial multiple of fi(x) f2(x)--- fi(x). Let
d = (29 — 1322 — 1) ... (2% — 1). On the other hand, consider all the (r — 1)-tuples

{(fy, ..., I}, with component values in the range 1 1 6 — 1. There are (‘::ll) such tuples.
Consider the random variate ¥ "rl“, whichis max(fy,. .., L_1).where {f},..., L)

is any ordered rtuple from the values 1w & — 1. With the above explanation and the
following experimental studies, we consider that the distributions X @00y ldidis
ame very close.

Let us first concentrate on the experdmental results presented in Table 5. We consider the
degree distribution of -nomial multiples of product of primitive polynomials of degree 3
and 4. The product polynomials of degree 7 are presented in the lefimost column of the table.
Asexample (v +x + Dix* +x 4+ 1) = 2" 4+ 27 + 5 + 27 + 1is represented as 10101101,
The exponent of the polynomial x7 + © 4+ 1 417+ 1is (27 = 1)(2* — 1) = 105. We present
the proportion of r-nomial multiples of degree < 15,25, ..., 105, where t = 3,4,5,6,7.

-1 =1
0= 105ande = 14,24 ., 104, Table 5 cleardy identifies the closeness of the distdbutions
Xlddt oyt Similar support is available from the Table 6 which considers
the r-nomial multiples (for ¢+ = 3,4, 3) of product of degree 4 and degree 5 primitive

Comesponding to each 1, we also present the proportion ( £ ),.-’ (‘i_l) in the last row. Here,

polynomials.
Take two sets of primitive polynomials f{x), ..., Selxyand gy(x), ..., gi{x) of degree
dy, ..., dy (pairwise coprime), such that each f.{x) and g, (x) are reciprocal to each other.

Consider the multiset U{ fy(x)--- filx), dy, ..., dy, 1), which contains the degree of all
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Tuble 5
Degree distribution for -nomial multiples of product of degree 3 and degree 4 primitive polynomials

Product = 15 =25 = 35 = 45 =55 = 05 =75 = 85 =95 = 105

Wwm 0238 07 00429 042 02619 03571 0870 06429 07857 L0000
Moo G000l 0?6 00190 908 03ES 03810 05238 06190 07857 L0000
0001 00000 0ETe 0190 90s 03RS 03810 05238 06190 07857 L0000
oo 00238 00714 00429 042 02619 03571 08470 06429 07857 L0000
E=% 0070 0515 0T 0aTeh 02672 03764 05043 06509 0816l LOODO

om - 0004 00 00329 00719 00139 02295 03568 05253 07370 L0000
o0 002 i3 00308 00733 09 02288 03575 05247 07370 L0000
0001 00021 i3 00308 Q0733 009 02288 03575 05MT 0 07300 L0000
o 0004 g 00329 00719 0139 02295 03568 05253 07300 L0000
r=4 00020 il 00329 00727 01362 02288 03560 05232 0736l LOODO

Wm0z 00021 00Es 00298 006E9 038R 0MET 04196 Oeadd LO0DD
MO0 00003 0024 00100 00293 00677 U378 02493 04304 Oehdd L0000
001 00003 00024 00100 00293 00677 0378 02493 04304 Oehdd L0000
W0 00002 00021 00ms 0298 00689 (U3BE 02487 04196 Oehdd 1LO0DD
k=13 00002 00023 Q0I1 00295  (06eRE 00382 02502 04196 06632 L0000

oo 00000 00005 00030 Q01IE 0035 008X 01752 03356 05968 10000
0001 00000 00005 00031 Q01EIE 0035 0082 01751 03356 05968 10000
Moo 00000 00005 0031 01IE 0035 082 00751 03356 05968 10000
W 00000 00005 00030 Q0IE 0035 0083 00752 03356 05968 10000
r=h 00000 00005 0030 0011IE 00344 0083 00752 03357 05969 L0000

