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ABSTRACT A mew model combining parametvic and semi-parametvic approactes and following
the lines of a semi-Mavkov model s developed for muldti-stage processes. A Bivariate sojoum
time distribution devived from the bivarate exponential distvibution of Mavshall & Olkin (1967)
is adopted. The results compare favourably with the usual semi-pavametvic approgches that have
been in use. Our approgch also has several advantages over the models in use including its
amenability to statistical  inference. For example, the tests for symmetry and also for
independence of the marginals of the sojourn time disteibutions, which were not available earlier,
cant ow be conveniently derived and arve enfranced in elegant forms. A wnified Goodness-of-Fit
rest procedure for our proposed model is alse presented. An application fo the fuman resource
planning imvedving real-life data from University of Nigeria is given,

Key Worps:  Bivariate exponential, multi-stage processes, semi-Markov, semi-parametric, human
resource planning

Introduction and Motivations

Population models of multi-grade systems have been discussed by a number of authors and
have also been applied in a number of ways. The grades normally correspond 1o recogni-
zed divisions within the system like grades of staff in a manpower system, level of com-
mitment Lo a job, ete, as shown in McClean { 1980), Gani (1963) and the references therein.
References on their applications to biological systems, phammacokinelic processes,
epidemiology, etc may be found in McClean (1978). However, it seems that in all these
areas, no work has so far been done using a multivanate modelling approach.

This paper is aimed at unifying the existing models by employing a joint diswibution
function in estimating the sojoun time of individuals in a multi-stage process. With this
model, it will now be possible 1o evaluate the conditional probability of sojoum time in
any state given the sojourn ime in the previous state. This model also enhances the use
of statistical tests such as tests for independence and for symmetry of the sojourn times.
The model assumes naturally that the sojoum times in different states are dependent on
their immediate past states. Estimation of sojourn times for event history can throw
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light on how the process works and help in planning for the future, e.g. as of the sojourn
times in different stages of a disease like cancer or AIDS.

Research has shown that for a chronic disease like breast cancer, women under the age
of 50 years have a shoner sojourn time than women aged between 530 -74 years (Tabar
et al., 1995). Some methods for the estimation of sojourn time using a specific sojourn
time distribution can be found in Day & Walter (1984), and Paci & Duffy (1991).

Chen & Porok (1983) used a non-parametric method and split tme into discrete inter-
vals. The use of Markov models for the natural history of a disease process from disease
free state to the preclinical-screen detectable phase (PCDC) and then to the clinical phase
can be seen in Duffy er al. (1993) and Chen et al. {2000).

Many authors have proposed the use of multivariate exponential distributions to model
lifetimes of components of a multivanate system, see, for example, Marshall & Olkin
(1967) (MO henceforth), Block & Savits (1981), Basu (1988). Several tests of the
parameters of these multivariate models have also been developed in SenGupta (1995)
and these have enhanced the uscfulness of these models in statistical inference.
Here, based on both practical and theoretical justifications, we enhance the multivadate
exponential model of MO o model multi-stage processes in general and data from
human resource domain in particular. Some of the justifications for this choice are as
follows. First, exponential distribution is a commonly adopted model for the promotional
time in each category. We further believe that promotions are usually based on merit and
efficiency rather than on the duration of service. This implies that the lack of memory for
promotional time s only reasonable to enforce and this is a characterizing property of
our chosen marginal distributions, i.e. the exponential distributions. Second, promotions
for each category are usually (save out-of-turn merit promotions) given after the manda-
tory eligibility period at certain intervals of time at a pre-fixed date, say January 1. This
gives positive probability of exactly equal lengths of time for successive or several pro-
motions. The chosen model encompasses such sitwations sinee it gives P (X =Y) =0
for the two marginal random variables X and ¥, This is not true for the other familiar
generalizations of the univarale exponential distribution. Third, as pointed out by a
referee, the existences of candidates who are high-fliers 15 only w0 be expecied. In
academic cases, the proportion of such cases may be guite high implying higher
probability of promotion at the eadier years rather than at some distant year — again
a properly possessed by the exponential distribution. Finally, we note that usually the
professional characteristics of an individual tends to persist and, as driving forces,
should yield similar results for the transition of the individual from one category Lo
another and to the next, elc - ie. incumbents with early (lale) promotions at the
initial categories are expected w receive early (late) promotions at the subsequent cat-
egories wo. This fact establishes that the correlation of promotional times for different
categories should be taken to be positive. Here again, our chosen model guarantees this
requirement of the relevant correlation.

