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University of Waterloo, Indian Statistical Institute and Temple University

We show that the balanced crossover designs given by Patterson
[Biometrika 38 (1952) 32-48] are () universally optimal {170) for the
joint estimation of direct and residual effects when the competing
class is the class of connected binary designs and (b) UQ for the
estimation of direct (residual) effects when the competing class of
designs is the class of connected designs (which includes the connected
binary designs) in which no treatment s given to the same subject
in consecutive periods. In both results, the formulation of 0 s as
given by Shah and Sinha [Unpublished manuscript (2002)].

Further, we introduce a functional of practical interest, involv-
ing both direct and residual effects, and establish (c) optimality of
Patterson’s designs with respect to this functional when the class of
competing designs is as in (b) above.

1. Introduction. Crossover designs (repeated measurement designs or
change-over designs) in » treatments on n experimental units in p periods
are useful in a broad spectrum of research areas, including agriculture (2],
dairy husbandry [3], bivassay procedures [4], clinical trials |5, psychological
experiments [8] and weather modification experiments [17]. The advantages
of the crossover design are its cost and the elimination of interunit variabil-
ity. In the following, we assume that each treatment produces a direct effect
in the period of its application and a residual effect in the subsequent period
of its application.

Williams [23] gave designs for p = v which were balanced in the sense
that every paired difference of direct (residual) effects was estimated with the
same precision. Patterson [18] gave combinatorial conditions for balance and
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also gave a mumber of methods for construction of such designs when p << v
and when n is as small as possible. Since p and n are small, these designs
are very attractive to practitioners. All these designs had the property that
no treatment immediately succeeds itself on the same subject.

Hedayat and Afsarinijad [6] showed that when p=wv, a balanced design
is universally optimal (UO) (as defined in [9]) for estimation of the direct
(residual) effects when the designs in the competing class are uniform on
periods as well as subjects. Cheng and Wu [1] showed that these designs are
UQ for the estimation of residual effects when the competing designs may
not be uniform over subjects or periods, but again no treatment succeeds
itself on the same subject. Kunert [10] showed that when n = vf, a balanced
uniform design is UO for direct effects if v >3 and ¢+ =1 or if v > 6 and
t = 2. Hedayat and Yang [7] generalized this to the case where v > 3 and
t < (v—1)/2. The results of Kunert [10] and of Hedayat and Yang [7] were
proved without any condition on the competing designs. However, there do
not appear to be any available results on the optimality of balanced crossover
designs when p < .

Cheng and Wu [1] also introduced what are called strongly balanced de-
signs where each of the v? pairs of treatments oceurs in consecutive periods
for the same subject an equal number of times. They established some strong
optimality properties for these designs. However, these designs require p= vt
or vt + 1 and also require n to be large.

Kushner [14] gave a novel approximate design theory approach to obtain
UO designs for arbitrary values of p and v. Further, Kushner [15] gave exact
designs which are UQ for direct effects for every pair (v, p) for some n.

Kushner's results are very attractive because they do not put any condi-
tions on the competing designs. Their main lmitation is that the values of
poor of n are large. Further, in almost all cases these optimal designs are
nonbinary {on the subjects). An attractive property of the binary balanced
designs is that they are optimal when the residual effects are negligible [9).

Some authors have obtained optimal designs under different models. Kunert
and Martin [11] gave optimal designs under an interference model. Kunert
and Martin [12] considered models with correlated errors.

Kunert and Stufken [13] introduced a model where the residual effect of a
treatment on itself is different from the residual effect when the treatment is
followed by another treatment. An excellent review of the literature in this
broad area up to 1996 is given by Stufken [22].

The balanced designs given by Williams [23] and by Patterson [18] are very
attractive because they have a small number of periods and often involve
a small to moderate number of subjects. These designs have been around
for a long time and are generally believed to be efficient. However, precise
optimality results are rather limited in nature.
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In this paper we establish some strong optimality properties of the Pat-
terson designs. We first show that, within the class of binary designs, these
designs are UQ (in the sense of Shah and Sinha [21]) for the joint estimation
of direct and residual effects. This is a very strong property because it im-
plies UQ for the estimation of the direct (residual) effects and a great deal
more. For the rest of the paper we refer to UQ as formulated in [21].

Next, we establish the UQ property of these designs for the estimation
of direct (residual) effects where the only restriction on a competing design
is that no treatment immediately succeeds itself on the same subject. We
also compute lower bounds for the efficiencies of these designs within the
unrestricted class of competing designs and find that these are very high
(0.99 or higher), giving rise to the speculation that, when the fully efficient
designs as described by Kushner [15] do not exist, these designs might, in
fact, be optimal for specific criteria, such as A-optimality.

