Bkl

Euler Vector for Search and Retrieval
of Gray-Tone Images

Arijit Bishnu, Bhargab B. Bhattacharya, Malay K. Kundu, C. A. Murthy, and Tinku Acharya, Senior Member, IEEE

Abstract— A new combinatorial characterization of a gray-tone
image called Euler Vector is proposed. The Euler number of a
hinary image is a well-known topological feature, which remains
invariant under translation, rotation, scaling, and rubber-sheet
transformation of the image. The Euler vector comprises a 4-tuple,
where each element is an integer representing the Enler number of
the partial binary image formed by the gray-code representation
of the four most significant bit planes of the gray-tone image.
Computation of Euler vector requires only integer and Boolean
operations. The Euler vector is experimentally observed to be ro-
hust against noise and compression. For efficient image indexing,
storage and retrieval from an image database using this vector,
a bucket searching technigue based on a simple modification
of Kd-tree, is employed successfully. The Euler vector can also
he used to perform an efficient four-dimensional range query.
The set of retrieved images are finally ranked on the basis of
Mahalanobis distance measure. Experiments are performed on
the COIL database and results are reported. The retrieval success
can he improved significantly by augmentiong the Euler vector by
a few additional simple shape features. Since Euler vector can he
computed very fast, the proposed technique is likely to find many
applications to content-bhased image retrieval.

Index Terms—Content-based image retrieval (CBIR), Euler
number, feature extraction, Mahalanobis distance, range query.

L. INTRODUCTION

COMPACT and easily computable image feature is highly
Adusimblu for efficient management of image database,
search and retrieval. The charactenistic parameters of the image
should also preferably remain invariant o varous transfor-
mations, such as translation, rotation, scaling, rubber-sheet
sheanng, degradation by noise, compression, ete. Existing
methods of feature extraction usually employ either geometric
features of an object or luminance signature of an object [335],
[41].

A. Geometric Features

Various elementary geometne shapes are wsed w provide
characteristic features such as edge, comer, line, curve, hole,
and boundary curvawre to define individual features of an
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image [5], [9]. Several tansformations e.g., medial axis trans-
formation, morphological transforms, may be applied for
analyzing the structure of the shape pattems. These geometric
features can be roughly categorized into three Lypes [9].

1y Global parameters are extracted from the geometric and
topological parameters of the entire image, like perimeter,
area, centrowd, curvature, Euler number, contour points,
convex hull, ete. Geometrie features caleulated from
moments, ke cenler of mass, onentabon, bounding
rectangle, elc., are also used. A combination of global
features using Euler number, convex hull and its de ficien-
cies has been in use lately [38].

2y Structural parameters are the features which are local in
nature, each describing a portion of the object. Features
like line segment, are segment with constant curvature,
corner specifications, ete., that define pieces of an object’s
boundary are widely in use.

3 Relational parameters represent geometncal relations
among local features using graph representations. Dis-
tance and relative orientation of substructures and regions
of an object are mterrelated using mainly graph-based
miethods.

B. Luminance Features

Inthis category, features are based on the luminance informa-
tion represented by the mtensity values [16].

Iy Spatial features are characterized by the gray-levels or
colors and therr distributions like amplitude and his-
tograms [28], [39].

2y Transform features provide the frequency domain infor-
mation of the image, obtained by zonal filtering in the se-
lected transform space e.g., Founer desenptor, DCT, with
applications o shape analysis [20], [29], [44].

3y Edges and boundaries chamctenzing object boundares
and shape may be extracted vusing gradient operators.
Boundaries are extracted by edge linking technigues
like contour following, edge linking, and heunstic graph
searching [16].

4y Invariant moments [16] are used for shape and scene
matching applications [15], [31], [40]. Zermke moments
provide featres for rolation-invariant image recognition
[21].

5) Textwre features are mostly based on structural, statusucal,
or spectral properties. There are several methods for ex-
ture extraction using gray-level co-occurrence sabstcs
[13], Gabor filters [17]. windowed Founer filters [2], as-
sociation rules [ 34,
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Sample results with the query image at the left and the retrieved images shown from left to right according to descending rank when + — 10 for bucket

search in Tables 1T and LI {a) Sample result showing a good retrieval with only the Euler vector. (b1 Sample result with only Euler vector as the feature. {c) Sample
result for the same query as in (b) with the Euler vector augmented by the shape features, (d) Sample result with only the Euler vector as the feature. (e) Sample
result for the same query as in {d) with the Buler vector augmented by the shape features.

tme computed as follows. If 1., 15 the ume taken for the ex-
havstive search and {7 18 the ume taken for the bucket search,
then the percentage savings in time is computed as (£,

tra it | s 100 Table I reports the same results but with the
two other shape features augmentng the Euler vector. Table [V
and Table ¥V give the comparisons of exhaustive search with
range search in the cases where only the Euler vector 1s used
as the feature and where the Euler vector 15 augmented by two
shape features, respectively. I is observed that the average pre-
cision goes down with increasing o, This happens becavse with
the increase in oy the axis-parallel hyperboxes will increase in
stze and include more and more images of other objects. Lee
and Street [24] used a 36-dimensional featre based on the cen-
troid-radin model for a shape based query system on the same
COIL database we used. Their query system uses an incremaental
feature weight learning method based on both the clustered data-
base and relevance feedback. They report an imtal success ratio
of 56.7% when gquerying with asingle cluster based on the 36-di-
mensional feature and when 71 images were ranked. The suc-
cess ratio was then improved by mcluding more clusters and
using relevance feedback. Although our hine of study in this
paper differs from that proposed in [24], 1t can be seen that we
achieve comparable results in terms of retneval success. Our re-
sults for percentage of success with 71 images being ranked are
36.14% for exhaustive search, 29.29% using bucket search, and
3B.66% for range scarch when the Euler vector 1s used alone.
With two additional shape features, the success rises o 52.14%
and 44.57% for the exhavstive and bucket searches respectively.

