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Ahstract

Given a set § of i radio-stations located on a d-dimensional space, a source node s (¢ §) and an integer & (1 =h<n — 1), the
h-hap broadeast range assignment problem deals with assigning ranges to the members in 8 so that & can communicate with all other
members in & in at most f-hops, and the total power consumption is minimum. The problem is known to be NP-hard for d = 2. We
propose an ((n” ) time algorithm for the one dimensional version (d = 1) of the problem. This is an improvement over the existing
result on this problem by a factor of i [AEF. Clementi et al. The minimum broadcast range assignment problem on linear multi-hop
wireless networks, Theoret. Comput. Sci. 290 (2003) 751-761].

Keywords: Range assignment; Broadeast; Mobile communication: Algorithm

1. Introduction

We consider the problem of assigning transmission ranges 1o the nodes of a linear radio-network 1o minimize power
consumption while ensuring broadeast from a dedicated node (called source) to all other nodes in the network. A
radio-network is a finite set 8 of radio-stations located on a geographical region which can communicate each other by
transrmitting and receiving radio signals. Eachradio-station s € § 15 assigned a range p{ ) (4 non-negative real number)
for communication with other stations. A radio-station s (having pi{s) = 0) can communicate (i.e., send a message)
directly (i.e.,in 1-hop) o any other station 1, if the Euclidean distance between s and ¢ is less than or equal to p(s). If 5
cannot communicate directly with r due to its assigned range, then communication between them can be achieved using
multi-hop transmission. If the maximum number of hops allowed (h) is small, then communication between a pair of
radio-stations happen very gquickly, but the power consumption of the entire mdio-network will be high. On the other
hand, if f is large then the power consumption decreases, but communication delay takes place. The tradeoff between
the power consumption of the radio-network and the maximum number of hops needed between a communicating pair
of radio-stations are studied extensively in [6,7]. As in [3], we assume that power(s) = (pi(s))>. Thus the total power
requirement (cost) of a mnge assignment W= {p(s) | s € Stiscosnt(R) =3 cpowerls) =%, .o {(p(s)*.
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The objective of h-hop broadeast range assignment problem is o assign transmssion ranges @) o the radio-stations
t € & sothat a dedicated radio-station (say 5 € §) can transmut message o all other radio-stiatons using at most h-hops,
and the total power consumption of the entire network 15 mimimuom. For # 2 2, the problem s NP-hard evenin 2D [2,3].
For the 1D version of the problem, a dynamic programming based algorithm is proposed in [5]. It runs in O(hn®) time,
where n = | 5. We improve the time complexity result of the problem proposed in [5]. Our algorithm is simple, and it
runs in D{n?}l time and Offin) space.

In spite of the fact that the model considered in this paper is simple, it is very much useful in studying road traffic
information system where the vehicles follow roads and messages are (o be broadeasted along lanes. Typically, the
curvature of the road is small in comparison w0 the transmission range so that we can consider that the vehicles are
moving on a line [4]. Linear radio networks have been observed to be important in several recent studies [4-7].

2, Siructure of optimal broadeast range assignment

We assume that the radio-stations § = {#1, 52, ..., 5, } are ordered on the x-axis from lefl to dght, with 5 positioned
at 0 (the orgin). The position of 5 will be denoted by x(s;). Thus, the distance between two radio-stations s; and s is
dar. 570 = lals) —als ;)] We will use C(8. 5, 1) to denote the minimum among the costs of the mnge assignments of
the members in § for broadeasting message from the source station s (€ §) to all other radio-stations in S using at most
f-hops. There may be several range assignments of § having cost C(8, 5, h). We will use (S, 5, h) 1o denote one such
range assignment, and will refer it as optimal range assignment.

Definition 1. In a h-hop broadeast range assignment, a dght-bridge 75 comesponds 1o a pair of radio-stations (¢, 5,)
such that s; is o the kefiof 5, 5, is wthe dghtof s, and d{s;, 5, )< pis,) < d{se_1, 5,). Inotherwords, 5, can communicate
with s; in 1-hop due to 118 assigned range, bul it cannol communicate with s, in 1-hop.