Further, we introduce an optimality function of practical interest and
show that a Patterson crossover design is optimal for this functional, again
with the restrictions on the competing designs that they are connected and
that no treatment immediately succeeds itself on the same subject.

In this paper we compare the information matrix for a Patterson design
with the average (over permutations of treatment labels) of the information
matrix for a competing design. This average has a form which is much sim-
pler than the original matrix. Further, we first prove the optimality results
for the model without period effects and then for the model with period
effects. This works well because, when we introduce period effects, the infor-
mation matrix for a Patterson design is unaltered, whereas, for a competing
design, it is reduced by a nonnegative definite matrix.

2. Preliminaries. Let us consider crossover designs where v treatments
are arranged in p rows and n columns. The rows correspond to periods
whereas the columns correspond to the subjects. A crossover design is said
to be balanced if we have the following:

{(a) It is uniform over periods, that is, every treatment occurs t times in
each period.

(b} The design with subjects as blocks forms a balanced incomplete block
design (BIBD).

{c) The design with subjects as blocks and last period omitted also forms
a BIBD.

{d) Every ordered pair of distinct treatments oceurs in consecutive pe-
riods in units A times (any pair of identical treatments does not oceur in
consecutive periods).

{(¢) In the set of ¢ subjects receiving a particular treatment in the last
period, every other treatment is applied A times in the first (p — 1) periods.
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These conditions are equivalent to conditions I-VII given by Patterson.
We shall call such designs Patterson designs. Existence of a Patterson design
implies

p=u, n=uvt, A=tip—1)/(v—1},

where ¢ and A are positive integers. We shall assume that the parameter
values p, v, 1 are such that a Patterson design exists.

The crossover designs given by Williams [23] are balanced with p = v.
However, one can often find balanced designs with p < v and where n is not
too large. For v =4 and p=3, Patterson ([18], Figure 3) gives the following
design with n= 12:

a b ¢ b d d a ¢ ¢ d b
b ¢ a a b a ¢ d b ¢ d
¢ a b d a b ¢ d a d b ¢

Patterson 18] gave several methods of construction for balanced crossover
designs with p< v. Our Table 1, above extracted from Table 1 in [18] giving
designs available for small values of p, is of practical interest.

Table 1 pives designs with the minimum value of n for given values of
p and v when n < 60. Many more designs can be constructed using the
various methods given by Patterson. Further, such designs are available with
p=v=n when v is even and p=v =n/2 when v is odd [23]. Thus, this is a
rich class of designs and it contains many designs of interest to practitioners.

We exclude the case p=v= 2,n = 2t even though for these parameter
values designs satisfyving the combinatorial conditions exist. This is because
in this case neither the direct nor the residual effects are estimable.

Let d(i, j) be the treatment assigned to the jth subject in the ith period
and let y;; denote the response obtained from that subject in that period.
We assume that the y;;'s are uncorrelated with common variance a2 and

(21) E{yij) = p+ i + 95 + Tag gy + Oagi-1.4)s

St b O i et [ 0 ..,-n;ﬁdwﬂ-]. =0 for all j, where E(-} denotes the ex-
pected value of the variable in the parentheses, p is the general mean, and
o, <y, 7 and § are the period, subject, direct and residual treatment effects,
respectively.

A crossover design is said to be connected if  — 7 and § — & are es-
timable for i # i’. All of Patterson’s designs are connected. Let D denate the
class of connected crossover designs using n (= vt) subjects for comparing
v treatments in p periods, with the restriction that, in each column of a
design, adjoining positions are occupied by distinet treatments. Further, let
B denote the subelass of D consisting of designs which are binary in the
sense that no treatment is applied more than once to any subject.

We define vectors ap x 1),y(n x 1), 7(v x 1) and d{v x 1) whose compo-
nents represent the above effects:
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TABLE 1
p o3 1) 3 4 4 4 4 4 ] D 5] ) D 6 [i] [} [}
voo3 T k] 4 ] T 5 13 ] T & 11 13 6 T B 11
n 6 21 Hb6 HH 4 20 14 H H2 10 21 H HH 30D 6 42 HE 22
Let

11, = number of appearances of treatment 7 on subject wu,

i, = nuumber of appearances of treatment § on subject u
in the first (p— 1} periods,

g;; = mumber of appearances of treatment ¢ preceded
by treatment j on the same unit,

{;;, = mumber of appearances of treatment ¢ in period &,

lin =0, lix = litk—1) for k > 2.

