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Abstract

Given a set of i points in 2D, the problem of identifying the smallest rectangle of arbitrary orientation, and containing
exactly & (=X n) points is studied in this paper. The worst case time and space complexities of the proposed algorithm are
Oin” logn + nk(n — k)in — k + logk}) and Ofn), respectively. The algorithm is then used to identify the smallest square of
arbitrary orientation, and containing exactly & points in 00 log i + kn(n — k)2 logn) time.
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1. Introduction

Given a set § of n points in 2D, and an integer
k (= n), we consider the problem of identifying the
smallest rectangle on the plane which encloses exactly
k points of §. A restricted variation of this problem
has already been investigated, where the desired rec-
tangle is axis-parallel. The first result on this prob-
lem appeared in [ 1] with time and space complexities
D{kln logn) and Odkn), respectively. The tme com-
plexity result 1s improved o {.kzn + nlogn) in [5.8].

d Corresponding author,
E-mail address: sandipdas@isicalac.in (5. Das).

The space complexities of [8.5] are Oikn) and Oin),
respectively. All these algorithms are efficient when &
is small. For large & (very close ton), an efficient algo-
rithm 15 proposed in [ 14]. It runs in Oin 4 &(n _HZ}
time and using Ofnr) space. In d (= 2) dimensions,
the algorthm proposed in [14] mns in Oidn + dk -
{n — k)™= time using O{dn) space. In all these
variations, the points are assumed o be in general po-
sition, i.e., no two points lie on the same horizontal or
vertical line, and the desired rectangle is isothetic and
closed (1.e.. enclosed points may lie on the boundary
of the rectangle ). A similar problem is studied in [12],
where nopoints are distobuted on the plane, and the
proposed algorithm identifies the smallest circle con-
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taining exactly k points in O(n logn 4+ (n —k)*n*) time
for some £ = (.

We consider the generalized version of this prob-
lem, where the desired rectangle may be of arbitrary
orientation. Our proposed algorithm is simple and it
runs in D{n: logn +knin—kiin— k4 logk)) time us-
g O ) space. The proposed technigue can also iden-
tify the smallest & -enclosing square of arbitrary orien-
Lation in {}{HE logn4knin —!f}l1 log n) time and (}{n:}
space. The time complexity of identifying smallest
k-enclosing square is comparable with that of small-
est k-enclosing circle proposed in [12].

The motivation of studying this generalized version
comes from pattern recognition and facility location,
where essential features are represented as a point set,
and the objective is 1o identify a precise cluster (re-
zion) containing desired number of features [3.4,10].

2. Smallest k-point enclosing rectangle

Let §={p1. p2...., Pt be the set of given points.
The objective is w identify the smallest area rectan-
gle of arbitrary orientation which contains exactly &
points of 5. Without loss of generality, we describe our
method under the general position assumptions for the
points in §, e, (1) no two points lie on a vertical line,
and (1) no three pomnts are collinear. But the assump-
tions can be relaxed with a minor modification of the
algorithm. The following definition is motivated from
the fact that many rectangles exist which can cover a
ziven setof £ points.

Definition 1. An exactly k point enclosing reclangle
R is said 1o be a k-rectangle if there does not exist
another rectangle R having area less than that of R
and containing the same set of & points.

Let a k-rectangle contain a designated subset §°
(C 5 of k points. In other words, this rectangle en-
closes the convex hull of 5§ Thus, each side of a
k-rectangle contains at least one member of §'. The
following result implies that at least one edge of the
k -rectangle conlains two points of §'

Result 1 [15] The minimum area rectangle enclosing
a convex polygon has a side collinear with one of the
edges of the polyzon.

Given this characterization of a k-rectangle, we can
specily major steps of the algorithm for identifying the
minimum area k-rectangle. We consider each pair of
points p;, p; € 8, and execute two passes. Below, we
explain Pass-1 of the algorithm, which identifies all
the k-rectangles with p; and p; at bottom boundary.
The Pass-2 works in a similar manner o identify all
the k-rectangles with p; and p; al top boundary. In
each pass, we maintain the smallest area k-rectangle
found so far. Finally, the smallest area k-rectangle
among the two passes 1s reported.