We show that range search can be used w0 improve the success
ratio further, viz 69.79% [
crease in retrieval tme. The averige precision Or SUCCess muo
i the case of range search increases because fewer number of
irredevant mmages are picked up. Fig. 9 shows the retnieved im-
ages alter rankimg for some quernes when [0 for bucket
search. Fig. 9a) shows an example of good retneval suceess
when only Euler vector was used as the feature. Fig. 9(b) shows
an example of 4 poor retrieval when only Euler vector was used.
Omly three objects (1st, 8th, 1Oth) out of ten were of the samge ob-
jJect as the query object. The lastobject, though visually looking
different, 15 of the same object as the query image, but with a
different pose. With the shape feature augmentation, six objects
(1st, 2nd, 6th, Tth, 8th, 9th) out of ten were of the same object
as the query object as shown in Fig. 9c). But the other failure
objects retrieved bear a strniking similanty with the query ob-
ject. Simularly, Fig. 9(d) shows an example of a poor retrieval
when only Euler vector was used. Only four objects (1st, 3rd,
Oth, 10th) out of ten were of the same object as the query ob-
ject. With the shape feature augmentation, six objects (1st, 2nd,
3rd, 4th, 5th, 6th) outof ten were of the same object as the query
object as shown in Fig. 90e). The other lailure objects retreved
are however, very similar to the query object.

(143, at the cost of a small in-

V. CONCLUSIONS AND DISCUSSIONS

A new combinatonal signature of a gray-tone image called
the Euler vector 1s proposed. It may be vsed along with other
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standard features in order 1o provide better characterization
of an image. Since the Euler vector is topologically invarant,
easily computable, and has strong discriminatory power, this
feature may find many applications to CBIR. Expermental
results demonstrating its robustness and efficacy of retrieval
using this new feature have been presented. A modified Kd-tee
can be employed o support easy and efficient retrieval using
the Euler vector. It may be noted that the JPEG2000 image
compression standard uses a wavelet transform and a bit-plane
entropy coder W provide stale-of-the-art compression [30].
Thus, it supports multiresolution in terms of scale and em-
bedded guantization by bit-plane coding. Since the Euler vector
is linked with the bit-plane representation and is wpologically
invariant, it can be tailored to support multiresolution in lerms
of scale. Deriving the Euler vector of the original image from
the Euler vectors of the different wavelet subband images
would be an interesting future problem. Another important
problem would be to determine query ranges on the modified
Kd-tree for retdeval, using the information on statistical dis-
tibution of features. Determination of the optimal values of
Mungize, Maoxsese, and £ e shold based on the system
specification also requires further investigation.
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Fig. 1. Gry-code bit plane and Enler vevior = {70, 13, 391,

With the emergence of the Internel, content-based image
retneval (CBIR) has recently become one of the most important
research topics spanning disciplines hike image processing,
computer vision, information retrieval, multidimensional access
methods, databases, ele. A good survey of the technical aspects
of the existing CBIR systems has appeared in [37], [42]. Most
of the systems use mainly low level features. Determination of
acompact set of low-level features for 4 gry-tone image 15 thus
highly needed for multimedia information transactions across
the weh. Further, the parameters should be easily computable
and suitable for efficient database search. They should also be
invariant under various transfomations and insensitive against
NOLSE, COMPression, ele.

In this work, we define a new parameter called Euler vector
of a gray-tone mmage. For a binary image, the Enler number
(zenus) s defined as the difference of the number of connected
components {objects) and the number of holes [11], [33]. The
definition of Euler vector is derdved from the four most signifi-
cant binary bit planes comesponding Lo the gray-code represen-
tation of the imtensity values of a gray-lone image. We meport
several experiments using the Euler vector to show that it has a
strong discrimmatory power and can thus be used o angment
other featwres to facilitate image searching and retrieval. For
this purpose, the Euler vector can be used as a signature, and
a bucket as well as a four-dimensional (4-D) range query is per-
formed on a modified Kd-tree representing the database. Next,
the Mahalanobis distance measure 15 used o mnk the similarity
of the retrieved mmage with respect 1o the query image. Our ex-
periments on the COIL database [26] show that the Euler vector
augmented by two simple shape features can be used w build a
very efficient and successiul retrieval engine.

The contents of the paper is organized as follows. Section 11
discusses the computation of the Euler vector and the vse of
gray codes. Section I introduces the distance measure for the
Euler vector and reports experimental resulls demonstrating 11s
robustness against noise and compression. Section IV deals with
the retreval issues. Finally, Section WV opresents discussions and
concluding remarks.