Definition 2. In a fi-hop broadeast range assignment, a right-bridge §75; (if exists) is called functional, if there exists
a radio-station ; € § such that the minimum number of hops among all the paths from s o 5; that avoids the 1-hop
communication $73,. is greater than b,

Similady, one can define a left-bridge Tr5; and a functional lefi-bridge in a h-hops range assignment, where s; and
5p are respectively to the left and right of 5.

Theorem 1 ({Clementi et al [5]). Given a set of radio-stations § = {51,852, ..., Spt, @ souwrce node 8 € 5, and an
integer h (1 <h<n — 1), the optimal h-hop broadcast range assignment TS, 5, h) containg at most one fime ional
bridge.

The algorithm proposed in [5] solves the problem in three phases. It computes optimal solutions having (i) no
functional (kefi/right) bridge, (i) one functional lefi-bridge only, and (iii) one functional right-bridge only. Finally, the
one having minimum total cost is reported. Our algorithm is based on the same principle as in [ 5], but it considers the
seometry of the range assignment for oblaining the optimal solution in each of the three cases mentioned in (i)-(iii) in
a careful manner, and this leads to an algorithm with improved time complexity.

3. Geometric properties

Lemma 1. In a linecar ovdered set of radio-stations {5, 5,41, .. ., 55} © 8, if the sowrce station is at one end of the
abaove set (savsg), then forany | < p<lb—a, an optimum p-hop broadcast range assignment R {5, 5441, ..., S} Sa. i)

shonld savisfv Zf;lf Plsg) = x(sp) — x(sa).

Prool. Consider the p-hop path for communication from s, 1o s, as shown in Fig. 1{a). Note that, one can reduce the
total cost of range assignment (35— (p(s1))?) by setting p(s;+1) = plsjs2) = ... = pisi) = 0 (see Fig. 1(b)). This
maintains p-hop connections from s, 1o all other nodes in the set. O
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Fig. 1. Proof of Lemma 1.

Lemma 2. For a set of radio-stations § = {s, 52, ... 5.} CUS, 51, w) = C(S, 5, ).

Proof. Let {ag. ay. ..., dp—1} = § be the sequence of radio-stations having non-zero manges in RS, 51, g). Here
ap = &1, and let us denote a, = 5. By Lemma 1, pla;) = xlais) — xlag), for i = 0,1, ..., p — 1. A feasible
range assignment for communicating from s, 10 5 using p-hops is pla;) = xia)) — xl{aj_), fori = 1,2, .., It

and its cost is same as C(8, 5, @), Thus C(8, s, )< C(8, 5, p). Following the same method, it can be shown that
Ci8, 51, ) =CU8, 5y, 1) Hence the result follows. O

Lemma 3. In an optimuwm p-hop broadeast range assignment WAS, 51, 1), if the range assigned to 5| is pls)) =
alx, sj)for some | = 1, then there exisis a TS 51}, w2, 1), where p{s2) = d(s2, s

Proof. In R(S, sy, ), pln1) = dis1, s;) implies that p{s) = pisa) = --- = plsj_1) = 0. Thus, if C(5, 0. p) = ¢
then C(5 \ {51, 82, ... ,85-1} 8j, g — 1) = ¢ — (d(s1, a'_,-}}lz. In other words, the range assignments of the radio-stations
§'51. 52, .8 inRAS, 5y, p) are such that, it supponts broadeasting from 5 ; to all the radio-stations {574, ... 5,}
in (g — 1)-hops with minimum cost.

Now, let us assume that the range assigned 1o 52 in TS %\ {51}, 52, @) is pls2) = ds2, 5). We need 1o prove
that k= j.

Let us assume that C(5 4 {51}, 52, ) = ¢’. This implies, C(S", {s1. 52, ..., 5¢_1}, 5¢. 0 — 1) = € — (S(s2, ). Thus,
[, w0, 000, 00 O RIS S .82, o oo 5p b 8. 0 — 1)} is a feasible mnge assignment (may not be optimum) for

k-2

the p-hop broadeast from s to all the nodes in § 4 {s)}, and its cost is equal to (§(s;. 50))° + (¢" — (852, 517 =,
This implies, ¢ — ¢ < (8(51. 52))7 + 28(51. 52)8(52, 51).