Let Ly denote the line joining p; and pj;, and as-
sume that p; be to the keft of p; on L. Let L; and
L; be two lines perpendicular o Ly, drawn at gy and
pj. respectively. This splits the half-plane above Li;
into three pans, say LEFT, MID and RIGHT. Our al-
gorithm for Pass-1 sweeps a line L parallel to Lj; in
the upward direction. The following observation lists
all possible situations that may take place when a new
point gy 15 encountered by the sweep hine L. Let 5;,
Sg and 8y denote the set of points encountered by L
m LEFT, RIGHT and MID, respectively, up to and in-
cluding p,,. We assume that p;, p; € Spr. We use |A|
o denote the cardinality of the set A.

Observation 1.

(@) If|150 |+ 15 | + |58 | < &k then no k-reclangle ex-
ists with py, at top boundary and p;, p; at bottom
boundary.

(b} If [Su| = &k and py, € MID, then onfy one k-rect-
angle exists with the line segment |p;, pjl as its
battom boundary, py, at top boundary, left and
right boundaries are defined by lines L; and Lj,
respectively. Hewe, one need not have to consider
any point above p,,, and hence the sweep of L
SHops.

) If l5u| = k and py € MID, then min(k — | Sy,
|50 15k )+ 1 k-rectangles exist with py, at top
boundary and p; . p; at bottom boundary.

(d) If |5m| = &k and py, € LEFT, then if the rectangle
with one side aligned with Li; and the line seg-
ment [py. pil av diagonal containg mowe than k
points then no k-rectangle exists with py, at top
boundary and p;. p; at bottom boundary. More-
over, in the further sweep if another point py ap-
pears whose projection on L i to the lefi of that
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aof P, then also no k-rectangle exists with p; at
top boundary and p;, p; at bottom boundary.

(&) If |5u| = k and py € LEFT, then if the rectan-
gle with one side aligned with L;; and the line
segment [py. p;l as diagonal containg r (= k)
points then min(k — r, [SpUSy] — r|5g]) + 1
k-rectangles exist with py, at top boundary and
Pi. pj at bottom boundary.

() Results similar to (d) and (e) hold if |8y < k,
Pm € RIGHT.

Observation 1 leads to the following result.

Lemma L. Let p;, pj.py € § be three points. The
number of k-rectangles with one edge passing through
Pi. pj. and ity parallel edge passing through py,, may
be anything from O to k& — 2.

Prool. Let us consider the line Lj; as the y-axis.
Consider the set of points encountered by the sweep
line L until it reaches py,. Among these points, ket
# = k be the number of points having x-coordinate
between min(x({p;), x(p;l.x{(py)) and max{xi{p;),
.r{pj}l,.r{pm}l}. Thus, in a vahid k-rectangle, al most
(k — x) pomnts may have x-coordinate less than
min{x{pil, x{p; ), x{pm)). This indicates that the num-
ber of possible k-rectangles with (pi, p;) at bottom
boundary and py, at its top boundary 15 (8 — x 4+ 1).
As the minimum value of x is 3, the maximum num-

L

ber of possible k-rectangles is k— 2. [
2.1 Algorithm

We use geometric duality [6] for systematically
identifying the point-pairs in §. Here (i) a point p =
{a, b) in the primal plane is mapped to the line p*:
v =ax — b in the dual plane, and () a non-vertical
ling £: vy = mx —cin the primal plane 15 mapped o the
point £* = (m, ¢} in the dual plane. Immediale con-
sequence of this definition is that a point p is below
iresp. on, above) a line ¢ in the primal plane if and
only if the line p* is above (resp. on, below) the point
£* in the dual plane.

Let A H) denote the amangement of the set of lines
H=|{p' i=1.2, . n}, where p’ is the dual (line)
of the point p; € 8. The vertices in A{H) are de-
noted by {vgj, i#£ 4, i=1,2,...,
where v;; 18 the dual of L;j. We consider each vertex

uij € AlH), and execute Pass-f which computes the
k-rectangles in the primal plane with p; and p; atits
bottom boundary. Our algorithm does not store the en-
tire arrangement in the memory. The vertices in A(H)
are considered by sweeping a vertical line from left
o right through the arrangement A(H) (see [7,11] for
details of the approach).

During the sweep of the wvertical line through
A{H), the sweep line status s maintained as an ar-
ray B of size n. 1t contains the lines of H in the
order in which they intersect the sweep line in its cur-
rent position, from botlom o top. Each element B x|
irepresenting a line p*) is attached with an id of the
corresponding pointin &, The army B 15 imbalieed by
the lines of H in increasing order of the ordinates of
their intersections with the line X = —oc. The sweep
process is guided by an eventquewse (. It is main-
tined in the form of a min-heap. It stores the vertex
vy if p} and p;‘. are conseculive enties in the army
B and intersect at vy; to the right of the sweep line.
During the sweep, the next evenl point vy 15 oblaned
from ( in Oflogr) time. The updating of @ needs
another Oflog ) tme vsing the method desenbed in
[7.11]. The processing of vy includes swapping two
consecutive entries pf and p¥ in the array B, and con-
sidenng all k-rectangles with p; and p; at its bottom
boundary.