We now define the frequency matrices N = (n;, ), N= (Tin)s 8 = (55),
L= (I;), L = (). Further, let diag(r) denote the v x v diagonal matrix
whose elements are the replication numbers for the v treatments in the entire
design. Also, let diag(r) denote the v x v diagonal matrix whose elements
are the replication numbers for the treatments in the first (p — 1) periods
omly.

The information matrix for (7.4, a,~) is given by

disgr) 8 L N
disgd) L N

. nly Jon |’
* Pl-n

(2.2) it d,0,7) =

where I, denotes the identity matrix of order a and J,; denotes an a x b
matrix with all elements unity. (See equation (2.5) in [1].)
The information matrix for (7.4, ) eliminating - is given by

1 1. - 1
diag(r) — ~NIN! S —NN! L--NI,
E{} p p p P

(2.3) I(r,8,alv) = ; disg(F) - 1N L-1N3,,
B B
TE
nlp — E‘I‘F‘

Here Ji is a k x k matrix with all elements unity.
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When the period effects are ignored, the information matrix for (r, §)
eliminating < is seen to be
1 1 -
diag(r) — —-NN* §— —NN
p p

(24) I(t.8|y)= 1
diag(F) — - NN*

. N | 0 I
Usin n'F as a g-inverse of (77
= l[_ %JHP %Irl.:l g I:-‘[rl._r.-

matrix for (7, ) eliminating (o, ) as

I(T,8|c, )

';_I{’"]._ we get the information

(25) iLL‘ - $NJHPL* éLI_.* - émnpﬂ

Y =I(r.dby) - . I

. —LL! — —NJ,,Lf
1 np

For a Patterson design, L = (tJ,,},L=(0|tJ, ,_,),diag(r) = ptI,. diag(F) =
t(p — 1)L,. Further, NNt = p{t — ML, + pAJ,, NNt = ((p -1}t — (p— DAL, +
(p— 2)AJ, and 8= A(J, — I,). We note that, for all designs in the design
class D, the diagonal elements of § are all zeros.

Without loss of generality, we arrange the subjects so that the first n;
subjects have treatment 1 in the last period, the next ns units have treatment
2 in the last period and so on.

This permits us to see that

1,, 0 - [|'|
Nt = Nt 0 1, --- O
l[l 0 lﬂHJ

where 1 denotes an h = 1 matrix with all elements unity.
This gives us
NN'=NN'—-© and

(26) NN =NN'_- 6 _- @' + diag(ni,na,...,ny),

where @ = [0,,8,,....8,]. Here, 8, is the sum of the n; columns of N cor-
responding to the n; subjects where treatment ¢ is in the last period.
It is easy to verify that, for a Patterson design,

O =(t— ML + AJ,, NN =p®,
NNi=(p—1)® and NN'=(p-2)0+1tL,.

For a design d, the information matrix for direct effects, residual ef-
fects and period effects eliminating the subject effects, that is, Z(r.d, cly)
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of (2.3), will be denoted by M,. Let d° denote a Patterson design. The
matrix My for a Patterson design is given by

|- i:tl;j.r—]}H _vt[p—l}H 0 -l
[ —1}) po—1)
_ wt(p—1) tip— 1) (pr —v —1) tip— 1} t
(27) Mg = | - oy I pwr_ m I-}I+ = Ju ;1»[—(1:-— 1),1%_ l]\J .
t(—(p—1)Y i
0 P( 454 )1t. nl, — 23,

Here H=1, - 1, /v.

Similarly, for d € D, let C; denote the 2v x 2v information matrix for
direct and residual effects eliminating the subject and period effects. We
can write C, as

_c.— [ Can wa)
(2.8) Tl Bl = (Gﬂ, oas,
where Cgy; corresponds to the part for direct effects. Cyp0, Cgop and Caoo
are described similarly. Note that Cgy; = C¥,. Sometimes in the sequel we
shall drop the suffix d.
For the Patterson design d”, let Cj; = Cyg+;;. Using (2.4}, (2.5) and (2.8),
we have

t{ip—1 vip—1
PRty g BT i

(29) C; _t((;:ll%{-pu—w—l}H =l
e plv—1) )

3. UO for joint estimation in the design class B. In this section we shall
show that d* is universally optimal (UQ) for the joint estimation of direct
and residual effects when the designs in the competing class are connected
and are binary over subjects, that is, n,, = 0 or 1.

For formulations of UQ one is referred to Kiefer [9], Shah and Sinha [20]
and Shah and Sinha [21]. Here, we shall use the formulation of Shah and
Sinha [21], which may be described as follows.