By asimilar argument, {d(s2, 5;), 0,0, ..., 0. RS\ A5y, 52, o081 b s, g — 1)} is a feasible range assignment for

ot St M
-3

the p-hop broadeast from sz o all the nodes in §% {5, 52}, and its cost is equal 1o {é{:.‘g,.\'_,-}}ll +{c —{d{x), :.'_,-}}2}'_.;? .
This implies, ¢ — ¢ 2 (8(5,., $2))7 + 28(5,. 52)(53, £5)

Combining these two inequalities, we have

(8(s1, 52007 +28(s1, $2)8(s2, 5;) e — ¢ € (Bls1, 52))7 + 28(s1, 52)(s2, 5¢).
This implies k= j. O

In the following kemma, we prove that if we increase the number of allowable hops for broadeasting from a fixed
radio-station, say 51, o all the rmdio-stations 1o its dght, then the gain in the cost obtained in two conseculive steps are
monotonically decreasing.

Lemmad, C(5 5, 0) —C(S, 5,0+ D =08, s, 0+ D —C(8, 5, 0+ 2).
Proof. Let A = {ay = 5,0, da3,..., a1} denote the subsequence (radio stations) of S having non-zer ranges in

RIS, 51, p). We use dy 1o denote the radio-station s, and cost(A) o denote C(§, 51, p). Here, the range assigned to
ape Adis{x{aja)—x{gfori=0,1,2, ., nu—1 Again et B = {by =51, b1, b2, ..., 141 } denotes the set of
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{W#2 =hop bmoadeast range assignment from 5, to 5,

ST, BouLe, TOUD

{a) p=hop brosdeast range assignment from s to 5

(w# 1 =hop bmadeast range assignment from 5 o 5,

DROLLEO O WO B

{w# 1 )=hop bmadeast range assi gnment from 5 to 5,

ST ToTen, 000D

Fig. 2. Proof of Lemma 4.

radio stations having non-zero ranges in TAS, &1, o + 2), Le., costiB) = C(8, 51, p + 2). As earlier, s, is denoted by
by, 5. and the ranges assigned to by (€ B) are (x(b ) — x(fy)) fori = 0,1, 2, .., g+ 1. The two range assignments
iA and B) are shown in Fig. 2(a) using solid and dashed lines.

Observe that, x{ap) —x () < 0, and x{a,) —x(bye1) > 0.Thisimplies, there exists atleast onei € {1,2, ..., p—1}
such that xia;) — xibi )= 0 and xia;o ) — x(bie2) =0, We consider the smallest i =0 such that x{a; ) — x(biz2)
20, and construet two subsequences of radio stations C = {ag = by = 51,41, ..., ai, biya, biya, ..., By} and
D= ag = by = s51.0.b2,..., By, Gty Bigds e ey dg—1}. each of length g+ 1. The ranges assigned to the
members in C and D are, respectively,

. {x{ﬂ[} —x{an); ---, xiag)— xlai_1), x{bip2) —xlai ), x{biga) —x(biga), . .., x{bjt+2}_x{bji+|}} (see Fig. 2(b)).
and
o {xib ) —xibp) ..., x{big1) —x(bi), xl{ape))— xlbig), xlaiga) — xlai), .o, tlay) — xlay—1)} (see Fig. 2(c)).

The corresponding costs of the range assignments are

J=i—1 5 5l i
costiC) = 3 (xlajei) —xla))” + (xibisz) —xla))y™ + 2 (xibjs1) — x(bj))”
4=l J=i+2
and
=i = N =
cost(D) = ) (x(bjs1) — x(bj))” + (x(@i+1) — x(bjs1))"+ Y (x(aj+1) —x(a;))".
4=l J=i+l
Thus,

I=¢—1
cost{C) + cost{D) = (JI i (xl{a;j)— Jr'[ﬂj}'}'2 — (x{ai41) — xl[ru}}z)

j=0

J=p+l1

e ( 3 (x(bis) — x (@) — (x(bis2) — xuxmf)

J=0
+(x(bisa) — x(a))* + (xlais1) — x(bis1))

= cost{A) + cost{ B) 4+ 2{xia;) — x{bic )M xiaiv) — x{bis2)) = cost{A) + cost{ B)

{due 10 the choice of § as mentioned above).

