Parallel algorithms for identifying convex
and non-convex basis polygons in an image

Arijit Laha *, Amitava Sen ", Bhabani P. Sinha ™*

* Institute for Development and Research in Banking Technology Castle Hills, Masah Tank,
Hyderahad 56 057, India

" Advanced Computing and Microelectronics Unit, Indian Statistical Institure, 203 BT, Boad,
Calcutta 7N 108, India

Abstract

In this paper. we propose two novel parallel algorithms for identifying all the basis poly-
gons in an image formed by » straight line segments each of which is represented by its two
end points. The first algorithm is designed to tackle the simple situation where all basis poly-
gons are convex. The second one deals with the general situation when the basis polygons can
be both convex and non-convex. These algorithms are based on an idea of traversal along the
periphery of the basis polygons in a well-defined manner so that each of these needs only Q(n)
time using an # x # processor array. Simulation results on various test input sets of intersecting
line segments have also been found satisfactory.

Kevwords: Parallel algorithm:; Basis polyvgon; Edge traversal

" A preliminary version of this work appeared in the Proceadings of the 9th International Conflerence on
High Performance Computing, Bangalore, India, 2002,
" Corresponding author,
E-mail addrexses: alaha@idebtacin (A, Laha), amitavasenichotmail.com (A, Sen), bhabaniggisical.
ac.in (B.P. Sinha).

A Laha et all | Parallel Computing 31 (2005 | 2903 1) A1

1. Introduction

Finding a higher level description of an image in terms of its constituent ob-
jects is a fundamental problem in automatic pattern recognition and computer vi-
sion. Preparation of such a description, in general, involves extraction of various
information from the image. The field of research that embodies study of such
techniques is called image segmentation. In this correspondence we deal with
two-dimensional images consisting of only the straight line segments. The funda-
mental problem associated with such images is that of detecting the straight lines.
Most often this problem is tackled by using Hough transform [1.2]. In recent
vears, a number of parallel algorithms for computing the Hough transform on
different architectures have been presented by several authors [3-53]. Asano
et al. [6] proposed a scheme for detection of straight lines in an image hased
on topological walk on an arrangement of sinusoidal curves defined by Hough
transform. In [7], a novel parallel algorithm for identifying all straight line seg-
ments have been proposed. This algorithm was shown to be capable of overcom-
ing several difficulties associated with the approach using the traditional Hough
transform.

However, once the straight line segments in such an image are detected, an even
higher level description of the image can be generated in terms of the polygons cre-
ated by the constituent line segments. Such a description is more useful for syntactic
pattern recognition and computer vision tasks. A number of interesting operations
on polygons have been investigated by the researchers in computational geometry
and computer graphics, once these polygons are identified. These include: (i) finding
the convex hull of a polygon [8], [9], (i1) testing the convexity of a polygon [10], (iii)
finding the intersection of two convex polygons [L1-13], (iv) finding the minimum
vertex distance between two crossing convex polygons [14], (v) triangulation of poly-
zons [15,16], ete.

Given the set of straight lines in a two-dimensional image, the set of polygons
formed by all these lines can best be described by the basis polygons, where a basis
polyegon is defined as one which would not enclose any other polygon. The maximum
number of basis polygons that can be created by n intersecting straight line segments
can be estimated as follows.

We start with an empty collection of line segments and add one line at a time
to the collection and count the number of new basis polygons that can be created
by the line. Let us denote the current number of lines in the collection by k. Since
a triangle is a minimal polygon, the first polygon can appear when k =3. When
the (k + 1)th line is added to the collection of & lines, it can intersect all the pre-
existing & lines in a certain order. This (k + 1)th line can generate a new basis
polygon with two corner points as its points of intersection with a pair of con-
secutively placed pre-existing lines. 5o the maximum number of new basis poly-
gons created by the (k + 1)th line is same as the number of distinct consecutive
pairs of lines that can be found in the collection of &k lines, ie., &k — 1. Hence,
the maximum number of basis polygons created by a collection of n straight line
segments is

22 A. Laha et ol | Parallel Computing 31 (2005 | 200-310

=9 g 5
Y k-1 = (” ; j = O(n?)
k=2 =

Again, one polygon can have a maximum of » sides. Hence the worst case lower
bound of computational complexity for identifying all polygons is O(n’).