Let C; denote a v x v direct effects information matrix (resp., v x v
residual effects information matrix; or 2v = 2v joint direct-residual effects
information matrix) of design d. Let g be a permutation of {1,2,...,v},
that is, g € S, the symmetric group on {1,2,...,v}. A design dy having
information matrix Cg, is said to be UO in an appropriate design class if it
minimizes every real valued function ¢(C) (defined on the set of nonnegative
definite matrices) that satisfies the following conditions:

(1) ¢{Cay) = @(Cga), where dg is the design obtained by permuting treat-
ment labels according to g.
(2) C4=Cj= ¢p(Ca) < ¢(Cy), where d and f are any two designs.
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(3) (> wyCaq) < #{Cyq), where wy are all rational weights satisfying
¥ wy; = 1. Here g runs over all permutations in S,.

It may be noted that every convex functional satisties (3). This formula-
tion of UQ is an extension of Kiefer's original formulation [9], in the sense
that the condition of convexity is replaced by the slightly weaker condition
(3) above. See [20] and also [21] for a discussion of this.

A sufficient condition due to Shah and Sinha [21] for dy to be UO is

{3.1) z-u:_ch_q <Cy, for every d.

In (3.1) the w,'s can be any specific set of weights (which may depend
upon d). In the sequel we will use (3.1) when w, = 1/v! for all g € 5..

Let Mg, denote the matrix obtained from My by permuting treatment
labels according to g. We shall first show that

(3.2) Mg = My, /vl

To show this, we shall state the following lemma which is easily established.

Lemma 3.1, Let A be a b = k matriz and let g denote a permuto-
tion on {1,2,...,k} for which the permutation matriz is P,. Then A =
2 gE5 PLAP_,:, [k is a completely symmetric matrizc with diagonal and off-
dingonal elements a and b, respectively, given by

a=Y a;/k and b= (.q— zaﬁ) /1.-(3; wTh
Here s=3,3 ,aij is the sum of all elements of A.

We now consider the various submatrices of My for a binary design and
show that, for each of these, the average over the permutations of treatment
labels equals the corresponding expression for o*.

For any binary design, the ith diagonal element of NNt is .5 n?, =
5 3, My = 1, the replication number for the ith treatment. (This does
not hold for & nonbinary design.) The average of r; over all permutations is
pt, which is the replication mumber for d*. Further, for a binary design the
ith diagonal element of & is n;. The average of n; over all permutations is
t =n/v, the common diagonal element of © for 4°.

Let g be a permutation on {1,2,...,v}. We note that the matrix My, is

P, 0 0
given by My, = Q{ MaQg, where Q, = ( 0 P, 0 )
' 3 o o I

Using Lemma 3.1 and the expressions given in (2.3), one can easily verify
that, if the design is binary and is connected for each of diag(r) — NN*/p, § —
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NN* /p and for diag(r) — NN /p, the average over all g is indeed the corre-
sponding expression for d*. We note here that, for the first two of these, the
sum of all the elements is zero, whereas, for the third one, it is vt(p— 1)/p.

The assumption of connectedness is crucial here. If the design is not con-
nected, NN' and/or NN' would have a block diagonal form where the
off-diagonal submatrices consist of zeros.

We also note that the average for L is tJ,; and the average for N is
{(p/v)don. Thus, the average for L — NJ,;/p is 0.

Finally, we note that for each of L and N the average over the v! per-
mutations gives the corresponding expressions for a Patterson design. This
completes the proof of the assertion.

Now we note that the adjustment for the period effects e is equivalent
to computing the Schur complement. Thus, the Schur complement of M.
is Cg+, whereas the Schur complement of M, is Cy,. Here Cy+ and Cy,
refer to the 2v x 2v joint direct-residual effects information matrix. Since
My =3, Mg, /v! and since the Schur complement is a concave function
[19], we get

Cd. = Z Cdgg'fv!.
g

Using the sufficient condition (3.1), with weights w, =1/vl, g € 5., we see
that 4" is UQO w.r.t. any design d ¢ B.

As shown in [16] and in [21], UO for the joint estimation of two sets of
parameters is a very strong property. In particular, it implies U0 for the
estimation of each set of parameters. It is shown in [21] that the converse
is not true. A design can be UQ for the estimation of the direct effects, as
well as for the residual effects. However, it might fail to be UQ for the joint
estimation of the two.

4. UO for direct (residual) effects in the design class D. 'We now con-
sider the case where the competing class of designs is D, a class of designs
that contains all binary designs. Initially we shall assume that there are no
period effects. We shall relax this assumption subsequently.