00T 00000 000 00009 00047 0T 0049 01221 02679 05365 L0000
0onm - 00000 00001 00009 00047 00170 00494 01222 02679 05365 10000
00T 00000 0000 00009 00047 0T 0494 QU221 02679 05365 10000
W0 0000l 000 00009 00047 0 00494 00222 02679 05365 L0000
=7 00000 0001 Q0009 00047 00170 00494 0221 02679 05366 LOODO

the t-nomial multiples (having degree < (29 — 1) .. (2% — 1)) of fi(x)--- filx). The
following result is similar to Lemma 2.

Lemma 3. U(fi(x)--- fi(x).d1. ..., de, 1) = Ulgi(x) -+ gu(x), d1, ..., d, 1).

Since, U( fi(x) -+ fu(x) d1,. ... di.t) = Ulgi(x)---gelx) di, ..., dy. 1), the statisti-
cal parameters based on the multisets U7 fi{x) -~ filx), dy, ..., i, 1), Ulg(x)-- - gelx),
di..., . 1) are exactly same. In Table 5, it is clear that the entries corresponding to
the multiples fiix) f2(x) and gy (x)ga(x) are same where fiji{x), g1{x) are reciprocal and
f2ix), gaix) are also reciprocal. Thus, in Table 6, we put only one row corresponding Lo
each such pair.

Now we present the following result. The proof is similar to that of Lemma 1.



Table &

Degree distribution for Fnomial multiples of product of degree 4 and degree 5 primitive polynomials

Product < 30 < hS <115 < 165 <215 < 265 < 315 < 365 < 415 < 405
LI 01 0.0000 (L0286 (L0571 (L1238 02095 (.3238 0.4524 (Le09s 07905 10000
LELIT 10001 (L0048 (L04a0 .0a19 1143 (2238 (.3238 0.4333 (L6238 (L7952 10000
LITRERIRIN (L0 (43 00al9 (1333 02190 0.3238 04619 (.e095 (17810 10000
L0001 1 (L0048 (L a0 00667 01143 02190 (0.3286 0.4524 (L6286 (7952 10000
Lo (.00495 (L0190 (L0571 (.1286 (12286 0.3238 0.4571 (Le09s (.7952 10000
L0000 101 (L0095 (L0143 (.0524 (L1286 (12000 0.3190 04571 (La190 (.7952 10000
=73 (1.0040 (L0 ER (L0600 (1244 02122 0332 0.4575 (Lal 50 (L7959 100040
LIOHOLL 01 (.0002 (L0023 (LH45 (L0434 (101969 0.1835 (.3090 14819 07009 10000
LELIL 10001 (L0002 (.0025 0142 (L0434 (10969 183 (.3083 (14820 (1.7099 10000
LITRERIRNY! (.00a2 (L0025 (LH46 (L0433 00477 0.1832 0.3091 (4820 07m7 10000
LOOHO001 1 (.0002 (0023 (L1446 (L0428 00473 (.1835 (13088 (4820 0.7 100 10000
Lo (L0003 (L0023 (0145 (L0434 (0473 (1830 (.30493 (L4821 (07009 1000
LOOON00101 (L0004 (0022 0142 (L0433 (10966 (1.1829 (.3086 (14820 (17098 10000
=4 (.00 (L0025 (L0145 (L0436 00474 (.1833 0.3089 14819 07098 100040
LIOHaTL 01 (L0000 (L0003 (L3S (L0152 10446 0.1038 (.2085 (L3774 (La328 10000
LEEIT 10001 (.0000 (L0003 (.0035 (L0153 00445 (.1037 (.2086 (L3773 (La328 100040
ITRERIRTY! (L0000 (L0003 (L3S (0152 0445 0.1038 0.2084 0.3774 (L6329 10000
L0001 1 (1.0000 (L0003 (L0035 (L0153 (1445 0.1037 0.2085 (03773 (La328 10000
Lo (L0000 (L0003 (L3S (L0152 (00445 0.1037 0.2084 (L3774 (La328 10000
LOOO0O 101 (L0000 (L0003 (L0035 (L0152 446 0.1038 0.2084 (L3774 (La328 10000
t=:5 (.0000 (L0003 (L0035 (L0152 (1446 (.1038 (0.2084 (L3774 06328 10000