Lemma 2. [f Bla| = p and Bla + 1] = p_}‘, then the
points in the primal plane corvesponding to all the
fines stowed at B[R).8 = 1.2, ....a — 1, are above
the line Li;, and the points corvesponding to all the
lines stoved in B[/, 8 =+ 2. ....n, are below the
fine Ly;.

Proofl. Follows from the definition of geometric dual-
ily. 0O

Thus, while processing a verlex Uj e Al H) {ie.,
the pair of points p; and p; in the primal plane),
the upward sweep for scanning the poinis above the
line L;; in increasing order of their distances from
Lij is equivalent to scanning the elements Bl#], 8 =
e—1le—2,..., 1. In order to analyee the combinato-
dal complexity of k-rectangles on the plane, we need
the following definition:
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Definition 2 [6]. A point g in the dual plane is at level!
& (0= & = n)if and only if there are exactly # lines in
H that lie strictly below g. The dth fevel of A(H) is
the closure of a set of points on the lines of & which
are exactly at level 8 in A(H ).

It also needs to be mentioned that the army B actu-
ally contains the levels of A{H) at the current position
of the sweep line.

Lemma 3. While processing a vertex vi; at level 8

(sav) aof A(H),

(i) if8 =k, then no k-rectangle exists with p; and p;
at ity bottom boundary, and

(1) if @ = k. then the number of k-rectangles with p;
and p; at bottom boundary is at most (K — 2} =
(#—k+1)

Proof. Part (1) of the lemma (ie. @ = &) follows
from Lemma 2 and Observation 1(a). In part (i) (i.e.,
& = k), for each B[f], f=0—-k 8 —k—1,..., 0,
at most & — 2 k-rectangles may exist with the corre-
sponding pomnt al top-boundary and p;. p; at bollom
boundary (by Lemma 2). Hence, the result in this case
follows. 0O

An integer variable e 15 used 0 store the num-
ber of points in Sy that are encountered by the sweep
ling L up w the cument instant of tme. The points
i §p and §g that are encountered dunng the upward
sweep of L are stored in two link-lists T; and Tp. Al
an instant of time, T; stores al most k — g points
in §; closest to L; in increasing order of their dis-
tances from L;; Ty also stores al most k — y g points in
Sg closest to L ; in increasing order of their distances
from L; Imually, both T; and Ty are emptly, yu = 2,
and the upward sweep of L starts. For the first k — 1
encountered points, no k-rectangle 15 generated (by
Lemma 3(1)). For each of them, if itis in MID then y g
is incremented. If itis in LEFT or RIGHT it is accumu-
lated in Ty, or Ty, espectively, in unordered manner.
When the kth point is encountered, the reporting of
k-rectangles starts. We now armnge the elements in
T inincreasing order of their distances from L;. This
needs copying the elements m a lemporary armay, then
sorting the array and finally copying the sorted array

in Tp. The elements in Ty are also armanged in similar
IMTIANMET.

During the execution, we use a scalar variable opr
which stores the area of the smallest k-rectangle that
is identified up to the present instant of time. The four
comers of the corresponding rectangle are also pre-
served in another four-wple, called opt_rectangle.

Let p be the point faced by the sweep line, which
comresponds to B[#] (in the sweep line status army ).
| T, | Tg| and yay indicates the number of points in the
respective sets prior o the insertion of p in its appro-
priate set. The following cases need to be considered.

p e LEFT: If |Ti| + yar = k, then the point farhest
from L; is deleted from Ty, Note that, p is not
inserted in T3, just now; it will be inserted in the
next step. We execute the following steps o report
the k-rectangles.

e Performa linear scan to identify the (k — |7 | —
sa)th element in Ty (from left).

e MNextoscan Tp from its leftmost element and Ty
from the (K — 51| — xar)th element in ordered
manner untl (i) the proper position of p in T}
15 reached or (i) the end of T s reached. At
ecach move, a k-rectangle 15 reported. s bot-
tom side passes through p; and pj. op side
passes through the point p; the left and right
sides are bounded by the respective elements
in T and Tp.

e The area of each of these rectangles is com-
pared with that of the existing opr. 1f it is less
than the existing value of opt, then opr is up-
dated, and the comesponding rectangle 15 stored
in apt_rectangle.

o In case (i), p is inserted in Ty at its proper po-
sition. Lo case (i), the scanning in T, proceeds
further 1o insert pin T}, al its proper position.

p £ RIGHT: Similar to the earlier case.

p e MID: We increment .