18 I:Ilplum.u Most significant
|'_I-r-"

rm 1".:1

bit-plane g
Es=-13

(b)

bit-plane g
F:=-33

bit-plane g4
Ey=-1624

1222} {a) Gray-code bit planes. (h) Bit planes and Euler numbers,

II. EULER VECTOR COMPUTATION
A. Bir-Planes and Euler Vector

A gray-tone image 15 assumed o be represented as oan
‘A M) matrix, where cach element [, 3% is an integer
lying between [0, 255] that denotes the intensity of the cor-
responding pixel. Thus, a 8-bit binary vector, denoted by
The by bg, by b bia, B, 900 can represent the imtensity value of
each pixel, where each §; is either “07 or “17. The image may
now be considered as an overlay of eight bit-planes [Fig. 1ia)].
Each bit-plane can be thought of as a two-tone image and can be
represented by a binary matrix of size (¥ x A Tocharacterize
a gray-tone image, we now define a 4-tuple called Euler vector
that reflects the structural propery of the image. The first four
mast significant bit planes (corresponding 1o [hy, by, by b))
are retained as they contain most of the structural information
of the image, and the remaning planes are ignored. As we go
down the bit-planes, the bit-patterns become more and more
random. The lower bit-planes just add on 1o the brightness
values and do not provide any vseful swructural information.
However, each of these 4-bit binary vectors 1s converted o is
corresponding reflected gray code (g5, g, a1 [22], where
ar = by = by Dobgrgn = byl s g = by b Here,
I denotes XOR (modulo-2) operanon. For any binary vector,
the comresponding reflected gray code is unigque and vice-versa.
Bit planes based on gray codes were also used earlier for other
bro-medical apphications [23]. The mbonale behind using gray
codes for defining Euler vector over binary codes 15 discussed
in the next subsection.

Definition: The Ewler vector of a gray-lone image 15 a
d-tuple [R5, g, R RO where B s the Euler number of the
partial two-tone image formed by the #* bit-plane, 4 < ¢ < 7,
corresponding 1o the reflecied gray-code representation of the
mtensity values.

Example: For the gray-wne mmage shown o Fig. 1(b), we
compute the Euler number for the four most significant bit-
planes by using a run-based algorithm [ 6] to detemmine the Euler
vector, which is found to be {79, — 13, —391, —1621},
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Euler vector, like the Euler number of a binary image, remains
mvanant under translation, rotaton, scaling, and rubber-sheet
transformation of the image. Euler vector thus, as a signature of
a gray-tone image, uses both geometric and intensity level char-
acterization [35], [41]. Since Euler number 1s easily computable
and depends on the combinatorial properties of (-1 runs in the
binary pixel matrix [33], the Euler vector may also serve asa
quick combinatonal signature of 4 gray-tone image [7].

B. Use of Gray Code

Reflected gray-code representation of intensity values offers
adistmet advantage over standard binary representation because
two consecutive numbers have unit hamming distance in gray-
code representation, and for most of the cases, a small change
in intensity values is not likely 1o affect all the four bit planes
simultaneously. Let # be the amplitude of the noise added 1o or
subtracted from a gray-level value £ < f < 255 0 generate
two values f; = f4+ s and £ = f — 2 Let fiulf,) denote
the binary code (gray code) representation of . Let the binary
code (gray code) representation of #; be fr.0 7,1, Similarly, the
binary code (gray code) representation of [ be for( fa ) We
generate the corresponding values of [ 4 2 for all values Jin
therange [0, 255], with & varying in the range [ 1,120] (if f—= =
255, it is truncated 1o 255; similady if [ — o <7 1, it is truncated
to 0). For all the first four most significant bits corresponding to
N to Sy, the corresponding bits are checked against the first
Sfonr most significant bits of J, fora particular  with [y varying
in the range [0, 255]. A bit change is said to occur if a bit Ao
of fi flips to by, in the range fi; w [z All such bit changes
A, are measured and nomalized by 2 to caleulate the average
change i bits in the binary code representation. Exactly similar
operations are done with the gray-code representations J- .., fa,
and f, to caleulate M, which is again nommalized by <. So, for
cach = & [1,120], we get normalized values of M, and A,
signifying the average change in bits. The plotis shownin Fig. 2.
Itcan be seen that the average change mn the number of bitsin the
binary code s greater than that of the gray-code representation.
This justifies the use of gray codes for defining Euler vector.

C. Implementation Details

We linearly rescale the dynamic range of intensity levels of
the image. Visually similar images may differ in their dynamic
ranges resulting in different bit-plane representations. To cir-
cumvient the problem, the images are rescaled such that the dy-
namic range of the mtensity levels 1s mapped o [0, 255]. The
definition of the Euler vector involves bit-planes that are binary
images. Since bil-planes are sensitive to changes in the ong-
inal intensity values, the given image is cleaned first by a3 » 3
median filter followed by a similar mean filter o make the vector
more robust. The order of filtering is also important. If the mean
filler is applied first instead of the median filter, then salt and
pepper nose or solated pixels will be averaged out, and not
removed, rendering the successive median filtering ineffective.
Other sophisticated filters may also be used.