WL

CFE—F IE (S00T) [ #0318 IR ) Jeaaicsif ;e 13 g %
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Lemma 4. Letd = (29 —1)(22 —1).. . (2% — ). The average of the values in ¥ 41411

is =L 8. Moreover, the average of squares of the values in ¥ ' 401 jy

I
=
i i+1
In the Table 7, we present the exact data formultiples of products of primitive polynomials.

We consider the product of primitive polynomials having degree (3, 4), (3, 3) and (4, 5).
The product polynomials are presented in the lefimost column of the table. In each cell, we
present the experimental values for the distribution X' 924" We present the average of the
degrees and average of the sguares of the degrees of r-nomial multiples in the same cell of
the table. We also present the estimated values in the tables which gives the results related
to the distribution ¥ 924 1t s clear from the table that for the set of experiments we have
done, the results related to the distributions X @09 gnd ¥ @240 gre very close. We like
to present the following observations (the formal proofs will be presented soon) from the
Table 7. which is related to the distribution X @11,
(1) The average of degree of the -nomial multiples of HLI frix) is fixed and it is equal

to[(t — 1)/t]d, where 4 is the exponent of HLI frix).
(2) Average of the square of degree of the trinomial multiples of nf:l frix) is fixed but

not exactly equal o the estimated value.
Now we will present a more general result than tem (1), First we need a technical result.

Lemma 5. Let f(x) be apolynomial over GF(2) having degree d and exponent e and 1 +x
does not divide f(x). Let the number of t-nomial multiples (with degree <= e and constant
term 1) of flx)beng, Thennyp i/t = npe_fle—1t),where2 <t =¢ —2.

Proof. Note that f{x) divides | + x*. Since 1 + x does not divide f(x), fix) divides
(1 4+x°)/(1 +x),ie., fix)divides | + x + x>+ -- + 2 This is the e-nomial multiple
with degree less than e of f(x). Whenever x' + x2 4 ... 4 x* (constant term 0) is a
multiple of f{x) (here 1 £y < iz < --- =i, < ¢), adding with | + x + 274+ .-+ 1,
we will get an (¢ — r)-nomial multiple
e—1
1+ ¥y F
i=L,iz4y , ia,...0;

(having constant term 1) of f{x).

We will count the number of such multiples of f{x), which is equal to the number of
{e—t)-nomials. Consider a rnomial multiple v 4-x2 4. - .4 x*- ' £ 1 of f{x). Muliplying
it by v/ for 0< j < e, we will get r many f-nomial multiples having constant term 1 and
{e — 1) many multiples of the form x'! 4+ x 4+ ... 4 x" (having constant term () where
1 =i} = iz---i, = e Considering any one of these r many t-nomials (having constant
term 1) will produce the same set of (¢ — ) many (¢ — t)-nomial multiples. So, r many
t-nomials giving (¢ — 1) many (¢ — t)-nomials and vice versa. Hence, we get npft =

-—

Rpe;fle—1). L

Let us now present the following theorem.
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Tahle 7

Average of degree and average of degree sguare of r-nomial multiples for product of primitive poly nomials
Product polynomial =3 r=4 F )