Several semi-Markov models for human resource planming are available. These models
were developed using different approaches and applied o different aspects of human
resource planming. The continuous ume semi-Markoy modelling approach may be
found in Mehlmann (1979), Bartholomew (1982} and McClean (1993). They defined
the force of transition or hazard rate from one grade 1o another given the duration in
the first grade and then used it 1o derive the probability that an entry into a grade will
move o the next grade given the holding time in the carlier grade. They also vsed the
method of maximum likelihood estimate 1o obtain the probability of eventual transition
from one grade 1o the other. Mehlmann (1979), McClean ( 1980) and Bartholomew er al.
(1991} discussed the other version of a semi-Markov model as a renewal Lype equation.



Downloaded by [Indian Statistical Institute] at 04:58 23 August 2011

Maodelling Multi-stage Processes through Multivariate Disiributions 177

Their approach defines the probability of an individual being in a state at time ¢ given that
the mndividoal was in the earlier state at time zero. They vsed it to derive a renewal Lype
equation for predicting future manpower structure. There have also been generalizations
o non-homogeneous semi-Markov models m Vassilion & Papadopoulou. (1992) and
McClean et af. (1998). Some of these models assume time homogeneity while the non-
homogeneous ones divide the calendar time into a succession of time windows. The
approach in this paper does nol require those assumptions since it is based on observed
sojowrn times. However, we recall the result from MO that an undedying multivadate
Foisson process yields their multivariate exponential distnbution. Hence the condiions
driving such a process are being implicitly assumed here.

The preliminary notions for the parametric and semi-parametric models are derived in
the next section. The section after discusses the models and estimation of parameters
including some statistical tests, such as the test of goodness-of-fit for a sparsely distributed
contingency table, test for independence and the symmetry test for the marginal of the
Bivarate exponential distribution. In the fourh section, the model and methodologies
developed here are applied to the real-life data on promotion times for facully members
in University of Nigeria. The fifth section contains the suggestions for further generali-
zations and concluding remarks.

Preliminary Notions

Consider a system with grades 5§, ..., Su. wWhere the length of stay in 5 conditional on
eventually making the transition to S, has a probability density function (pd.f) fi(0,
with distribution function Fy(t) and survivor function

L =]

Gilt) = 1 — Fj;(t) =[ Sitahd P L=l (1)

T

(In many applications, e.g. in promotional data where demotion is ruled out, we will have
i = j.) The corresponding p.d.f. of time spent in S; is fi(1) with distibution function Fr)
and survivor function

La el

Giti=1— Fin) ZI _,ﬂ[.'.'::lrlil.' (2)

I

Consider now the case of grouped data, as in a contingency table, with 2-way classifica-
tion first. Let the random variable X; denote the sojourn time in S, { = ij. Let there be R
and K ‘time-intervals’, defining the classes in the contingency table, for X; and X; respect-
ively. The data may then be visualized as a B x K contingency table of the two factors §;
and §; at kevels R and K respectively. This table yields the RE ‘cells” for the joint dis-
tribution of X; and X;, the fjth cell comresponding o the joint event that X; and X; are
in the time-intervals [, 1)) and [£, #4)) respectively, r=1,... . R.k=1,..., K.
and R and K, i.j=1.....m. Then,

plx = 1l =2 40 = plx = 20, x; = 7]/plx; = A7)
Similarly,
plx; < ri".:':a.-.', = rj_‘j] =plx = rf_”,.-.;,- = r:‘c"."]I.-’JI'J[.-.'J = ff.':']
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P[-':J < fm,_ . rLI‘J] P[ G = r-: j] —P[ Y = = rf..lfl] +P[ o= fm :} rLI‘J]

ply = f{":'p., =" = {1 —pl; = " - ply; = r'i.ﬂ]

+plx; = 0.1 = (01} /plx; < A7) )

s

Let the joint p.d.f. of the ILnglh of time spent in §; and §; be given by h; (14! }l with
distribution function H,u,frf_” i Ny and survivor function