The Euler vector of a gray-lone image can be computed by
determining the Euler number for each of the four binary bit-
planes as mentoned above. I 1s known that the Euler number
of a binary image can be computed as the difference of the sum
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Fig. 3. Algorithm for computing the Euler vector.

of the number of runs for all rows (or columns), and the sum
of the neighboring runs between all consecutive pairs of rows
{or columns) [ 11], [33] and can also be implemented efficiently
on-chip [6]. The algorthm for computing the Euler vector of a
gray-longe image 15 deseribed in Fig. 3.

111, EXPERIMENTAL RESULTS

A. Image Database

The mmage database used s the Columbia Object Image
Library (COIL-20) [26] of 20 objects. Each object was placed
on g motorized turntable which was rotated through 360 de-
orees with respect to a fixed camera. Images of the objects were
taken at pose intervals of 57, This corresponds 1o 72 images per
object making a total of 1440 gray-scale images. The objects
have a wide variety of complex geometric and reflectance
characteristics. The images are size normalized. In Fg. 4, the
fromtal pose of ecach object 15 shown, We have used the COIL
database as it s known as a very standard object image database
and it has several images of the same object taken at different
poses. Fig. 5 shows the Euler vector values for some images of
the COIL database.

B. Mahalanobis Distance as a Measuwre of Similarity

While characterizing a gray-tone image by 1s Euler vector,
we have observed that the manges and the variances of various
elements of the vector differ widely. The features under con-
silemtion are in general correlated. Thus, a desimable distance
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Fig. 5. Euler vector of some images from the COIL database,

measure should give weights according o the comelation
between the concemed variables. A sumtable distance mea-
sure between two fealure veclors 7' = [ T T
and & = {wiowm.use..oowq) in B owould be given by:
Digyy = 'I,I,-'E:LL Zf:l iy — willry —wyl
;= U One way of obtaining such wy;7s 15 10 consider
a il » ) posiive definite matrix T and taking D3,y
as 4/ {0E w)PliE §i). In such an environment, the
Mahalanobis distance [1], [25] can be adopted o provide
a very good measure that captures similarity/dissimilarity
properties among the members of a given set of mages. The
covariance matrix of #, denoted as A, is a [ x ) matnx given
by: A¥, 71 = variance of w: if § = J; covadance of o and &, if
i # 7. We may use the matrix A7 as the weight matrix | and
compute the distance as follows: A = /(i — GFA-NTF — 4.
A 15 also known as dispersion matrix. I3 and ¢ denote the mean
vector of two populations then A is called the Mahalanobis
distance between those two populations [1], [25]. In a large
database of images, the covariance matnx defined by feature
viectors of the mmages may be taken as the population disper-
siom matnx. I the number of mmages in the database 1s large,
removal of a few images will not have a sigmificant impact on
the entries of the covanance matnx. The covanance matnx can
also be incrementally updated when new images are added 1o
the database. Since, A is positive definite, it is easy Lo show that,
for a fixed A, A 1s indeed a metric. Such a distance measure
satisfies the following: 1) a feature with large varance does
not contribute more 1o the distance value and 2) the comelation
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among vartables affects the distance measure. Therelore, it fits
very well in the proposed environment of image retrieval based
on the Euler vector as the feature.

C. Effects of Noise on the Enler Vector

We tested the robustness of the Euler vector on 14440 images
of the COIL database under salt and pepper noise, Gaossian
noise, and jpeg compression. The salt and pepper and Gaossian
noises are zero-mean mndom additive noise. For all types of
noises, the image intensity level 1s assumed o be in [0.1] and
not in [(,255] in this subsection. In the case of salt and pepper
nowse, we varied the noise density from 0,01 1o 010 in gaps of
0.01, 1e. 1% o 10% of the pixels were affected. For Gaossian
noise, we varied the vanance of the random noise from 0,01 o
0.10 10 gaps of 0,01, For jpeg compression, we used the stan-
dard parameter of guality for compression. Higher quality pa-
rameter values indicate less image degradation and hence, larger
file size. We used quality parameter values ranging from 5 to 90
for the compression, and the average peak signal-lo-nose ratio
(PSNR){PSNE = 20 lag 255/ HMEE, where HMEE is the
rool mean square error) of all the i tmages m the COIL database
pertaining to the sad guality values rmnged (rom 2626 1043.05.
Higher quality values of compression will have lesser image
degradation and hence higher PSNR values. For each of the
1440 images m the COIL database, we add nose or compress
it as stated above. To find out the effect of nose and compres-
sion on Euler vector, we define three indices called Closeness
Measures, {7Ady, (A and A7y corresponding Lo particular
values of noise density and guality factor of compression as
follows. We find out the distance of cach original image from
all the nosy mmages. Let the distance, as defined in the car-
lier subsection, of an image {1 < 11400 from a noisy
image g0l <0 <0 L4d0) be Ay Thm &g o means the
distance of the image « from its LurrLsp{}ndmh nuls} VErSI0n0.
The closeness measure (A7, = Z 1 |_\ Ave,), where
Awep = Z]iT S A 100 M) measures the average of
the ratio of the distance between an image and its noisy ver-
sion Lo the average of the distance between the image and all
other nosy images. ¢34 18 the fraction expressing the number
of images out of 1440 that have 2 ;5 50 Avey. The third close-
ness measure OO measures the closeness of the noisy image Lo
the original image compared 0 other nosy mages as I'ullmi.'s.
Let rrnr; = .rrlr.'.,','fﬁ""'{ﬁ.‘,_]f-.\.- and el = mml"'m LY