Let € indicate a subsequence of g+ 1 radio-stations with non-zero range assignments such that 5| can send message
0 s, in o+ 1 hops (or equivalently to all members in § in at most g+ 1 hops) and the cost of range assignment is
minimum, i.e., costi ) = C( 8, 5, g+ 1). Thus we have, 2 x cost{ ) < cost{C) + cost{ D) < cost(A) + cost{ B). O



334 G.K. Das er al. / Thearetical Computer Science 352 (2N6) 332 - 341
4. Algorithms

Let 5, € § be the given source station (not necessarily the lefi-most/might-most in the ordering of §). Our algorithm
for broadeasting from s, to all other radio-stations s; € § consists of three phases, Phase | prepares four initial matrices.
These are used in Phases 2 and 3 for computing optimal solution with no functional bridge, and exactly one functional
brndge. respectively.

For notational convenience, if the source radio-station (say s,) is at one end of a linearly ordered destination
stations {s;, 441, - ., 55}, then we will use Risp, 54, o) and Cisp, 5,4, p) 10 denote the optimal range assignment
Ri{sg.%a51s -2 56} 50, ) and C{{sa, Sasx1, - - - . 55}, S, fr), respectively.

4.1, Phase |

In this phase, we prepare the following four initial matrices. These will be extensively used in Phases 2 and 3. Recall
that s, 15 the source station.

Mp: Itisah x (z— 1) matax. Its (m, jithelement (1 < j < 2) indicates the optimum cost of sending message from
§j Lo 5y (source station) using m hops. In other words, M [m. j| = Cizg, si.m),where l<m<hand 1= j < a

Ma: Wisah x {z— 1) matrix. Iis (m, j)thelementi]l < j <) indicates the optimum cost of sending message from 5§
tor sy (lef-most radio-station in 8) using m hops. In other words, M2[m. j| = Cls1. 5. m), where 1<m < h and
| R

Mz Itisa h x (n — 2) matrix. Its (m, jithelement (x = §<n)indicates the opimum cost of sending message from
§; Lo 5y using m hops. In other words, Ma[m, j| = Cizg, sj.m),where l<m<handa < j=<n.

My: Itisah x (n — 2) matrix. Its (m, jithelement (x < § = n) indicates the optimum cost of sending message from
&7 Lo &, (nght-most radio-station) using m hops, In other words, My[m. j| = Cixy, sj.m), where 1 <m<h and

gsj =n.
Note that, the columns of M| are indexedas[1,2, .. ., a—1].whereas those in M> areindexed as[2, 3, ..., 2] Sumilarly,
the columns of My are indexed as [+ 1. a+2.. ... n]. whereas those in My are indexed as [o, a2+ 1. ..., n—1]. We

explain an incremental approach (in terms of hops) for constructing M. Similar procedure works for constructing the
other three matrices.

Each entry of the matrix M contains a wple (3, ptr), where the y field of My[m, j| contains C (s, sj.m), and s
pir field is an integer which contains the index of the first radio-station (after 5 ;) on the m-hop path from 5; to 5,. We
will interchangeably use, M [m, j]and M[m, j].r o denote Cis,, &7, m). Aller computing up Lo row m of the matnx
My, the elements in the {m + 1)th row can easily be obtained as follows:

Consider an intermediate matrix A of size (o — 1) = {2 — 1). Its (. k)th element contains the cost of {m + 1)-hop
communication from s; W 5, with first hop at sg. Thus, A[j, k] = {é{:{_,-,:.‘;}l}ll + M [m, k]. After computing the
matrix A, we compute M[m+ 1, jl.y = Mr'n:;_}_i_l Al . k. and M\ [m + 1, j]. ptr will contain the value of & for
which A[ f, k] 15 contnbuted to My [m 4+ 1, jl.x.