If j as = k, then a k-rectangle is reported with bot-

tom boundary equal 1o the line segment [p;. p;l

and p at top boundary, and the sweep of L stops

(by Observation (b))

Otherwise, if [T+ yar = &+ 1, then the point

farthest from L; is deleted from Ty . Similady, if

|Tg| + xar =k + 1, then the point farthest from

L ; is deleted from Tg.
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Nexl, k-rectangles are reported as described for
p € LEFT . Here the question of inserting p in any
sel does not arise.

Remark 1. We can avoid the general position assump-
tion (i), if any, by rotating the plane by a small amount.
We can relax the general position assumption (i) by
allowing more than one (doal) lines pass through a ver-
tex. While processing such a vertex, we consider each
pair of lines passing through that vertex, and execule
the line sweep of Pass-1. The sweep line L first en-
counters the pomts corresponding to the other (dual)
lines passing through the same vertex, and then pro-
ceeds upward.

2.2, Complexity

Theorem 1. Given a 2D plane containing n points, the
number of k-rectangles on the plane is Qinki{n — .{'}2}.

Prool. By Observation 1ia), no k-rectangle exists for
the vertices vj; e A(H) which are at level < &k in
Pass-1 of our algorithm. For each vertex of A(H)
which 1s at level = k. atmost Q0k{n —K)) k-rectangles
are reported (by Lemma 3). The number of vertices of
A(H) which are at level =& s O(nin — & + 1)) (sec
Corollary 5.17 of [13]). Thus, at most O{nkin — H«_r}
k-rectangles can be reported in Pass-1 of all the ver-
tices in A{ H). Similarly, in Pass-2 of all the vertices
in A(H) can also generate at most O{nkin — k)*)
k-rectangles. [0

Theorem 2. The time and space complexities of our
algorithm are {}{HE logn +nkin —k)in —k+logk))
and M), respectively.

Proofl. The scanning of all the vertices of A({H ) using
a vertical sweep line needs Ofn” logn) time. We now
analyze the time complexity of Pass-1 for processing
a verlex vyj atalevela (= k).

During the upward sweep, the points correspond-
ing to Bloe — 1], Blw —2],..., Bl — k— 1] are only
accumulated in Ty, or T (without maintaining the or-
der). This needs O(k) tme. Prior 1o the processing of
Bl — k] we arrange the accumulated elements n T,
and Ty in ordered manner. This needs sorting the el-
ements in Ty and Ty separaiely, and hence it requires
Ok log k) time.

MNext, we start reporting the k-rectangles with p;
and p; at bottom boundary. For each point p cor-
esponding o Bl — kK —i], i=1,2,..., (o — k).
we examine all possible k-rectangles with p oat 1s
op boundary, and finally, insert p in the respective
ist at s proper position. This needs al most Odk)
ime. Thus, the total time required for processing v
is Ok + klogk 4+ kin — k) in the worsL case.

As the combinatorial complexity of (= k)-levels
is O(nin — k)), the total time complexity of our al-
gorithm 15 Oinkin — k)in — &k 4+ logk)). The space
complexity result follows from the fact that the total
arrangement is not maintained in the memory during
the execution of the algorithm. [

3. Smallest & point enclosing square

In this section, we show that our above algonthm
can easily be used 1o design a simple algorithm for
reporting the smallest arbitrarily oriented k point en-
closing square. A & point enclosing square 15 called
a k-sguare if its size is smallest among all squares
containing the same set of points. Without loss of gen-
erality, we assume that the points appeanng on the
boundary of a square are inside it. We now classify
the k-sguares with respect to the number of points 5
present on s boundary. Obviously, no  k-sguame 15
possible with i3 = 0 or 1. The only possibility with
i =2 is that, the two points appear at the two diag-
onally opposite comers of the corresponding k-sguare
isee Fig. 1(a)). Below, we list the possible configura-
tons of a k-square with 3 = 3 and 4. It also needs 1o
be mentioned that we need not have o consider any
configuration with n = 4, since a suitable selection of
a subsel among its boundary points leads to one of the
configurations which we have dealt for 5 = 4.