In this paper, we present two parallel algorithms for detecting all the basis poly-
ezons created by n intersecting straight line segments using n x n array of processors.
Both these alzorithms need O(n) time to identify all the basis polygons using O{n”)
processors in a CREW PRAM model. Thus, in the sense of worst case scenario, the
proposed algorithms are optimal. The first one of the two algorithms presented here
is designed under the assumption that all the basis polygons are convex (Fig. 1(a))
and no degenerate siructures (e.g.. a line ending inside a polygon (Fig. 1(b))) or
nested polygons (in which one polygon is completely enclosed by another) exists.
In Fig. I{b), the polygon abebeda contains a degenerate structure beb. The second
algorithm is designed to tackle the difficulties introduced by non-convexity, degener-
ate structures and nested polygons.

2. Basic concepis

In this section we describe the computing model, the notations and terminologies
used in developing the algorithms.

() 5 ;o

e Zoneegx bosis polecons:
o i wnhHre, careng, wnefds

(k) L

- i Zacenerabs Fohygor:
S 5 dakabcdas

Fig. |. Example of (a) convex basis polygons and (b) polvegon with degenerate structures.

A Laha et all | Parallel Computing 31 (2005 | 2903 1) 293

2.1 The computing model

The proposed computing model consists of n processors using a shared RAM in
CREW fashion. Each processor will be assumed to have also some local memory.
For ease of our later discussions, we would visualize that the »” processors are ar-
ranged in the form of an nx n array so that P; would denote the processor in the
ith row and jth column of the array.

2.2, Basic concepis

We assume that the two-dimensional image consisting of intersecting straight lines
only, lies in the plane of the paper. We use a two-dimensional orthogonal coordinate
system with origin at the lower left corner of the image. The X-axis extends
horizontally rightward and the ¥-axis extends vertically upward in the plane of
the paper.

A point p = (x, v) is denoted by a usual two-tuple of x and y coordinate values.

Definition 1. An ordering among the points on the 2D plane is defined as follows:

(1) a point p; = (xy,») is equal to another point ps = (xs,y2) if x| =x: and
F1 =¥

(2) py is on the kft of ps (denoted as py < pa), if x) < xz20r (x) = x2 and ¥y <),

{(3) p; is on the right of p, (denoted as p=p,), if x=x, or (x; =x, and
Yi=ra).

Example 1. In Fig. 1{a) the point « is the leftmost one. So we can write a < b, o < ¢,
etc. Similarly other points in Fig. 1{a) can be related as ¢>d, d < e, etc. However, if
two points are such that the line segment joining them is parallel to Y-axis (such
points are not shown in Fig. 1(a) and (b)), e.g., py = (20,20} and p» = (20, 30) then
according to our definition, p, < ps.

A line from the point py to ps is denoted by pjps.

Definition 2. A point g is said to be on the lefi-hand side of the line pJp, if the cross
product p . x pp; points perpendicular to the image plane and towards the viewer,
ie, (xa —x)y —¥) —(o—x)p.—) =0

Example 2. In Fig. 1(a), points d, ¢ and f are on the kft-hand side of the line ab
while the point ¢ is on the right hand side of line hd.

In our algorithms we shall often have occasions for computing the angle between
two lines. The angle (! between two lines pj, and pjp; is computed from the dot
product of the vectors as 0 = cos™'pijn, - pps /(| piby || Pips |)-

The input to our algorithms will be a set of n lines {L; : i= 1,2,...,n}, each line
being expressed as an ordered 2-tuple of end points (p, p,), where p, is the left end
point and p, is the right end point, Le., pr <p..

204 A. Laha et ol | Parallel Computing 31 (2005 | 200-310

To facilitate our following discussions, whenever we would refer to a point, this
would exclusively mean either an end point of a straight line or an intersection point
of a set of straight lines.

Definition 3. A point p; said to be a neighbor of another point p; on a line Ly if (1)
pi7=p; and (2) there is no other point on L between py and py

Remark. An intersection point can have one neighbor (if it is an end point of L; as
well) or two neighbors on a line; an end point can have only one neighbor on a line.

If a neighboring point is on the left side of a point, then it is called a left neighbor
of the point, otherwise it is called a right neighbor.

Example 3. In Fig. 2, four lines (L, L., L, and L) with end points as (/,r), ({5, r4),
(ls,r1) and (i, ry), respectively, are shown. The point ¢ has the points /| and b as its
left and right neighbors, respectively on line 1. Point @ is also on line 2 and it has
points & and ¢ as left and right neighbors, respectively on line 2. However, /| has only
a as its right neighbor.

The intersection point of lines L; and L; can be referred to in two possible ways:
{1) as an intersection point lying on the line £;, and also (2) as an intersection point
lying on the line L; More than two lines may intersect at the same point. Such
intersection points will also be referred to using the indices of any two intersecting
lines.