Now, for each mhiy: the closeness is caleulated as fihy =
lﬂ.:c:q Then, the overall closeness
measure is the average caleulated as 09, }::;1“ ey Thus
€M) gives only the ratio between the distance of the noisy
tmage and is original version o the average distance. The mea-
sure O ALy gives the difference in magnitude compared Lo the
range of the distance values. Lower valoes of €74, and £73,
indicate that the feature 15 stable o noise and compression. The
value of €5 on the other hand, gives the mtio of count of the
number of images, where the particular distance value 15 less
than the average value. Cleardy, higher values of (7145 indicate
stabality o noise. Further, €708 and OO0 will have some sort
of inverse relationship. High values of €A would imply small
values of £°A47) and vice-versa.
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Fig. 6 shows the closeness measures €A, € Ms and O,
as defined earlier. It can be seen that the Euler vector is most
sensilive o Gavssian noise compared o others. It 15 found 1o
be mome or less stable agamst variations of gquality parameter
values in jpeg compression for all the three closeness measures.
A high A and low ©7Afy value indicate that the Euler vector
does not undergo drastue changes under compression. For salt
and pepper nose, the stability of the Euler vector degrades as the
density of noise increases. However, evenin the case when 10%
of the pixels (= 1638) out of 128 x 128 pixels were corrupted,
the closeness measure values stay within reasonable limits. For
all types of noise, the closeness measure (A4, does have appre-
ciably low values, indicatng that the distance between the noisy
and the original image is very small compared 1o the range of
the values.

IV, RETRIEVAL USING EULER VECTOR
A. A Brief Review of Multidimensional Access Methods

Multidimensional search wechnigues are employed o retneve
asubsetof images lying in the neighborhood of the query image

in the feature space. Since the Euler vector consists of four el-
ements, a 4-D orthogonal range query can be pedformed for re-
trieval. Ranking according to the proposed measure can then be
performed on this subsel only.

A CBIR system involves a fusion of computer vision with
multidimensional access methods [37] (see Fig. 7). The process
can be expedited vsing on-chip implementation of feature ex-
traction (Fig. 7). In a CBIR system, the images are mapped as
points in the multidimensional feature space that s indexed with
suitable data structures that support similanty-based query of
multdimensional feature vectors [43]. Given a query image, the
same features are extracted o perdform similarity quernies that
correspond o nearest neighbor quenes and range quenes [43].

Multidimensional data structures can be classified as 1) space
partitioning based techniques and 2) data partitioning based
technigues [8], [10]. The former techniques recursively parti-
tion the entire space into mutvally disjont subspaces. Kd-tree
[4] and K-D-B tree [32] are examples of such space partitioning
techniques. In data partitioning the data points at a particular
level are obtained by clustenng them in the sibling nodes using
varwus bounding regions like rectangular hy perbox, sphere, ete.
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Depending on the nature of bounding region, a suitable index
structure like the R wee [12], B tree [36], T tree [3], 55
tree [43], and SKE tree [19] may be used. Unhke the data par-
titioning index structure, range query on the multidimensional
space using a space partitioning index strocture ke Kd-tree,
requires only a single check at each node corresponding 1o the
splitting dimension.

Euler vector 1s a 4-D feature. The quenes are limited to point
or range queres. In an environment of widely differing dis-
persions i each dimension as discussed in Section [11-B, the
partitioning would be better 1if the subspaces are split guided
by the dispersions of their dimensiwons. The space partitioning
technigues allow us o choose such splits, as already discussed.
Thus, a basic Kd-tree can be tailored 1o suil our purpose.

B. FProposed Modification to Kd-Tree Construction

To reduce gquery tme for retneval, the depth of the Kd-tree s
Lo be reduced by assigning to each leal node a bucket containing
a set of merged data pomts instead of a single data point. The
number of data points to be stored in each bucket hes within a
fixed range, say e dize and 3n S se depending on the ap-
plication and machme platform and its primary and secondary
memory stee. Ina Kd-tree, distances among the data points are
not considered while partiboning. The merge, if based on some
suitable distance measure, will represent a meaningful ensemble
of points. These collections of data points are stored as buckets
in the secondary memory. The main memory stores the index
structure guiding the search path to the corresponding bucket,
which is retrieved from the secondary memory. To address the
above issues, we propose a modification of the Kd-tree by per-
forming split and merge operations on its nodes.