Two instances of 5 = 3 may produce a valid
k-sguare:

(i) Two points on one side of the corresponding
k-sguare and one point on its parallel side (see
Fig. 1ib)).

(ii) One point at a corner of the corresponding
k-sguare, and the other two points lie on the two
adjacent sides of the diagonally opposite corner
(see Fig. 1))
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Fig. 1. Difterent possibilities of &-5guanes,

For other & point enclosing squares with 5= 3, we
can push them in the direction perpendicular o the
empty side such that the pointon its opposite side goes
inside the square. Thus, we have a configuration with
i =10, 1 or 2. Thus a smaller &-sguare will always ex-
ist with the same set of & points.

For n =4, the possible configurations for a k-
square are as follows:

(1) One side of the said square contains two points of
&, 1s parallel side and one adjacent side contlain
onge pomt each (see Fig, Ld)).

(ii) Each side of the said square contains exactly one
point of § (see Fig. 1{e)).

For all other configurations of the & point enclosing
squares with i =4, a smaller square can always be
obtained with the same set of points inside it.

Consuder the type (1) £-sguare with i = 3. 11s one
side contains two points p; and p;, the correspond-
g parallel side contams a point py,. but the other two
mutually parallel sides do not contain any point. Let
it contains a subset §° < § of & points inside it. Thus,
if we slide it horizontally, it will remain a & -sguare
containing the same set 8 of points and having the
same area. We do minimum horizontal sliding of the
k-square such that one of its vertical sides touches
a point in §. If it is & member in §, it is a type (i)
k-sguare with = 4 (see Fig. 10d)). Such k-squares
are wentificd in Procedure A, stated below. But, if
it is a member p, € § % §, then it gives birth o a
square containing & + 1 points. We first move the other
vertical side to touch with the point in §°. Thus, it
becomes a rectangle with £ 4 1 pomts with one side
passing through gy and p ;. and cach of the other three
sides passing through exacty one point, namely pe,
Pm and pe, respectively. In Procedure B, we shall ex-
tract a k-sguare from such a configuration which is of
type (i) with iy =4 as shown in Fig. 1(e).

Lemma 4. Given four points pi, pw, pe. pr € 8, the
number of sguares whose each of the four sides con-
taing one of these fowr points is at most 2.

Proof. Let the lines which form the desired square are
Li. Ly, Ly and Ly, where L, pass through the point
Pa, where a =i, m, £, r (see Fig. 1)) Also let the
gradient of the lines L; and L, be g and therefore
the gradient of the lines L; and L, be —1. Let A,
B, C and D denote the points of intersection of (L;
and L), (L, and L), (L, and Lg) and (Ly and Lj),
respectively. Equating the length of the line segments
[4, B, [A, D], we get a quadratic equation in g If
the roots of this equation are imaginary, no &-square is
possible. Otherwise, al most (w0 £-sguares may exist.
For cach of them, we need o check whether

(1) pi. pr. P oand py appear on the sides DA, AB,
BC, and C D, respectively, and
(i) sull it contains exactly & points. [0

Remark 2. Each k-sguare must satisfy = 4. Note
that, the k -rectangles with 5= 2 and case (ii) of 5 = 3
can be considered as degenerate cases of the k-rect-
angles with g =4.

I 1. Algorithm

For g = 2, we consider cach pair of points p;, p; €
8. and test whether the square with [ p;, p;| as diago-
nal contains exactly & points by using the method of
simplex range searching [9]. If ves, we compare its
area with the existing opumum. The k-sguares with
=23 and 5 = 4 are identified vsing the method for
identifying  &-rectangles with minor modification as
described below.

We describe two procedures for identifying the in-
stances with =3 and n = 4, respectvely. As n
the earlier problem, we consider the vertices of the
arrangement A(H) . Ateach vertex (representing a ling
L), the upward (resp. downward) sweep of a line
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L parallel o Lj; is also performed as earlier and us-
ing the same data structure. Procedure A identifies
the smallest k-sguare with both p;, p; at its bollom
boundary, and some other point gy, at its op bound-
ary. Procedure B identifies the smallest k-sguare with
either p; or p; at its bottom boundary, and each of the
other three sides contains a point of §.

Procedure A. Let the length of the line segment
[pi. pjl = r. Imually, we consider the r x r square
with one sile aligned with [, p;l. Using simplex
range searching, we count the number of points inside
that square. 1f it exceeds k, then this procedure lenmi-
nales without computing any k-sguare. 1f il is equal
to k then also the procedure tenminates reporting the
k-sguare whose two comers on the bottom boundary
contain p; and p;. Bul, il the count 1s less than k. the
following steps are executed.