Straightforward application of the above method needs O(x”) time. But, Lemma 3 says that, if in the optimum (m +1)-
hop path from 5 to s, with first hops at node s¢, then for any node 55 with j° = . the optimum (m + 1)-hop path
from ﬁ; o 5, with first hops at node s and & =&, A simple method for computing the minimum of every row in the
matrix A {without enumerating all the entries in A) needs a total of Oz log 2) time as follows:

Compute all the entries in the %lh row of the matrix A, and find the minimum. Let it corresponds 1o A[%, fil. Next,
compute the minimum entry in Jthrow of A by considering {A[F, . f= 1.2, ..., f}, and compute the minimum
eniry in 3'T:‘Lh row of A by considering {A[ % fLi=g+1,..., % — 1}. The process continues until all the rows
of A are considered.

Definition 3 (Aggarwal and Klawe [1]). A matrix M is said 1o be monotone if for every j &, j° K with j = j &k = &,
if M[j.k)=M[j.k'] then M[j', k1= M[j'. k'].

Lemma 5. The matrix A ix @ monotone matrix.
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Proof. Given A[j, k|=A[j, '], where A[f, k] = {5{.\'_}', .1.',&}!}!I + My[m, k]and A[j k'] = {5{.\'}', A‘g-}}z + M [m, k7).
Thus, My[m, k] — M[m, k'] = (d(s;, st — {(d(s], s))h
Mow,

AL k= AL K] = (d(sp, s’ — (s s+ Milm. k] — M[m. k')
= (Sls o ) — (Bsje, 50 + (B(sj, 5% — (3sf, 57 20
{on simplification). [
A recursive algorithm for monotone matrix searching is described in [1], which can compute the minimum entry in

cach row of & # » » monotone matrix in O{z) tme provided each entry of the matrix can be computed in O(1) time.
Using that algorithm, the matrix M can be computed in Ofz x h) time.

Lemma 6. Phase | needs Oinh) time.

Proof. Follows from the fact that M, M2 can be constructed in O{zxxh) ume, and M3, My needs O((n — x2)xh)
ame. [

42, Phase 2

In this phase, we compute the optimal functional bridge-free solution for broadeasting message from s, to the other
nodes in 5. Here, the range 1o be assigned o s, is at least Maxi dis,, 5,10, S5, 5220000,

Without loss of generality, we assume that 8(s,, 5,1 )= 8(s,, 5, ). Thus, pis,) is initially assigned 1o 8(s,, 5,1 ),
and let sg (& = 2) be the farthest radio-station such that s, can communicate with sg in 1-hop (Le., disg, 520 = 03y 5,01))
< d5g_p, 5200 I we use TS, 54, h|pls,) = d) o denote the optimum range assignment for the f-hop broadcasting
from s, o all the nodes in § subject to the condition that the range assigned 1o 5, 15 d, then

RAS, 5z, Alp(sy) =05y, 52401))

={R{s1.....5} st h—1).0,0, ..., 0, 85y, 8221). RIS\ {81, ..., Sz}, 5201, h — 1)},
i, i
a—k—1
={Ris. 5. h—1),0,0,..., 0, {55, S21), Risy, 5501, 8 — 1)}
W i O
a—k—1

and 1ts cost 1s
C* = C(S, 55, hlp(sz) = sy, 5241)) = (6(55, 52410 + Malh — 1 k] + Mylh — 1,2+ 1].

This can be computed in O(1) ime using the matrices M7 and My, We use two temporary varables TEMP_Cost and
TEMP_id to store C* and 554

Next, we increment pis,) 1o Min(d(s,, sg_1 ), 08y, 5322)), and apply the same procedure 1o caleulate the oplimum
cost of the fi-hop broadeast from s,. This may cause update of TEMP_Cost and TEMP_id. The same procedure is
repeated by incrementing p(s,) o its nextchoiceintheset {8z, ), k= 1,2, .., a— 1 U sy, 550, § =41, ..., n}
s0 that it can communicate directly with one more node than its previous choice. At each step, the TEMP_Cost and
TEMP_id are adequately updated. Thus, the procedure is repeated for O(n) times, and the time complexity of this phase
15 Oin).