1) Split Operations for Partitioning: Let {* denote a set of
points representing images as feature vectors, where each point
;18 8 d-dimensonal vector. Let k(< ] be the dimension along
which the space F, mepresented by the node « 15 w0 be sphit. The
value of & is stored in the node v,

Next dy, the splitting hyperplane along the B dimension,
is calculated as the average of trig, and m.i__ . where my. 1
the median of the &'" coordinates of the points belonging o
I, and 11y, is the closest k'™ dimension coordinate of poinis
in #, 10 iy, . This ensures that the splitling hyperplane does
not pass through any point in . Next, we split I, into two
parts £, and [, such that the & dimension coordinates of
all points in .. [ F... yare less (greater) than . Two new nodes
vy oand wa are created and ©)[ve) is attached as the lefi (right)
child of 2. This mecursive partitoning scheme 15 continued ull
the cardinality of the subspace to be split, represented by a par-
ticular node is just less than M 57ze. Note that, these nodes
may not be at the same level. The bounding hyperboxes of the
nodes at the same level are nonoverlapping, and each keal node
of the tree gives a bounding hyperbox containing points less than
Min¥ize,

2) Merge Operations on the Partitions: In a d-dimen-
siomal space, any hyperbox has 24 neighboring hyperboxes
sharing  — 1 dimensions with it. For merging operation,
we shall consider only these neighbonng hyperboxes. As
the time of finding all such hyperboxes would depend on
the dimensionality of the data, we choose the hyperboxes

Algovithm SuildModifezd K direst 8, Min Size,
MeaxSize, DintT e afudid)
Taprels A sl ol d-dimensional peinls 5 amd
Ad e Size, the minimum size o a bocke
MarSize, the maxinuim size of a bucker,
DiztThresholid, a throshold
om the sitnilanity measune betwemm buckets
Cheldowee: v The rool ol the Kd-lee,
with bounded buckets at the leal nodes

1. o+ SedieChwerationl S, MinSize)
1w Mergefiparitionn, WarSize, THaT hraahold);

Fig. 8. Algorithm for constructing the modified Kd-tree.

TABLE 1
THEORETICAL COMPLEXITIES OF THE SEARCH PROCEDURES
oo e nmber of imaaes in e doabase, O the dimensicn ol the data,
e number ol bucliets Dy e modilied Kd-uee,
e the number of imag=s in the range of the range qu=ry,
T¥pe of =earch Theoretical complexine
Enlaustive seanch i)
Bugkat scarch log ki h << n
Ranpe soameh (¥nt T pm)

that are represented by sibling nodes only. Two siblmg leall
nodes vy and vy with & and F,, as the corresponding point
sets are merged if [Py, — |P.| & MuawSize and I, and
£, are “close’ with respect 0 a similarity measure, 1.,
SivpilarilyMensre( D, D0 < DNl Threshold, where
DigtThreshold 15 a threshold on the Semelarabydd cosurs
for merging. The similanty measure should be a measure
between two sets. 1L should also be mobust to the outher points
in the sets. We consider the similanity measure between sels
Fooand 1, as follows: Siecilorily M enswr{ 5 P00
Min{Ming, o p, Medion || 5. ezl pa T B
Mirg co Mediond||lga.p2d] 0 om0 & F FF where
[{erp e izl = MakifanctiaDisioneetp, g,

The AMafuelanobisfMHatanee{n, ) is caleulated as dis-
cussed in Section 11-B. The algorithm of the merge opertation
starts from the oot and traverses the Kd-tree in post-order
fashion. Al cach internal node {#), iff merging is possible
between two sibling leal nodes having buckets, a new bucket
with the merged set of points comesponding 1o the two siblings
of w15 used o replace the old two buckets m the secondary
storage. The siblings of v are deleted from the data structure,
and the node » 15 considered as a leal node. Fmally, the new
bucket s attached to v, As the sequence of the merge operations
is predefined by the partition of the data, different partitioning
technigues can be used for best pedonmance during the merge
operation. At the end, the algorithm retwrns a tree whose leaf
nodes correspond - a bucket saved on the disk. Further, the
depth of the tree 1s also redoced.

The entire algorithm for construction of the modified Kd-tree
consists of the SplitCperation and Merge Operation, and is
described in Fig. 8.

3) Space and Time Complecity of Modified Kd-Tree Con-
strnction: The modified Kd-tree for a set of s pomts with each
point having o dimensions requires storage £ [27].

The ol logny [27]
The computation  of  the

takes  Lme

e UIres

Splithperection
M ergedhoeradion
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TABLE 11
CompaRrIsoN BETWEEN EXHAUSTIVE AND BUCKET SEARCH WiTH ONLY EULER VECTOR (d = 11

v, oo, of Exhaastive Bucket £
M seurch search RUVIIES
1 he in CPL
ranked time
Averape Mamz Min Dist k, oo al Average
presiion Sizm Hize Threzshnld huckeots procision
5 T1IHE 0 10 (V.50 133 63,041 a8.02
14 06,01 44 20 (X &7 63,50 9637
Hi 56,25 i ] [ER3 anh 5251 Y357
3 40.67 120 L8] 1.11 i 43.17 FIR-2
4 44,75 1) 18] (3.5} 17 075 Ga.04
S .k XK 1610 112 14i 3552 Hr&4
1833 240 120 141 10 14,17 E3.E0
71 36.14 24 142 1.44 y 2.2y %481
SgmiloriltyMeasure between two sets of  points be-  image can lie in at most one bucket. The retrieval of a bucket

longing to the two nodes o be merged. At a depth A
from the ot of the tree, the maximum number of points
that can comespond o a node is 2¥ % Computing
Sirelorily M easure between such nodes requires  dis-
tance computation among all points and requires tme of
(a2%lE =4 The number of pairs of nodes that are the
candidates for merge is (32"~ Therefore, the time required
for merging sets of pomnts belonging o nodes at depth hoas
(Qatlia it gh=dy o (gio2 b a—h=1y If the merging opera-
tion continues for nodes upto & levels from the leaf level (where
beom (g M arSize)), the total time required in the worst
_J._-.ﬁnzzl""-‘r"_"'_l = {92y e 0™ For d di-
mensions, the time taken is (3 dn? ). Therefore, the construction
of the modified Kd-tree requires Qidn”  dilogn) = O{dn®)
i in the worsl case.

caseis Ly

C. Query

We discuss three types of gquenes for retneval: 1) exhaostve
search; 2) bucket search; and 3) range search.