Example 4. In Fig. 2, o is the point of intersection of lines Ly and Ls It can be
referred to as either ftersection(1,2) or Intersection(2,1). Again b is the point of
intersection of lines L, L, and L,, and it can be referred to by anyone of Iniersec-
Hon(l, 3), Intersection(3, 1), Initersection(1,4), fniersection(d, 1), fntersection(3.4) and
fntersectionid, 3). This flexibility of referring to the same intersection point in differ-
ent ways will be used in describing our proposed algorithms.

A polygon will be represented by a list of vertices {v: i=1,2,...,5} satisfying the
following conditions: (1) vy = v,, (2) each vertex v; is either an intersection point of
two or more lines or a pure endpoint (such vertices may appear if degenerate

Fig. 2. An image with [our lines Torming two basis polygons.

A Laha et all | Parallel Computing 31 (2005 | 2903 1) 295

structures (Fig. 1{b)) exist), (3) any pair of consecutive vertices v; and v, are joined
by a single line segment and (4) there is no other intersection point between v; and
ti+1 (if s0, that point should have appeared between v; and v; 4 in the vertex list).

Example 5. Fig. l{a) contains three hasis polygons described by wvertex lists
<ghdfa=, <bedb= and <dafd=. Fig. l{h) depicts a polygon with degenerate
structures which is represented by the vertex list <abebedu=.

The convex polygons as shown in Fig. 1(a) and Fig. 2 are the simplest to work
with. They are convex, without degenerate or nested structures and if two polygons
are adjacent then they share one and only one common edge. However, in our pro-
posed algorithms, we would like to consider the detection of basis polygons for the
following polygonal structures:

(1) A vertex of a polygon may be on an edge of another polygon, but none is en-
closed by the other. We call these polygons as fouching polvgons.

Example 6. In Fig. 3ia), polygons <abefa= and <hedbh= are two adjacent polygzons
sharing only the peint b, and these are called touching polygons.

(2) A polygon may be non-convex (Fig. 3(h)).
{3) One or more lines having their end point(s) within a polygon. We call them
podvgons with degenerate structure.

ta) P (b} g
P X /,//7

= sl T
J .
I"H_L = k
: d
Fureguny, cabelaz =nd Falygon: <aboday
<colho
) [{d} -

f
.//\ / \\
,_/"f Toe By
: ; \ 2w

=}

ﬂ{\Z{ / \\ \“‘
g e “HN

e 1 =} b

Falyyan: <abiefdfgtbhaz Falygons: <abedefar and

<cedo

Fig. 3. Thesituations which can be faced in general cases: (o) touching polygon; (b) non-convex poly gon;
() degenerate structure and (d) nested polyeon.

26 A. Laha et ol | Parallel Computing 31 (2005 | 200-310

Example 7. In Fig. 3(c), the polygon <abfefdfefbhia> has one end point of line cd
and a whole line é¢ within it.

{4) One polygon may be contained within another polygon and a vertex of the in-
ner polygon is on the periphery of the outer polygon (Fig. 3(d)). We call the inner
one to be nested within the outer one.

Example 8. In Fig 3{d), the polygon <cdec= is contained within a outer polyzon
<ghefa= . In terms of basis polygon they should be detected as polygons <abedecfa=
and <edec=.

Definition 4. A polygon with any combination of four situations listed above will be
called a general polvgon.

3. Algorithms

The algorithms presented in this section are based on ordered traversals along the
sides of the potential basis polygons. Each traversal starts from an intersection point
on a line, proceeds along this line towards the right neighbor of the point on the line.
At that point the traversal chooses another neighboring point as the next vertex. To
do this the traversal has to find out all the neighboring points of the current point
and choose one of them. The criteria which determine the choice of the next vertex
to move on, will be properly formulated to ensure that the traversal proceeds along
the sides of a potential basis polygon. If the traversal returns to the starting point, a
basis polygon is detected and the list of the points visited by the traversal in the order
of the visit, forms the vertex list of the corresponding basis polygon. If the traversal
fails to find the next vertex, it is aborted.

In the algorithms developed here, each intersection point has a special correspon-
dence to a particular processor, ie., the intersection point Intersection(i f) of lines i
and j has a special correspondence to the processor Pj;. The processor P; would ini-
tiate a traversal from the Intersection(i, /) along the line i. In the first algorithm deal-
ing with detection of simple convex polygons, one processor traverses one basis
polygon and produces the corresponding vertex list. In the second algorithm more
than one processor can traverse parts of a basis polygon and each of them produces
a partial vertex list. At the end of traversal these partial vertex lists are collected and
concatenated in the proper order by only one of the processors involved, so that the
whole vertex list corresponding to a basis polygon is produced. This feature simpli-
fies the detection of complicated situations described above, utilizes available com-
puting resource more effectively and reduces the overall computation time. The
details of the algorithms are presented in following subsections. However, in the next
example we briefly introduce the general strategy followed in the algorithms. This
example deals with convex polygons only.