Step Al. Our upward sweep proceeds, and the points
in LEFT and RIGHT, encountered by the sweep
line L. are accumulated in Tp and Tg. For the
points i MID, a4 15 incremented. The sweep
continues until it hits a poimt gy, whose distance
from L;; is greater than or equal o r.

Step A2, Now, the median find algordthm [2] is in-
voked for the points in Ty, 1o collect only & points
(if available) which are closest 1o L;. They are also
ordedy stored in Ty . Similady, among the points
in T only & points are stored i increasing order
of distances from Lj.

Step A3, The upward sweep continues and for each
encountered point py,, we test the existence of a
k-sguare with p;. p; al bottom boundary and py,
at top boundary as mentoned below. Sweep Ler-
minales as s00n as a k-sguare is found.

o Lot the distance of p, from Ly is equal to b,
We sequentially walk from left to right along
T . For each element 7 £ Ty, (corresponding 1o
the projection of a point p,; € 5 on Lij) we
choose a point ¢ on Li; such that the kength of
the interval [, ¢] =h = [m, p_|,-|. If the i = h
square with p;. p; at its botlom boundary, py,
at top boundary, and p,; at its left boundary con-
tains exactly k points, it is an instance of case (i)
with 5 = 4. This can be observed from Ty dur-
ing the walk.

Before describing Procedure B for identifying the
k-sguares of type (ii) with n = 4, we need the follow-
ing important observation.

Observation 2. Let R be the optimum k-square con-
taining one designated point of § in each of its bound-
aries. [f we rotate each edge by the same angle keeping
the designated points on ity boundaries, it becomes a
wetangle. We continne mtation till one of ity bound-
aries hit another point insidefontside the square. Thus,
we fave a k-rectanghe ora (K4 1 -rectangle whose one
side containg two points of § and each of the other
three sides contains exactly one point of 5. In other
waords, this k-rectangle or (K 4+ 1)-rectangle, on rota-
tion, produces the desived (optimum) k-square.

Thus, for each pair of points (p;, p;). we identify
all k-rectangles and (k + 1)-rectangles with (p;, p;)
at one side. For each of these rectangle R, we execule
following steps:

Procedure B.

Step B1. Let the other three sides of R contain
Prs Pms Pe.respectively. We consider two gquadru-
ples {pi.pr. pm. pe}t and {p;. pe. pm. pe}. For
ecach quadruple, we compute the smallest vahd
square with those four points at its four bound-
aries respectively using Lemma 4.

Step B2, Next, we apply simplex range searching
technique to each of these squares for westing
whether it is a k-sgquare or nob If yes, it is a can-
didate for the optimum k-sguare.

It needs w be mentioned that, all the rectangles gen-
erated in this process with g (resp. p;) at bottom-left
(resp. bottom-nght) corner will generate the k-sguares
of type (i) with 5 =3 by applying required rotation.

A2, Complexity

Theorem 3. Cwr pmoposed algorithm corrvectfy com-
putes the smallest k-square in O(n” logn +nk(n —k)* -
log n) time using O{n”) space.

Proof. The correciness follows from Remark 2, and
the fact that we have considered all the configurations
with 5 = 4 including the degenerate cases. Though we
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have considered the only case of 5 = 2, Le., two points
on the diagonally opposite corners of a k-rectangle
separately, it can be generated by Procedure B with
little modification.

In the time complexity analysis, we use the fact that
the simplex range counting query can be performed in
O(logn) time using O(n?) time and space [9].

For 5 =2, we consider all possible pair of points
{pi.pj) e 8, and perform simplex range searching o
test whether the square with (p;. p;) as diagonal 1s a
k-square. This needs O(n” logn) time.

Using almost a similar argument of proving The-
orem 2, the worst case lime required for execuling
Procedure Ais U{n: logn+4nkin—k)in—&k+logk)).

In Procedure B, all the k-rectangles and (kK 4 13-
rectangles are considered. Each of them gives birth
to at most four squares at Steps B1 and B2, For each
square, the simplex mnge counting query 15 Lo be in-
voked. As the total number of possible k-rectangles
is Oinkin — .{'}II}I (see Theorem 1), the total time re-
quired for execution of Procedure B for all the vertices
of A(H) is Oink(n —k)*logn). O
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