E;J,J'[.!‘E.I:IJE.:I} _1 _HJ.‘I{'rE-J:Iﬁ-FE.:I} . r r By ooy ()
j;rl ‘I.':.I

Define p; (1", f':‘”}l to be the probability that an individual will spend less than or equal to

0

time in §; and less than or equal to ¢ time in 5. Then

P Ef'il'.l I
i

)= ple; = 47, x = fi".j] (5)
It can easily be shown that equation (5) s equivalent to
=1—plo =" —ply = 17+ plo = 1. x5 = 1] (6)

Then, the cell probabilities can be expressed as follows

P <X, <49 W <x, <4

.l-l-l" E+|
_ (i i) I ) i
=plu <.y <f,]-pl<g '-.1'5rJ.:+|]_:"’['fJ5"+I"f."“':r ]
+plx = 0,5 < ] (7
= FyD D A R (o)
= Flt i) — FOC . 80 — Fl 0 + FU, 10) (®)

where Flab) = plX; = a Xy = b)is the cumulatve distribution and caneasily be obtained
from equation (6).

The Maodels

We consider below both the parametric and the semi-parametric basic models.

(1) The Parametric Model
Given the states of a multi-grade process, the probability that an individual will spend
less than or equal to /' ime in §; and less than or equal to ri":' Lme in 5; gives sucha
bivanate distribution as
P
TR I , s
i) = ey, xphdgdy (%)
o Jo
This can easily be evaluated using equations (5) and (6).
(2) The Semi-parametric Model
There is a probability that an individual spends 1/ time in §; given such an individual
eventually moves to §; with a certain foree of transition and then spends time fl""' in §;.
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We assume that the time spent in §; is independent of the probability dictating the
force of transition from S; to §; but it possibly depends on the duration of the individ-
ual’s stay in 5. Then the probability of such an occurrence is given by,

pla = 2 plsi/x)ply = rl".jl.-’.-.',,a;,-] =plu = x= rl".]]pf:.",-,.-‘.r,}

= :LJ'(rf-J]} r’ r* .hl.‘l-f.l'” .TJ-::ILl[qu_'J- f]_ﬂ}
( 0

}

where pls;/x] = z; (1) is the force of transition from §; to §; at duration £ and its
Kaplan—Meier estimate (McClean, 19807 15 given by

(40
it = ”’;':ﬁ and n. = Z Efa,_J-frffj}

L YO
where n;;(1") is the observed frequency in ijth cell at duration /.

We note that the force of transition depends on the conglomeration of candidates as a
totality and is nommally evaluated from a priod information on this group whereas the
time spent by individuals in §; may very well depend on the amount of time spent in 5,
by those very individuals. Furthermore, if we have Markov transitions between grades
then the duration of stay in each grade is exponential and does not depend on the destina-
tion. If instead, we consider semi-Markov transitions, then we may include our knowledge
of the distribution of length of service before leaving, and also allow for the fact that the
length of ime spent in a state may depend on the destination as well as the present grade of
the individual (MceClean, 1976).

The Bivariate Exponential Distribution

Several bivanate exponential models may be considered given the basic assumption
of dependent sojourn times, and the vsual practice of modelling univariate sojoum time
by an exponential distobution: it was just appropriate o adopt the model given by MO,
In justifying the use of this model, we considered that piX) =X5) = 0. If X| and X5
are sojourn times before promotion then it is much more likely since management
normally meet at a particular time of the year to take decisions on such matters. The
disribution function of this bivariate exponential model (henceforth, BVE) is then
given as follows:

PX) =2, X o] =exp(—Aix — Aaxs — A max(xy,xa)) (11}
The bivadate model proposed in MO has the marginal exponential distributions given by

explids + Al 8=12

A=A+ A+ A2 (12)
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Then,

EiXj)=A&+A26=12 and

CovXi, X2) = AnfACA + ApXAa+ 4] = 0
Adopting the method of moments 1o estimate the parameters of equation ( 11), we have the
following three equations,