The Cg matrix for this case is given by the submatrices of the matrix My
which correspond to the direct and the residual effects. These are the com-
ponents of the information matrix C; for the direct and the residual effects

ignoring the period effects. We write the expressions for these dropping the
suffix d,

Ci1 =diag(r) — NN'/p,
(4.1) Ci2=S8-NN'/p, Cxu=Cl,
Cyy = diag(r) — NN'/p.
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We also write below the expressions for these submatrices for ", the Pat-
terson design,

s vi(p—1
Cii=Can= {pfl}
; wilp —1 . *
(4.2) Cia=Ca12= —ﬁli Cun = (cm}t1
Ol iy = tip—1){pr —v— I}H " t{p— 1}313.
p(v—1) po

Let C denote the average of C over all permutations of treatment labels.
To describe the structure of C, we introduce some notation. We define the
tfollowing:

: 2
3= E E :'n"iw
e , , _ o :
= E {(sum of 1, 's for subjects with treatment i in the last period).

2

Using the expressions for NN and NN in terms of NN! and © given in
(_E.ﬁ} and using Lemma 3.1, one can verify that the matrices Cqq, Cr2 and
Cos have the following structure:

C11: Diagonal element is (p? vt — 3)/pv,
off-diagonal element is —(p“vt — 3)/pv(v — 1).

Ci2: Diagonal element is —(3 — 1)/ pv,
off-diagonal element is (3 —{)/pv{v — 1).

Css:  Diagonal element is (vt(p® — p — 1) — (3 — sl))/pu,
off-diagonal element is (3 — 21 4+ pvt(2 — p)) /pv{v —1).

To illustrate the nature of the computations, we consider Cys. The sum
af all the elements of diag(r) — NN t/p is vt(p — 1)/p. The average of the
diagonal elements of NNt = NN* — © — @' + diag(n;,...,n,) is (3 -2 +
vt)/v, whereas the averapge of the diagonal elements of diag(f) is #{p — 1).
Use of Lemma 3.1 yields the expressions given above.

From these we deduce that

ot — | 7 —
= MI—L Cia=~— A=i H and
pgﬂ a IE 3 —21) —t Al 11} tHp—1
Gy = PP 1) (B -2) —tlvt+p—1),,  Hp—1)y
plv—1) pu
We shall now work with the information for direct (residual) effects ad-

justed for residual {direct) effects and shall use condition (3.1) to show the
UQ property of Patterson designs.

(4.4) :

s
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We show below that both (Cass)~" and (C35,)~" exist. It is then easy to
see that Cjy 99 = C;; — C13C5, Cy for C* and for C are given by

. wvip—-1) v
Ciin= {(v—1) {l Cplpr—v—1) }H and
= 1
(45) Cuna= m{!ﬁ’?t‘” -

(3 -1 =
mmw—n—w—ﬂr4w+p—m}'

We note that Cqp 90 18 the information matrix for the direct effects elim-
inating the residual effects. Further, Cyy 49 is (3, Co/vhn. .

We now show that each of C3, and Cy, is nonsingular. We first consider
Cas. Since tip—1)/pv #0, Css is nonsingular iff the coefficient of H in the
expression for Coyo is nonzero. If this coefficient is zero, rank Cas is unity.
We now recall that the (4 — d§;)'s are all estimable when the period effects
are eliminafed. These continue to be estimable when the period effects are
ignored. Now, estimability of all (§; — d;)'s implies that rank Co = v — 1.
This also implies that the sum of Ce over all permutations of treatment
labels has rank at least (v — 1). We thus have rank Cy; = v — 1 and, hence,
the coefficient of H in the above expression for Cse must be nonzero. From
the expression (4.2) for C3,, it is clear that it is of full rank.

We shall now show that C7; 5 — Cqq99 is n.n.d. To see this, let [;; denote
the value of 1y, in the jth of the n; subjects with treatment i in the last
period. Similarly, let /4; denote the contribution to 3 for that subject. We
now note that 8= 37, 3%, il = X1, 274, Li;. We note that [ = vt.
Further, for the jth subject with treatment ¢ in the last period, one n;, is
l;; and there are (v — 1} other n;,’'s which add up to p — l;;. Hence,

By 2 By + (o= by) = il — 1) +».
It follows that
Bij — 2y > Ejfj —3ij+p=(Lj—1){lij —2) +p -2,
By —ly = -2 +p=(lLi; —1)*+p—1.
Since [;; is 0, 1, 2 or greater than 2, we have
Bij— 2y 2p—2, Bij—bizp—1, Hij = p.
This gives 3 = put, 3 -1 = vi(p — 1), — 2 = vi(p — 2). Using the above
relations, it is easy to see that Cj; 55 = €99, that is, Cj, 4, —Cy.o is

n.n.d.