1) Exhaustive Search: The Mahalanobis distance of the
query image o all the other v tmages in the database are com-
puted and the first » images having the least distances to the
query image are reported. The time complexity of this method
is (i, where o s the dimensionality of the data.

2) Bucket Search: The onginal Kd-tree stores each point
at 1ts leal and supports range quernes. The modification pro-
posed in this paper ensures that the sawd ree has now a mean-
inglul ensemble of data points stored in buckets i its keal nodes.
The points stored in a bucket defines a J-dimensional hyperbox
within which all data points in this bucket hie. The splitting tech-
nigue used in our construction ensures that there 15 no inlersec-
tion between any two d-dimensional hyperboxes comesponding
Lo the buckets stored at the leal nodes. Hence, a given query

1IN response Lo an image query 15 basically tansforming a range
query o a pointquery i.e., aquery to find out a range represented
by a bucket in which the image point hies. Once the bucket 1s
located, the images stored in the range of the bucket should be
similar to the query image comesponding W the partiicular image
feature. Thus, the bucketing technigue transforms a mnge query
Lo a pomt/bucket query, which involves a comparison at ¢ach m-
ternal node of a smgle dimension pertaining 1o the discriminant
dimension of that node. Hence, the time complexity is (0 log &,
which 15 independendent of the dimension and 15 determined by
the height of the modified Kd-tree. The value of & depends on
w, e Size, MinSize, and DT hreslold, but it is always
less than .

3) Range Search: The bucket searching techmique expediles
retneval time as it does not involve the factor of dimension.
However, this gain in Gme is achieved at the cost of efficiency
of the suceess of retneval. Range searching will improve upon
the rerieval success but it will take more tme compared 1o the
bucket search.

A range query [27] asks o report all images whose features
lie within a d-dimensional axas-parallel box centered around the
query image pomt. The user s oblivious to the features used for
indexing the images and hence, cannot define aquery ange. We
use a simple statistical heunistic based on the data distnbution o
find out the size of the query range box, where the user supplhies
only a fmctional value .

_An image is represented as a d-dimensional feature vector
X = {rpote.... . 30 where x0s, ¢ = 113 are the o fea-
tures of the image. We assume that the v, " s are independent with
cach «; being uniformly distributed as ;) = 170 — agh
e =y by We estimate f,7s and o 7s from the mean and
the variance of the uniform distribution of [[1;). Expectation
of such an uniformly distabuted @: is {b; | 012 and the vari-
ance 15 (A, — 3%/ 12 [18]. Now, we find out the mean, 1, and



ROE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 4, AUGUST X005

TABLE Il
CoMparisoN BETWEEN EXHAUSTIVE AND BUCKET SEARCH WITH EULER VECTOR AUGMENTED BY Two OTHER SHAPE FEATURES (f = G}

7, o ol Lo b s e Buekel 4
images scarch scarch 5Avings
Lo b i PO
ranked (i1
Average Max Ain Treisl na. of Averagno
precision Hize Size Threzhold uckers PLECision
5 9300 M 1a 128 lag 50,00 9B 3E
0 Ha.a0 b il 1.41 93 fis 4100 W3
)| 1615 B 44 143 45 G100 05 B4
30 (4,43 13 ot JRL 23 967 9213
40 375 160 &0 Lo9 a5 31z 9335
all 1K) 204t 1161 1.75 13 53,200 Hii30
50 3625 240 12 135 13 48 B3 24924
71 3214 284 142 175 13 44,57 B3.59
TABLE 1V
COMPARISON BETWEEN EXHAUSTIVE AND RANGE SEARCH WITH EULER VECTOR :_.Jf =40
v, no. of Lxhuustive Runges
Imupes yearch seTel
fa b
ranked
x = 0.4 o =10.3 a = G
Average Averare A Averape 2 Mveragre 2
precision presisivm auvings PrECISION HUVITES PrEsisiem BA¥LOES
in P in 1ML in P
Licos Lirne Ligees
3 71,041 Ti.4A0 #13 A TH.34 TLA 9,06
141 AN L .15 2D a5.98 TR.52 B3 6865
] 50,25 34,1 EDES 53,20 7RIS 3573 09,78
3 B R 4854 HIhAH 4.5 THHE ANST fR2
4475 4524 E1.48 450 TB.35 4430 7016
Hl 400,90 42.56 Hikh11 42,005 78,79 41,10 T332
1] A8 M H16 ®1.44 4026 TR0 30.45 fid. 94
T 36,14 JB.64 E0E] 3797 TB&0 374 a8, 7e

vanances, 77 from the values of the features = in the mage
database, and estimate ¥;7s and ;s as follows:
[ s