4.3. Phase 3

In this phase, we compute an optimal range assignment for the f-hop broadeasting from s, to all other nodes in §
where the solution contains a functional right-bridge. Similar method will be adopled to compute the optimal solution
with one functional fefi-bridge. The one having minimum cost is chosen as the optimal solution obtained in this phase.
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Let us consider a range assignment which includes a nght-bridge §3;.7 < 2 < j. Let 5 be such that (s, ) <
disj, 1) = disj, spe1). k= f. This can be realized in the following two ways:

Scheme 1. Assign pis;) = disj, 5;).

Scheme 2,16 o{x;, 1) < dlsj, 8) < sy, s) = dlsj, 55-1), then assign pls ;) = ds;, spe).

We assume that 5; is reached from s, using m hops. Thus, using Scheme 1, h-hops connection from s, to all the
nodes in S is achieved by (i) reaching 5| from & in (A —m — 1) hops, and (ii) reaching s, from s in (h — m — 1) hops.
Here the cost of range assignment is By = Cis j, 52, m) + (d(x;, :.-J,-}}I +Cisp.sih—m— 1+ Cisy. s, h—m— 1)

In Scheme 2, 5; can directly communicate 1o s to the right, and s to the left. Thus, the f-hop connection from
5y Lo all the nodes in 8§ is established by (i) reaching 5 from s; in (A — m — 1) hops, and (ii) reaching s, from s34 in
(i —m — 1) hops. Here the cost of range assignment is Bz = Cisj, s, m) + (35, 5101 N+ Clsy, 5. —m— 1)+
Clag, Speg—m — 100

Denoting by B(#3;. m) the cost of range assignment with a right bridge 73 where s; is reached from s, using m
hops, we have B{ﬁT, m) = Min(B,. B2).

Apar from identifying sg, B(#3;. m) can be calculated n O(1) time, because

(i) Cisj. 52, m) = Clsy, 57, m) = Ma[m, j](by Lemma 2),
(i) Clsp, 5. h—m—1)=Mslh—m—1,i],
(1) Clsy. sp. h—m—1) = Mylh —m — 1. k], and
(iv) all these matrices are already available.
To get an optimal solution with a right-bridge, we need to find Min]Z| Min"_, | Min),_', B(§3].m).

In our algorithm, we fix each 5 and compule Minj-=x+l Mi’nﬂ,—:ll B(#5;, m) using Lemma 7.
Lemma 7. [fs; € 8 {51, 82, ..., 8z}, then

ﬁ{ﬁj, S pt— 1) — ﬁ{ﬁj, Fa. ft) ‘:‘-;C{J-'_,léh Syt — 1) _c{ﬁj+l~ Sz, fi).

Proof. Let A = {ag = sy, a1, 02, .., dy—2} denote the subsequence (radio stations) of § having non-zero ranges
in R(sjiyp, 85, 00— 1). We use a,_ to denote 5;,. Thus, the mnge assigned o a; £ A is (x(a;p ) — x(g;)) for
FEE TR I S [ SR B— 2. We use cost{ A) to denote C{*'_H Lo 8g, it — 10 Agam, let B = {In. by, b2, ..., By} denoles

the set of radio-stations having non-zero ranges in Ris;, sp, p). ie, cost{B) = Cls;, 55, p). The manges assigned to
Bile Byis(x(be) —x{iblori =0,1,2, ..., pg—1

Let us now observe the pairs (a;, by ), fori =0,1,2, ..., it — 1. Note that, x{ap) — x(f) < 0, and x{ag_1) —
x{bﬂ}l = 0. This implies, there exists at least one { € [1,2, ..., p— 1] such that xi{a; _ ) — x(b;) =0 and x{a;) —
x{bis )20, We consider the smallest i =1 such that x{a;) — x(b )20, and construct two subsequences of radio
stations, namely C = {ap = by ap. ..., i1, PPy, ..., by tand D = {ag = by, by b2, L [ IO PO A
a2}, where length of Cis ¢ — 1 and that of D is p. The ranges assigned to the members in Cand D are, respectively,
o {x{a)) —xlan).. ... xlagi_1) — x{a_2), x{bi)) — xla; ), x{big2) —x{bip ), ..., xiby) — xi{by_ )}, and
o {xif) —xibp), ..., x(Bi) — x(bi), xlag) — x{by), xlaja) — xlag), ..., tlay—1) — xl{au_2)}