An application of (3.1) shows that d* is UO (compared with any design
in D} if

Cli22 — Z(cg}u.ﬂfﬂ! is n.nd.
g
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Here (C)11.22 is obtained by permuting treatment labels in C by g and
then computing the Schur complement (C,)11.29. In turns out that the result
is the same as applying permutations g to the rows and columns Cyq 09, that

is, (Cglir.22 =(Cr122)4.
Since the Schur complement Ciy99 is a concave function [19],

(z l.'_—"_.,) = Z(C.l;r}ll-?i"
i 1122 i

Since Cyy 0 = (5 5 Cghi.22, we have

h2zCun= (Z Uq) /o= (Cohrnaa/ot
11.22 g

o

Thus, d* is UQ in D for the model without period effects.

We shall now introduce period effects and consider estimation of the direct
and the residual effects eliminating the period effects. When we adjust for
periods, C gets reduced by an n.n.d. matrix and, hence,

C (adjusted for periods) < C (ignoring periods).
This implies ([19], Section 3.13)
C (adjusted for periods)i122 < C (ignoring periods)iy 22.
We now show that, for o,
C* (adjusted for periods)y199 =C” (ignoring periods)i 2o.

Note that, for d*, the expressions for Cy given by (2.9) and (4.2) differ
only in C3,. For these two cases, the MoorePenrose inverses are Chf =

t;p—EyL—Ly_l ;p;l_y_l H and C55 = tl;p—jl};;};l—}y— l}H - w@_ T J., respectively. Since
Chi9:=0Cn — Cia Cﬁ"g oy, and since HJ, =0, the result follows.
We now have

C" (adjusted for periods)i1 20 = C” (ignoring periods)i; 22

1 ) i ;
> i Z{C_q (ignoring periods)}y;
T
> %Z{Cg (adjusted for periods));; o9-
]

This establishes the UQ property of d° (relative to any design in D) for
the estimation of direct effects.

An analogous argument also works for the estimation of residual effects.
We outline the relevant important steps here. The information matrix for
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residual effects eliminating direct effects is now given by Cwx.1p = Cn —
Cay l'_—"i"l Cia, whlzm Ci"l is the Moore Penrcse inverse of Cq1. The expressions
for C3 41 and Co.n = (32, Cy/v)22.11 are given by

t{p—1){pr —v — ”H-}— tp— l}‘."_ vi(p — 1)

Cin= p(v — 1) pu p?lv—1)
~ _pip-1)—-(B-2)-tv+p-1)
Coon = plv—1) i
o 2
Lte=1), (B-1)

w0 plu=1)pPut—3)

Use of 3 2put,3—-1=wvt(p—1) and 3 — 2l = vt(p — 2) yields
C5s 11 = Coo11. As in the case of direct effects, one can now show the UO
for the estimation of residual effects.

It should be noted that d* is not UQ in the class D for the joint estimation
of direct and residual effects. This has been shown in [21].

It is not known if a Patterson design using the smallest number of subjects
for given values of p and v is UO for the estimation of direct (residual) effects
in the whole class of competing designs with fixed values of p, v and n. Hence,
we obtain a lower bound for the efficiency factor for the estimation of direct
effects along the lines of [15].

First, we note that, for an approximate optimal design, the information
matrix Cyy.99 given by [15] is

= i 1 1
Cumn= T {P— Jress 1—? - m}l‘l
$(C1199) can serve as a lower bound to the ¢ value of the information

matrix for any competing design. Further, we note that bath C;q49 and

Cl199 given by (4.5) are multiples of the matrix H. Hence, a lower bound
to the efficiency of a Patterson design for the estimation of the direct effects

is given by
r»:"=(l— v )/(l_pr,'—-rJ-i—Jl})‘
plpp —v—1) pu(p—1)

On simplification this reduces to

e' =A/(A+v)

where A=v*(p—1)*(pu(p—1) — p—v).

In Table 2 we give the values of ¢* for the 18 designs given in Table 1 of
Section 2.

As remarked earlier, these are very high. Thus, while our optimality re-
sults are restricted to the design class D, we see that Patterson designs have
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very high efficiencies even in the unrestricted class. As remarked in [15],
when p < v, no design can be optimal in the unrestricted class for each of
direct and residual effects. Patterson designs are UQ for each of direct and
residual effects within the class D and are highly efficient even when we do
not put any restrictions on the class of competing designs.

5. A functional of interest. In this section we establish an interesting
optimality property of d* when D is the class of competing designs.