(RTIT T000, 553000 TR.75, 6595.27 B400, 733544
11100011 T000, 553000 TRT75, 6595.15 B0, 733490
Estimated T0.00, 5495.00 TR.75, 659025 .00, 733000
000011 144.67, 2358067 162,75, 28212 40 17360, 31363 42
1001 1001 1 144.67, 2358067 162.75, 2821439 17360, 31362.93
100001001 144.67, 2358067 162.75, 2821360 17360, 31363.82
ot 144.67, 23580067 162,75, 2821388 17300, 31303 46
1L L0000 144.67, 2358067 162.75, 2821415 17300, 3136290
1100001 144.67, 23580.67 162,75, 28216.71 17360, 313603.33
Estimated 144.67, 23508.33 162.75, 2821 85 17360, 31363.73
Toton o1 30000, 108 19000 34875, 120651.90 37200, 144087.34
oo o 310000, 108 190,00 34875, 120659.90 37200, 144087 .41
oo o 310,00, 108 190,00 34875, 19065672 37200, 14408658
oo Lo 310000, 108 190,00 34875, 1065281 37200, 14408751
THoLon o 310,00, 10819000 34875, 120965243 37200, 144087.20
ToLon o 310000, 108 190,00 34875, 1H0657.92 37200, 14408793
Estimated 310000, 10803500 34875, 12066525 37200, 144088.00

Theorem 7. Considera polvnomial f{x) over GF(2) with exponent e such that 1 + x does
not divide f{x). Let the number of t-nomial multiples (with degiee < ¢ and constant term
1) af f be n . Then the sum of the degrees of all its t-nomial multiples with degree < e is
[t — 1)/ t]en ;.

Proof. We have 1 + x does not divide f(x). Consider each t-nomial multiple of degree
d,, where 1< 5 = ny . Now multiply each t-nomial by . for 1 <i<(e —d, — 1), we will
get multiples of the form x' 4+ x2 4+ ... 4+ 2% where 1<i) < iz = --- = §; = e. Thus
each r-nomial will provide (e — d. — 1} many multiples of the above form and observe that
these are distinet. Similar o the proof of Lemma 3, Z:L’l e—ds — 1 gives the count of
{e — r)-nomial multiples. Moreover, from the proof of Lemma 5, we will get

i
e—1f . fi A e—1f
Aoy = - Ap, de, Y le—di—1)= . Hg.

Hence

it e—1 r—1
Zd;:(e—l— - )nﬁ,«;;: r €n fr. O

i=l

Corollary 7. Consider k many primitive polynomials fi{x), fa(x), ..., filx) having de-
grees dy,da, ..., dy respectively (the degrees are pairwise coprime). The average of degree
of the t-nomial multiples (with degree = 8) of nf=l frix) is fived and it is equal to
[{# — 1)/ t]d, whew § is the exponent qf]_{f=l frix)
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Prool. Let f{x) = Hf=| Srix). Since each f (x) is a primitive polynomial of degree 4, ,
all the conditions of Theorem 7 are satsfied. So,

b Diai i W -

_— Ll

= ——1
Ly I

Hence, we prove that the average of the values in distrbutions X 94600 gnd yldi.dis
are same. Next we consider the square of the degrees of tinomial multiples of HL | e x),
the observation of item 2.

Theorem 8. Take & many primitive polvaomials fi(x), faix), ..., Selx) over GE(2) hav-
ing degrees dy, da, ..., dy (pairwise coprime) and exponents e, = 29 _ 1, for 1<r<k.
Then the sum of squares of degrees of trinomial multiples of fix) = fiix) faix)--- filx)
with degree < ¢ =e1e2--- e iy

2 k (e —1)e(2e—1)
€ kI =1 _ =
6 J.I;I| (Z B3 12
1 %=1 "-"n.-_lr.a; ej—1
L X —1}'(an) 3
r=1 ArClen,e2.....ex) ejeAr b=I

where |A,| =r.