The comesponding costs of these range assignments are

J=i-2 J=p—1

costC) = Y (xlaj1) — xla))” + (xlhiv) —xlai-1)) + 3 (x(bj1) — x(b))),
J=il J=i+1
and
J=i—1 % 5 J=u-2 3
costiDy = 3} (xibjs) —x(B))" + (xla) —x(B))y + X (xlajs1) —xia;)).
=0 J=i
Thus,

J=p—2
cost{C) + cost{D) = ( Y ixlajs) —J:'[ﬂj}}l — (x{a;) — -r{ﬂi—l}'}'l)

J=0
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J=p—1
+( ¥ {.r{!r_,-+l}—x{bml—{x{b.-_:m—x{b,-}}l)

j=0

Hx(bisr) — xlai 1) + (x(a;) — x(b;))”
= cost{A) + cost{B) + 2{x(a;) — b ) xdaio) — xibi)) Scost(A) + costi B)

(due W the choice of § as mentioned above).
Again, Claj. 8y, ot — 1) cost{C) and C (5741, 5, 1) = cost{ D). Thus, the lemma follows. 0

Lemma 8. While using the bridge 555, | =2 = j, if B(i5;. o) < B(&3;, p+ 1) then Biix;, p+ 1)< B(3F;,
i+ 2)

Prool. The gain in cost for increasing the number of hops from gto g4 1 to reach from sy o 57 isay = Claj, 50, 1) —
E.'{:.'J.-,:.'x, 1+ 1320, In order to maintain A-hop reachability from s, to sy and 5,,, we need to reach both from 55 1o 5 and
fromsg 10s, using at most i — g — 2 hops instead of i — g — 1 hops. Thus, the amount of increase in the comesponding
costsarear = Cls, s, h—p—2)—Cixy, s, h —p— 1) 20anday = Clsy, s, h—p—2)— Cisy, s, h—p— 1200

As stated in the lemma, E{.ﬁT‘j, ;) — E{f;:._'j, p4 D =0mplesa) —ar —ai= .

MNow, the gain in cost for increasing the number of hops from g+ 1 o g + 2 to reach from 5, 10 55 15a; =
Clsj. 5z o4+ 1)—Cls;, 55, pp4+2) 20, This canses the reduction in number ofhops from i —p—2 to i— p—3 for reaching
&1 from s; and s, from 5. The loss in the comresponding costs are a; = Clsy, 55, h —p—3) —Cls, 5, h—p—2) =0
and al = Clsy, v, h—p—3) — Clsg, s, h —p—2) =20, -

Hy.L.cmma 4, a) a1, ay zar and ay = a3, Thus,

BiEim;. p+ 1) —Blds p+2)=a, —a; —ay<a —ar» —az= (). O

Lemma 8 implies that while using the right-bridge 73, we vary the number of hops m o reach from s, to 5;, and
compute the corresponding cost B(75;, m). As soon as m = p is reached such that B(i{5}, p) < B(I5}, p + 1), there
is no need to check the costs by increasing m beyond p+ 1.

After computing the optimum range assignment with the nght-bndge 73}, we proceed to compute the same with
right-bridge 775, The following lemma says that if the optimum B(#5;, m) is achieved for m = p then while
considering the nght-bridge §3;5, the optimum B(i75;51. m) will be achieved for some m = . Here, it needs to be
mentioned that, we could not explore any relationship among the optimum costs of range assignments using $73; and

Lemma 9. Fora givens; € 5,1 = 2, r:f'Mr'nﬂJ:l B(3F;, m) and Mr':iﬁj=l B(37;57. m) are achieved for m = pand
v, mespectively, then vz p.

Proofl. As s is fixed, we compute the optimal range assignment Ri{sy, ;. h —m — 1) o reach from s; o 5.

While using ﬁTJ., s ;) = dsf, ), and this enables 5; to reach s to its rght (e 357, 5 )2 85, s¢)). Similardy,
while using $3;7. pls;41) = (5541, %), and this enables 5 ;. | to reach s toits right (ie. d(s;4 1, 5) =540, 5 ))
Here j + 1 k< £.