Sometimes, one may wish to look for the best combination of direct and
residual effects. Thus, we wonld like to compare the yvield when treatment
j is followed by treatment ¢ with the yvield when treatment j' is followed by
treatment . This means that we wish to estimate all functions of the form
7; +d8; — 7 — i as precisely as possible. This leads to the minimization of

(5.1) A=3"Var(fi+ 8 — ¢ — by),

where the summation is over 4,4, j, 7 such that i # j,i # i, i’ £ .7 # 7.
Since the variances of estimable parametric functions are functions of C,
we may write A as A(C).

Let CF = g} i] denote the Moore-Penrose inverse of C. It is easy
to see from (2.5) that each of 2, ©® or A has zero row (column) sums.
Expressing A as

A=Y {Var(f; — #y) + Var(8; — §,) + 2Cov(F; — 7,85 — 81)}
and using the above property of {3, © and A, one can show that

(52) A=2v|{(v-1) + (v - 2}?}{2.:11-1- + z,-‘iﬁ} —2(v ~ 1}2%]0{

where @2 = (a;;), A = () and © = (#;;). We note that {5.2) may not hold
if row {column) sums of each £2,© and A are not zero.

TABLE 2
Efficiency lower bounds for Patterson designs for direct effects

p v e’ poow " p oo e*

3 3 0993104 4 T 0999753 511 (Q.999972
3 (L HEEED 4 & 0999835 4 13 0999980
3 & 049949150 4 13 0599939 i 6 0.999%60
3 11 099953 o 5 0999853 £ T 0999971
4 4 0999306 o T 0099930 i & 0.0900978
4 o DU i & 005947 6 11  0.999088
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One can see that A can be written as 4 = A(C) = (ZJEEFGH}U?-. where
L denotes the set of coeflicient vectors for all contrasts included in (5.1).

We shall first show that 4 viewed as a functional on C and denoted by
A(C) satisfies the three conditions on ¢(C) given in the UQ formulation in
Section 3.

To see that A is invariant under a permutation of treatment labels, we
shall show that a permutation g changes a coetlicient vector 1 into a vector
g(1) =Y, where I' can be seen to satisfy all the necessary constraints. Let
P, be the v x v matrix for a permutation g € §,. Let F, = {i ? P{._:)‘ Then
Cyy = FLC F,, giving C; =F,C[F,. Thus, 'C} 1=1"CJ¥, where I' =
F l. As | varies over £, I' also varies over £. Thus, condition (1) holds.
Next, if C; = E‘f_:,('_—"i" < Cé" and, hence, lt('_—"]"l <t J}"l for all 1 € £. Thus,
condition (2) also holds.

To show that condition (3) holds, we first note that C* is a convex fune-
tion of C, that is, (3 w,Cy )t < 3 w,CJ, wherethe w,’s are rational weights
satisfying ¥~ w, = 1. Thus, we have

A (Z -eir_qﬂ_.,) — Z I (Z m_,,{'_."_q) Thig?

1

= Z ¥ Z -m_q('_—"; 1o
1 q

= Z Wy Z l‘('_—"_;'l- o’
q 1

= Z weA(Cy) = Z-rﬂ_q,A{C} = A(C).
g g

This completes the verification. If we take w, = 1/v!, we get A(C) < A(C).
Thus, to show that A(Cy) < A(Cy), it is enough to show that A(Cg) <
A(Cy).

Apain, we initially assume that there are no period effects in the model.

We first express Cy. and C; as

Co — (a"H b*H )
63 “\vH en i)
. 1-:1.11H baH j
AT\ RH eH+ed, )
where a®, b*, ¢, e, @4 by and 7; obtained from {(4.2) and (4.4) are
atzv't{p_l}. f]*:-IUt{p_ 1}1
v—1 plv—1)
*_t{p—l}{pr,'—v—l} F_t{p—l}
C - plv—1) ! oy
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o dpabsll  w E=
= plv—1)° e plv —1)’
_ _puilp=-1)=(f-2A)-Hv+p-1)
B plv—1) '
For simplicity of notation, we shall drop the subscript d from a4, by and
&d.
Since C is an average of nﬂnnegatlw definite (n.n.d.) matrices, it is n.n.d.

Also, () =0and C(;) =ev(;’ ). Other eigenvalues of C are obtained as
follows. Let u be a (v x l} vector t;ansfymg Hu =u. It is easy to verify that

() is an eigenvector of Cif o= {(¢ —a)+ \/{.—'1 +&)2 — 4(ac — b?)}/2. The

corresponding eigenvalue is {(a+¢) + \/{1—'1 + )2 — 4ac — b2)} /2. Since there

are (v — 1) orthonormal choices for u, each of { (@ +7) £ \I.-"f{:i +2)? - Hac - ) }/2
is an eigenvalue of C of multiplicity v — 1.