N=A+Ap. =172

T = Enx) = A A+ A + (e + A7) (13)

where we are wsing the notation EY =Y =EY to denote the sample average of
viof = 1...o,n, which estimates the cormesponding population moment as 15 done in the

method of moments.
Then it follows that

A=@+n)imAn=3"+5 - Lh=d+5h=A+5" 4

Some Statistical Tests: Goodness-of-Fit Test

To determine the adequacy of the BVE distribution, the power divergence Goodness-of-
Fit test of Cressie & Read (1984) can be used.
The test statistic is given by:

; ar ar ) )
ﬁ“_ﬂfn+1}zznu[(_y) _1]’ SEeneE =

where ny is the observed frequency, Ej is the expected frequency in the fith cell. The
expected frequency E;=n. I1; and I—LJ is the estimated probability of an individual

who spends 1" time in §; and r“lj imein S, r =1,....Randk =1,....K

i)

e, Iy =plr] it

=X ‘”+|sfk =X = J:+I}

wherne H is obtained from equation (8) by using the estimated A,,.h and A,; and then
ruplm_mg E; by E =n..1l;. For this test, "'f is equivalent to ¥ when 5= 1. ThLy
mLumandDd the statistic with 5= 2/3, which they found less susceptible than ¥ to
the effects of sparsely distributed data.

Test for Independence

The test for independence of X and X» is conducted using the test statistic:
E"l ek 'EJ
=y (16)
i 'E

where v is the number of estimated parameters. We do this under both the parametric and
the semi-parametric scenarios.
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(4) The Parametric BVE Approach
The probabilities [, and [T  of the exponential marginal distributions for the various
time intervals under mdeLrﬂLnLL were first computed. These estimated probabilities
from the marginal distnbulions are given respectively as 1_[J = I'.f. Are~Mi® dx, and
1_[_‘l = [.. Az dy, for the respective time intervals. .

Then the expected frequencies were obtained as E =n..II; 11,

(by The Non-parvametric Contingency Table Approach.
The usual non-parametric test is implemented with the expected frequencies given by
Ej=n;n /n. .. where n; and n; are the marginal totals in the ith row and jth column.

Test for Symmetry of the Marginal {under Dependency)

The test for symmetry could be done by first using the method of moments on equation
{11) 1o obtain the estimates for the common {under symmelry) parameter ) = A = A*
and Aja. where,

A=xmm G FE N A=0 +E - A
A=A - (E+EYRET +5D) (17)

Furthermore, I1;; for the given data was obtained by using the method of evaluating ijth
cell probabilities as inequations (7) and (8) un_ld using the estimates A = Ay = A% and A2,
Finally, the expected frequency is E; = n. 11

The Trivariate Exponential Distribution

The BVE model extends easily 1o the multivariate siwation. In particular, we illustrate this for
a three-stage sojoum time with the survival function for the trivariate disiribution given as:

PX) = 0, Xa = x00, Xy = x3) =exp(—Aj0 — A — Ajamax (x, 1)
— Ay max iy, ) — Aymax (. xy)

(18)
— Ayay max (x), Xy, x5

l‘:ﬁ-f:"iuj:"a-ll’l = 0;i # _1’-: f-,_f- = 1,2,3.

We note that all the lower dimensional marginals will follow the exponential distribution
and, in particular, the two-dimensional marginals of the above distribution are BVEs and
the one-dimensional marginals are exponentials.

Estimation of Parameters

Let, A=A 4+ A 4+ Ay + A + A 4 Aoy + Ao

We shall adopt the method of moments in estimating the parameters of equation (18).
To obtain a more compact notation for this distribution, let § denote the set of vectors
(51, 32.53) where cach 5; =0 or 1 but (5, 52, 53) 2 (000). To do ths, it is convenienl 1o
replace the parameters A, by the new pammeters g, s £ 5§, defined by g, = Zm;_.“ A,
i.e. g, is the sum of all A, such that some coordinates are 1 in both r and s. For
example, with m = 3, g 15 the sum over all A, where 5 equals 1, then,

o= A FAne+ Ao+ A S An +Ap + A+ A

S0, A=g|||.
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It then follows that,

1 00 1 1 0 1 Ay
01 0 1 0 1 1 Aa
o 0 1 01 1 1 Az
(Z100. Eo10s oot 110 E10 B 21)) =11 1 0 1 1 1 1 Aga
1 01 T 1 3 4] ks
01 1 1 1 1 1 Axy
11111 1 A
e g = MA, say.
Since M 1s a non-singular matrix, we have,
A= Mg (19)

We recall that the moment generating function of a tdvariate exponential diswibution
function is given by

515253
g+ 8+ 8+ 5
+igow+ 507 (g + 51+ 507 (g +507 + (goon +5307' )

D5, 5,5) = [fgu 0+ 51 + 3527 (g +31)7"

+ (g1 + 52+ 83) " [ Zoin + 52 )y + (g1 + 830 I J"] (209

We obtain seven equations 1o estimale the seven parameters by the method of moments.