In order to prove the lemma, we need only w show that B{f,-:.‘_,_-_._hp — l]l;_-‘:B{.ffm,p}. By Lemma 8, this will
automatically imply B(i551.m — 1) = B(§i5;51. m) forall m < p. Thus, if Min( B(5;3;21. m)) is achieved for m = v,
then v = .

To prove the above inequality, let a; = Cls;, 55, p — 1) — Clsj, 55, p),

ay = Clsy, 5j1. 0 — 1) — Clsg, 551, i),
ar =Clsp 8.0 h —p— 1) —Cisy, 5,0 — p),
ar = Clsy, 58, h —p— 1) — Clsy, 5¢, h — p) and,

ay = Clag sp b —p— 1) — Clsy. 5¢. b — ).
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As E{*fﬂ pg—=1 = E{f;:._'j,p}, we havea) —az — a3 = (L By Lemma 7, ﬂ{ Zay and ﬂii’;ﬂ} Hence, the amount of
gain in cost for increasing the number of hops from g — 1 to g for reaching from sy to 575 and then using the bridge
&% 31 for the broadeast 1o the other nodes in §1s equal o B(i5;. p— 1) — Bl&F; 0. p) =a] —az —ay za) —az —
az=0. O

Given a source-station s, and another station s; § = 2, the optimal range assignment of the members in S consisting
of a functional dght-bridge incident at 5;, can be computed using the following algorthm:
Algorithm Range_Assign_using_Right_Bridge(s;)

Step 1: We initialize OPT_j = a, OPT _cost = oo and k_store = 2, and
f=1(* pstores the number of hops alloted to reach s ; from s, *).
Start withm = land j =2+ 1.
The role of &_store will be clear in the procedure eompute invoked from this algorithm.

Step 2: Ateach j, we execute compute B(#3;, m). k_store) by incrementing m from its current value upwards until
(i) B{.ﬁ-T'j, m) = B{.ﬁT‘j, m — 1) 15 achieved (see Lemma 8) or
(1) e attains s maximum allowable value Min(h — 2, 7 —a2).

Step 3: Update OPT_cost and OPT _j observing the value of B(#5;.m — 1) or B(ii5;, m) depending on whether
Step 2 has terminated depending on Case (1) or Case (11).

Step 4: For the next choice of j, update p by m — 1 or m depending on whether Case (i) or (ii) occurred in Step 2
(see Lemma 9).

Frocedure comp utefB{f;:._'j, m), k_store)

o Initialize k& = k_srore.

o Increment & to identify the rght-most radio-station such that §(s ;. se) < p(s; )= o5 500

o Set k_store = k for further use. (* ie., for next j, the search for & will start from k_store #)

s Compute B{f,-:._'j, m) = l\jrﬁl\.f.'d.-}l}lI + Risj sy, m)+ Risp 55, h —m — 1)+ Risy, 5, h —m — 1) the last three terms
are available in Ma[m, jl. Mz2[h —m — 1, i] and My[h —m — 1, k] respectively.

Theorem 2. For a given 5; (i <= ), algorithm Range_Assign_using_Right_Bridge needs Oln — o + h) time in the
WOrst case.

Prool. Follows from Lemmas 8 and 9, and the role of k_store in the procedure eompute for locating rightmost sg
such that dis;,s¢) = pis;). O

4.4, Complexity analysis

Theorem 3. Given a set of radio station § and a source station s, € 5, the optimum range assignment for broadcasting
message from s, to all the members in § using at most h-hops can be computed in O(n>) time and using Q{nh) space.

Proofl. Phase 1 needs O(nh) time for initializing the matrices. Optimum functional bridge-free solution can be obtained
in O(n) time as described in Phase 2. Finally in Phase 3, we fix s; to the lefl of s, and identify the optimum solution
with a functional right-bridge incident at 5; in Of{n — 2+ k) time (see Theorem 2). For (z — 1) such s;7s, the wtal time
required in this phase is Oz x (n — 2 + h)). Similarly, the worst case tme required for finding the optimum range
assignment with exactly one functional lefti-bridge is O{(n — =) = {2+ ). Thus, the result follows. O

Note. The interesting guestion is whether one can design an efficient algorithm for Phase 3 such that the time
complexity can further be reduce 1o Oinf x polvlog(h)).
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