Since 7; — 7y and d; — §;+ are estimable in the model eliminating period ef-
fects, they are also estimable in the model ignoring period effects. Thus, rank
Cz 2(v — l}

If A=ac— b <0,C has a negative eigenvalue. If A =0, rank C = v,
which is alﬁo a contradiction. Thus, A > 0. Similarly, A* = a®c* —b*2 > 0.

Direct caleulations yield

oo _ [ CH/A® _bTH/A" )

» S\ _pH/A® oH/A® £ 3, /er?

& ot _ ( /A _bH/A )
“\-BH/A aH/A 41J,/ev?

Since the last ©» components in each vector 1 are v — 2 zeros, +1 and —1
(in some order), we can, in computing 37, I'C"1, ignore the term J, /e v?
in C** and C*. The v x v submatrices of the remaining matrix have zero
row and column sums. Hence (5.2) is applicable to this matrix.

We can thus express A* = A(Cy) and A= A(Cy) as

A® =2v(v — l}[{('h'— 1)+ (v—2)° }{a o) k] }ﬂh:"]aﬁ

and
{.—1 -I— )

A=2v— 1}[{{1' ~1) + (v — 2)*} + 2(v — 1}%]5"’

If we write 3 — 2l = vt(p— 2) + = and [ = vt + y, we can express @, b and
& A8

T +2y _pr_ =ty i T

plv—1)’ T plv—1) T plu—1)

&=

a=a —
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It was noted in Section 4 that 3 — 2{ = pvt(p — 2} and [ = vf. Hence, we
have x = 0 and y = 0.

We may write A* = A(0,0) and A = A(z,y). To show that A{0,0) <
Alx,y), we shall proceed as follows:

Using the expressions for @, b and & given above, it can be seen that

Az, y) = {(en + 12z +e1ay) /(en + e + eny —y* ft(p— 1)) }o?,
where
e =2pu(v — 1}(2pv‘q‘ - ﬁrpvg + 6py — v® + 2u — 3),
c12 =e13 =—4pv(v — l}(ﬂ? —2v+42}/t{p—1),
e =tv(p— l}{pzv —pv—p—u),
s = —(2pv + v — 1}, cag = —2(pv — 1)
It is easy to verify that

tp—1)
T Pu—1)
Since A = 0, it follows that co; + coox + eony — 3 [t{p —1) = 0. Similarly,
A =0 implies £qy = 0.

It follows that A(z, 1;} — A(0,0) is strictly positive iff (ca1e — cries )+
(eo1013 — e11003 Jy -I'—{"u?; I."?‘{p— 1) is strictly positive. For p = 3,v = p, the
co-efficients of z,y and 4 are all seen to be strictly positive and, hence,
Alz,y) — A(0,0) =0 if (z,y) # (0,0). When p= 2, we must have y =0. We
shall comment on this case later in this section.

We have thus shown that A{x,y)} = A(0,0) when period effects are ignored.

When we take period effects into the model, Cg in (5.3) gets reduced by

E EH] which has no effect on A. For C we argue as follows. We first note
that

—r___{on + oz + ey — ¥/ Hp - 1)}

C (adjusted for periods) < C (ignoring periods),

Since C is obtained by averaging C, over all permutations, it follows that
C (adjusted for periods) < C (ignoring periods),
C+ {adjusted for periods) = C+ (ignoring periods).

Since A(C) = Y, 1C*1- 02, it follows that adjustment for periods cannot
decrease the value of A{C}

We now summarize the situation as follows. Here, “adj” means adjusted
for periods and “ign” means ignoring periods. We have seen that

A(Cy- (adj)) = A(Cq- (ign)),
A(Cg-(ign)) < A(Ca(ign)), deD,
A(Calign)) < A(Ca(adj)).
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These imply
A(Cg-(adj)) < A(Ca(adj)), deD.

This completes the proof of optimality of d* for the functional A(C) in the
design class D.

In the definition of A(C) we could also permit ¢ =4, as this would only
add comparisons of the type §; — §;. We have already seen that, for the
estimation of residual effects, d* is UQ) in D. Similarly, we could also permit
kS

It should be noted that the above proof was needed only when d is non-
binary with y = 0. When the design is binary, or nonbinary with y =10, the
result follows from the UO property of d* (Section 3 of this paper; [21]) for
the joint estimation of direct and residual effects.
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