Proof. Similar to the proof of Theorem 6, considering all the rinomials x'* + x* + 1 of
Flxywith 1< =iy = efor 1 s<ny3, wehave

"y _ng3 My
2% 2= 23 7+Z{r~ + s ).
i=l 3 s=l
Now we will see the possible values for i, f, in the range [1,e — 1]. 1L is important o
see that this is not exactly similar to that of the proof of Theorem 6. We show that

(1) for any rinomial multiple x' 4+ x/ + 1 of f{x), where 1 <4, j < e, we getimode, % 0
and jmode, #= 0 for all 1 <r<k,

(2) for any integeri with 1 <7 < ¢ andi mod ¢, 2 O for all 1 <£r <k, we can gel a trinomial
multiple of f{x) where i appears as a power of x,

which implies that the only integers that appear as a power of x in a trinomial mulliple are
of the above form. The proof is as follows.

Consider a trinomial multiple ' + x/ + 1 of f(x), where 1 <i, j = e. Note that,
gimeder o pimoder 4 | jea multiple of f,(x), for 1 < r<k. Suppose that i mod e, = 0 for
somer, 1<r<k, thenwe get v/ ™% = O0mod f, (x), whichis not possible. Thus we have
imode, # 0 forall 1<r <k Similardy we can show that j mode, # Oforall 1<r<k.

On the other hand, consider x' + 1, where 1<i = ¢ and i # Omode,, for all r =
1,2 ey k. Then x' ™ ¢ 4 | isnonzero and # | modulo f,(x) for 1 <r <k. Since _f,,{.r}l
is a primitive polynomial, the set of all nonzero elements modulo f(x) can be identified
by x/ mod f,(x) for 0< j < e,. Thus we will get ' ™% 4 1 = x% (mod f, (x)), for some
L, 1<l = e ie, x' ™9 4 ol 4 1 ig 4 trinomial multiple of f,(x). By using the Chinese
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remainder theorem [8, p. 53], we get a unigue integer ! mod ¢, where | = [, mod &, for
1 <r<k, as e,'s are pairwise coprime. Thus we have a trinomial multiple ' + ' + 1 of
fix).

Hence the only possible values for i, | j; are f such that 1< = ¢ and ! % 0 mod e, for
all 1< r < k. Then the summation can be wrillen as

"y

e—1
Y Ul+i =Y iP-Tz
=1 i=1 el
where S={v’: 1<y =eandy =0mode,, foranyr, | <r<k}.
Consider the sels

2
5 = !L’E,{E-EJ-}Z _____ ((; - 1) -e,) ] for 1 <rsk.
F

k 3 .
Observe that | J,_, 5 = 5. We now calculate Z:t.__g- E
principhe.
Take distinet integers ay, az, ..., a, in the range [1, k] for 1< r < k. Now consider
I'"l:;,=l :'-'}-'f, . which contains

using inclusion and exclusion

r r r O
¥ ¥ ¥ ¥
l_.[ 'L,:n'.-f_~ 2= H ‘?n".‘._ ----- ef l_[ ‘-’g’.’l.f —1 N l_[ L’ﬂ*_.
g=I1 g=I g=I g=I
Hence,
r lef n;-—J 25 —11
2 2
Z T ( 1_.[ '?h'.-f_) Z b
-:'.'-|"L|:l_:I.'!u-..‘.l_f g=1 b=l
Denote Ay tobe asubsetof {ey,e2,. .., e} with |A,| = r. Finally,
Eo= X I
ze8 3'""&—1 5,

k-1 u.-.fl'[,_lr_,Ir ej1—1
= Z Z 1’_1}-1'+| ( l_[ EJ_'Z) Z bz
J e}

r=1 A, Cleg,ea,..., & EA, b=l

So,

"y S g N BFid 4

Y i =B 4 Y 64D ="L T Aoy

5= 3 s=l1 3 i=l el
Hence

i

b o np3 a2 le—1)e(2e —1)

§ ===
2l =t 12

1 k=1 ) . lef I-E:_lr.’l; gj)—1 .
T T |ew ( I ) . ®
2

b=l
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From Corollary 5, we have the exact formula for the number of trinomial multiples (having
degree < e) of f(x), whichis 2°~'[T¢_, (2%~! — 1) and this is the value of n ;3. Hence
the proof. [