*
| oAy a1t 4
= T

aued El o

= |U1
Solving the above two equations for getting the estimate of b, s
and o;'s, we have b = g + v oo; and o; = g — +3a,. Given,
now a query image with feature vector, -ﬂ:' = {1, g2. Gl
we need o define ranges &;, ¢ 1(1)4, such that the range
scarching akes place formnges {(g: &9 & (g oo |
Puty oo Dgg — Eagg + g0 The &7s are determined in such a
way that within the said mnge, a fraction < (provided by the

user) of the entire images lie. For a uniform distibution, fiz;)
as shown above, we gol o determine ranges i such a way so
that «x fraction lies within the sad mnge, 1.e.,

o

ey, — )
:) :

Flasdas = or &

[

Therefore, using the values of b; and o, & +/Jers.. Having
found out s, ¢ = 1{1)d, we can easily define the axis-parallel
range box. A betler esumate for the query range can be obtaimed
by finding a statistical distribution that fits with the data.
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TABLE VW
CoMparsON BETWEEN EXHAUSTIVE AND RANGE SEARCH WITH EULER VECTOR AUGMENTED BY Two OTHER SHAPE FEATURES [ = €]

¥,k ol Cahuuslive Eanwe
images acarch scarch
1o e
ranked
a = 0.4 = 1[.7 o= (.0
Avarags Average i Average & Average )
pTECIsian precision BUKLILES prECLSIon RIS 1iT S pTECISIan SUFILES
in £7PL, in {IP1. in CIPL!
rimse rime rinng
3 4300 93.68 B5.58 93.00 Bh41 93,00 B3.25
161 Ra.50 HI35 4.4 R6.TT A K342 K130
0 Ta.75 T 46 788 704 23T Tr9A Be43
At . M3 AN 14 T4 A T T #3.02
4 375 FER 2748 6534 2550 a5.92 B34k
At 14100 72418 HH.3d0 Hi3,Mh HH, I fil.di B E
Hl 3925 T4 0.1 6315 B .a0 5800 B4 R]
71 32,14 6T A, 61,7 #1.5 34,83 3,10

If the user wants to specily the query mnges, the rereval will
take {Mn' '4Y i} time, where m is the number of images
overdapping with the range of query [27]. I may be noted that
in high dimensional space the data will tend skewing together,
and a range query will result in searching most of the leaf nodes
of the kd-tree o ensure accuracy. For this reason, sophisticated
technigues are 1o be used for range searching in higher dimen-
sion [ 14].

0. Experimental Results

The image database vsed in our experiment 1s COIL as dis-
cussed in Section HI-A (Fig. 4). Two sets of experiments for
retrieval were perdformed. First, Eoler vector 1s used alone as
a 4-D feature; second, it 1s further augmented with two other
shape features (e, a 6-D feature). The two additional features
are chosen as follows. An image 15 thresholded at a value come-
sponding W the fourth bit-plane (a value of 16). The features
are [16] 13 the rato of area and the square of perimeter and
2) the convex hull deficiency ratio defined as the ratio between
the original area and the area formed by the convex hull of the
edge pomts. The experiments were then conducted for exhaus-
tive search, bucket search, and range search.

For the exhaustive search, given a query mmage and a value
3 of the number of images 1o be ranked, let ») be the number
of images of the same object as the query image. The average
precision is then defined as the muo of v and .

For the bucket search, the construction of the modi-
fied Kd-tree requires specification of the three paramelers
MawSize, MinSize, and DHatT hreshold for the merge
operaion comesponding o the Simifaridy M oesuro. Fixing a
value of these parameters 15 a design problem based on values

of parameters like main memory size, cache size, disk page size,
ele. However, in our experiments henceforth, o show the per-
formance of the bucket search in companson o the exhavstive
search, we fix the parameters as follows: 1) M axSeze = 1= v
2) MinSize = 2 % ore; and 3) Lo sshold for the merge
operation is fixed as the average of the Stmilaradyddensore
values just after the spliting operation 1% finished and before
the merge operation starts. For retneval vsing bucket search,
givien 4 query image, the bucket corresponding 1o the query
image is located from the modified Kd-tree; the Mahalanobis
distances of the query image from all the images in that bucket
are then computed and the first » mmages are reported. The
average precision 15 defined as in the exhaustive case.

For the range search, given a query mmage and a value of the
parameter or, the query ranges of axis-paralle]l hyperboxes are
formed as discussed in Section [V-C3, Now, using a Kd-tree
all the images lying within the said range 1s retrieved. Let the
number of retrieved images be v, Note that .., may be greater
than or even less than +, the number of images 1o be mnked, as
ry; depends on the value of the ranges. Let v; be the number
of images of the same object as the guery image. The average
precisionis then defined as the ratio of #4 o meeasdimam {ra,, o]

Table 1 lists the theoretical complexities of the three different
types of searches. It may be noted that the bucket search on
the modified Kd-tree proposed here is independent of the factor
of dimension. Table 1T gives the comparison between exhaus-
tve and bucket searches with the Euler vector as the only fea-
ture. Each row of the wble cormesponds o a value of 1, the
number of images o be ranked. The comesponding values of
MoxzSige, Windize, Lot Theeafindd, and &, the number of
buckets for the modified Kd-tree are also shown. The number
ol buckets & depends on the parameters WeeS iz, WanSize,
and PHatT fieestoald. The last column shows the savings in CPU
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