The first three sets of equation (21) are obtained from the univariate exponential margin-
als, while the next three are obtained from the BVE marginals and given in equations (22)
and (23). The seventh equation, equation (24), is obtained from the full wivariate exponen-
tial distnbution.

1 1 1
N=EEXi=— a=EXo=— 13 = EXs = — (21)
Hlo0 o B
iF i 1 1 1
o =EXiXs = — = — 4+ — (22)
deydsal, —, —0 £ \gio  Eolo

1 1 1 1 1 1
nn=EX\Xy=— (— + —) i = EXa Xy = — (— -+ —) (23)
S WFion ol S WEmo S

The calculation of the third moment is somewhat tedious. Afer some computations and

simplifications we arrdve at
| I | ( 1 1 )
f=n=n=0 SU1 LEL0 \E100  Fo10

1 1 1 1 1 1
il L Ly 1 L, 1Y) on
o Voo oo ol VEHouo o

i

Xxg = EX XXy = ———u
e 19273 s sy
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Table 1. Observed frequencies for the groups

Xa
X, i { 3 =53 3+ 4 >4
0= 1 i) 38 20 11 B
1= 2 34 28 16 14
2= 13 20 TN 10 2
34 13 3 3 2 4
=4 0 4 % [ 2

where we are using the notation EY =7y = EY to denote the sample average of
vioi=1,....n, asisdone in the method of moments.

Then it follows that solving these seven equations simultaneously will yield the estimate
of g say &. Then, from equation (19), we easily get the estimates of the parameters, A.
Finally the method of moments guarantees the optimality properties of consistency and
asymptotic joint normality of these estimators.

Example

The models and methods of analysis developed above are now illustrated wsing the data
collected from the personnel department of the University of Nigeria, Nsukka durng
1970-1995. Complete data on 334 stafl who have passed through the promotion process
from Lecturer to Senior Lectrer and then to Associate Professor were taken. We have
considered the actual waiting tme in years, beyond the mandatory eligibility period, until
notification for promotion is given. We define the random variable X; to be the sojourn
time in grade S;.i = 1.2, where 1 and 2 refer to Lecturer and Senior Lecturer respectively.

The set of data was grouped in Table 1 toenable us to get the consolidated picture of the
joint distribution. In addition, Bartholomew et af. (1991) have recommended grouping of
even relatively small sets of such data.

Results and Discussions

In our quest for fining a model o our data, we considered several bivariate exponential
distributions. Based on the assumptions for their use, we decided on the BVE distibution
that readily gave a good fit to the set of data. The striking feature in the data is the equality
of both variables at several points, which unequivocally advocates the choice of the
above model. The basic assumptions for the use of that model were also found to be sat-
isfactory. The values of the estimated parameters of the distribution were obtained as
Ap = 0544, =0062.42 =0.05. Figures 1(a) and (b) display the plots (using the values
of the estimated parameters) of the cumulative and survivor distributions of the distri-
bution respectively. A summary table of the power divergence lest o determine how
good the model fits the data is given in Table 2. The values show that the test is not
significant at 5% levels and 21 df., the corresponding cut-off value being 32.67. We
thus adopt this model for our data.