As in the proof of Theorem 5, one can approximate Ny ; as [1/(r — 1)!]2%7 =2 Now
let us estimate considering the lower bound

&
((r — DT Mg s

r=1

mentioned in Theorem 4. Approximating

Ng.' . as 1 2:.’; (r=2)

(r—1
wie obtain

_}{Ei_J :.f,:] =2

k I 1
—pht! 2= ((r— DN - R
s J'Dl L r=1 (f —1)! : ir—1)

1 ; :
= —Iz"“‘-], whered = ¥ d,,
(r—1)! ey

is the degree of HLI Flx).
Remark 2. Considera primitive polynomial f{x) having degree d and a polynomial g(x),
which is product of k different primitive polynomials with degree ), . .., dy (pairwise co-

prime), where d = d| + - - - +dy.. From the above discussion, it follows that the approximate
count of the -nomial multiples of fix) and g(x) are close.

From the distribution, it is expected that there are

((£0)/(20)) e

number of --nomial multiples having degree < c. Consider that we need the lowest degree
t-nomial multiple (a single one) of HLI Jeix). Thus we expect

(D) s
((,2)/(.2) e=mzemr

: k i
Now & = [],_;(2% — 1) 2 29 Then we get that ¢ = 24/0-1),
Note that the attacks presented by finding r-nomial muliples of proc ct of primitive
polynomials require at least one fnomial multiple. Consider a scheme  ing primitive
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polynomials of degree = 128 11 the designer uses an 8-input, 3-resilient Boolean functon,
then attacker has to consider product of at least 4 pnmitve polynomials. Thus the degree
of the product polynomial will be = 312, In such a scenaro, the degree of the lowest
degree r-nomial multiple {of the product polynomial) will be approximately as large as
2236 2170 2128 for p = 3 4, 5, respectively. This shows that in such a situation the attacks
presented in this direction (see [1]) will notsuceeed in practical sense. However, for ¢ = 17,
the approximate degree of the lowest degree r-nomial multiple will be 22, which is at a
much lower degree (though there is no attack known with 17-nomial multiple). Thus, the
work presented in this paper clearly identifies how the parameters should be chosen for safe
design of stream cipher systems based on nonlinear combiner model given the currently
known cryplanalytie methods. On the other hand, existing systems can also be revisited 1o
see whether those are still secured given the computational power available now a days.

5. Conclusion

In this paper we have discussed results on multiples of primitive polynomials and their
products. We identify a class of primitive polynomials that are not recommended for cryplo-
graphic purpose. Further, we analyse the complete class of primitive polynomials in general
and show that generally the sparse multiples occur at a relatvely higher degree. Similar
trend is true For the polynomials which are product of primitive polynomials having mutually
coprime degree.

Number of questions are left open in this direction. Given a primitive polynomial (or a
product polynomial), no general algorithm is known yet (except the exhaustive search) to
find the minimum degree nomial algorithm. The problem seems 1o be at least as hard as
discrete log problem, though no theoretical proof is known yel.

The exact enumeration of -nomial multiples of product of primitive polynomials for
t = 3 is an important theoretical question. Also it is interesting o see what happens when
the degrees or exponents are not mutually coprime. The solution of Conjecture 1 in Section
5 is imporant from cryptographic perspective.

We demonstrate some results in terms of statistical distribution of degree of the nomial
multiples. The question on average of degrees is completely solved and the case for average
of squares of degree are partially solved. It is not known what happens 1o the average of
some power of degrees. That analysis will strengthen the claim that the distribution of the
degrees of r-nomial multiples (having constant term 1) of primitive polynomials (or product
of primitive polynomials having degree mutually coprime) is almost indistinguishable with
the distribution of maximum of the tples having size {r — 1).
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