Adopting this model, we conducted a test for independence of X and Xa. The parametric
test for the null hypothesis Ho: Aj2 = 0 gavethe ¥ value of 45.33 with d.f. = 22, See Table 3
for the estimated frequencies and marginal probabilities used in this test. A similar Lest was
done using the non-parametric contingency table approach and gave the y* value of 29.78
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Figure L. (2) Fitted BVE distribution function of Marshall & Olkin, (b) Survivor distribution
function of the fitted model

Tahle 2. Summary result of test of Goodness-
of-Fit using power divergence test

A Chi-square values
1 2862

2/3 28.60
0.1 28.52

0.5 30.62
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Tahle 3. Estimated frequencies using the exponential marginals under independence

X
X, 01 1 =2 23 34 =4 I,
01 74.70 41.06 277 1262 17.25 0476
oy 39.01 21.45 11.89 6.59 9.01 0,249
Fie 19.94 10.96 6.0% 337 4,60 0.127
34 10.17 5.59 310 1.72 2,35 0.063
=4 13.16 7.23 401 i, 3.4 0.084
I, 0.444 0,244 0.135 0.075 0102

with d.f. = 16. The observed frequencies are given in Table 4. Both these tests are signifi-
cant at the 5% kevel Thus we conclude that Xy and X are not independent.

The test for symmetry was also done adopting the BVE distribution. Under the hypo-
thesis of symmetry Hy: Ay = A, the estimates of the parameters were A=A =058
and A =0.05. These values were used for evaluating the required probabilities. The
¥ value was 46,31, which implied significance at the 5% level of significance. We con-
clude that the model is not symmetric. See Table 5 for the estimated frequencies under
symmetry. Tables 6 and 7 show the expected frequencies for the parametric and semi-
parametric models respectively. These were obtained from the cell probabilities calculated

Table 4. Estimated frequencies using the non-parametric approach under independence

X

X 0—1 1 =2 2= 3 | =4 1y
0—=1 62.53 33.06 2270 10.75 11.95 141
1 =2 4581 26,96 18.52 877 078 115
23 20.84 11.02 7.56 358 308 47
=4 1.0 5.86 4.03 1.91 212 25
=4 11.53 6.06 4.19 1.9% 228 26

i 157 83 57 27 30 354

Table 5. Estimated frequencies under symmetry of the BVE distribution

Az
X 0—1 1 =2 2= 3 J—d =4
0—=1 7873 36.67 2142 1239 16,85
1= 2 | 31.68 15.40 B35 OR4
2= 3 14005 917 6.05 2.55 297
3= 4 10.96 6.17 346 219 1.02

=4 9.13 1.54 4.21 234 297
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Tahle 6. Estimated frequencies for the parametric model

X
X 0=1 1 =2 2=3 3= 4 =4
0= 1 Bl1.449 3692 18.87 1278 [i%:)
1 =2 54.52 24 .50 11.01 2.51 8.2
2—=3 241 12.07 1.29 329 336
3 =4 12.45 6.06 361 216 1.98
=4 503 807 432 236 200

Table 7. Estimated frequencies for the semi-parametric model

Xz
X, 0—1 1 =2 2—3 3=+ 4 =4
00— 1 TH.59 3682 2142 12.57 T.08
1= 2 52.71 2474 11.65 6.20 T7.05
2—=3 18.97 11.61 740 347 390
3—=4 9.17 6.20 347 219 219
=4 828 TO8 393 2.23 283

as described earlier. With the satisfactory result obtained from these tests and tables, it is
then obvious that this model has been an appropnate choice.

Conclusions

By determining the conditional probabilities of length of stay in the grades, one can easily
assess the level of dependency of the length of stay in the two grades and on the individual
promotion prospects on entry to a grade. The above model can also be used in predicting
sojourn times m different grades — this work 15 ongoing.

With the joint distribution function, one can also determine the expected times spent in
each pant of the system given the grade of entry. We may similarly use our above formu-
lation to investigate the movement pattern prevalent in the system. Yet another important
application of this approach is that we can obtain the probability of an individual®s sojourn
time in the present state given the sojourn time in the last state. Further, the extension of
this approach o momre than three grades may be considered.

Nonetheless, there are some limitations in this study. For example, this model cannot be
applied if the marginals do not follow exponential distribution. We note that fitting expo-
nential distribution to length of service has been criticised in Bartholomew et al. (1991).
They suggested the use of lognommal since it always has a peaked diswibution. This limit-
atiwon can also be avolded by simply invoking other multivanate exponential or gamma
distributions in our general approach. However, for promotional data the length of stay
in a grade 1s wsually shorter than the length of service. We observed that exponential
distribution did give good fit 0 each marginal modelling this short stay in a grade
before moving to the next higher grade and the est for adequacy of fit of the model
confirmed that the BVE model is guite a reasonable choice.
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