Example 9. In Fig. 2, the processor P, starts a traversal from « along line L,
towards its neighboring intersection point b (in rightward direction). After reaching

A Laha et all | Parallel Computing 31 (2005 | 2903 1) 7

b, all the neighboring points on all lines other than L, (the current line) intersecting
at b (current point) are considered. These are: ¢ and ry on line Ly, dand [y on line Ly,
Out of these, we would choose one point to traverse next such that a sharpest
possible left turn can be made. The point ¢ satisfies this requirement for this example.
The traversal proceeds to ¢ and using the same strategy, « is chosen as the next
vertex. Since & was the starting vertex, this completes the traversal and the basis
polygon <abeca> is detected. On the other hand another traversal initiated by the
processor Ps from a along line L is aborted when it reaches {4 via c.

3.1 Algorithm for convex polyvgons

We first describe a parallel algorithm in order to detect the basis polygons for the
special case when these are all convex, and there is no degenerate or nested structure.
Through this simplification we can focus on the key aspects of the algorithm and
treat the more generalized algorithm as an extension of the simpler one. The algo-
rithm takes the set of straight lines as the input; each line being represented by its
two end points. From this input it first constructs four matrix data structures as fol-
lows and then uses them to detect the polygons.

311 Data siructures

(1) dnterSect: An nx nmatrix for storing intersection points. InferSect; stores the
intersection point of lines L; and L; or an invalid value if L; and L; do not intersect.
All elements are initialized as invalid.

Remark. [fnterSect is a symmetric matrix with diagonal terms having invalid values
{since L; cannot intersect itself).

Example 10. The data structures corresponding to the image in Fig. 2 are shown in
Fig. 4. The first row in the matrix futerSect contains the intersection points on line 1,
fnvalid, a, b and b, respectively. Note that b is the intersection point of lines L, Ly
and L4, and hence, it has been entered in both Tniersect 3 and Intersect 4.

(2) SortedinterSeci: An n = (n + 1) matrix for storing sorted intersection points on
each line (as appearing in the matrix fnierSect) and end points. Suppose a line L
intersects with &, 0< &k < n — | lines. Then the corresponding k intersection points
{all of them may not be distinct) are placed in columns 2 through & + 1 of the ith
row of SortedInterSect, in order of non-decreasing rightwardness. Thus, the entries
in columns 2 to k& + | of row { of Sortedinter Sect are generated by sorting the non-
diagonal entries in row § of the matrix Infersect. Column 1 of each row of Soriedfn-
terSect will contain the left end point (if it is not also an intersection point), or an
invalid entry (if the left end point is alko an intersection point). Column & + 2 con-
tains the right end point if it is not also an intersection point; otherwise it contains an
invalid entry. All columns from & + 3 to 5 + | contain invalid entries.

Remark. The neighboring intersection points (on the left or on the right) of a given
intersection point on a line can be easily obtained from the matrix Sortedfnter Sect;.

28 A. Laha et ol | Parallel Computing 31 (2005 | 200-310

lIerGect Zorec lrer5ect
rvalid a b I 1 z b b r
a Imea - d 12 = c d 2
E 2 ealid b 13 € b b &
b i IS Iezlic 14 [b d 4

b=l e Scbng e

1 z K] 4 2 3 1 1
2 -1 3 4 g 1 E 4 -1
z 2 E] 2 1 A 1
3 4 3 -1 -1 1 i z -1

Fig. 4. Data structures associated with the image shown in Fig. 2.

Example 11. In Fig. 4, the first row of the matrix SortedinierSect contains the
entries /y.a.b.b and ry respectively. They represent the following facts: (i) /) is the lefi
end point of line 1 and /| is not an intersection point. (ii) a, & and b are three inter-
section points on line L, arranged in the order of non-decreasing rightwardness.
Third and fourth entries are identical, so there are two lines intersecting with line
L, at b. However, the line number corresponding to the third entry is less than that
of the fourth entry_ (iii) ry is the right end point of line L, and r is not an intersection
point.

(3) Sortingfndex: An nx(n+ 1) matrix of integer values. Its purpose is to create a
positional correspondence between the sorted entries of the intersection points in
SortedInterSect and their original (assorted) entries in futerSect. Thus, iff Sortedin-
ter Sect; = InterSect, ., then SortingIndex; = k. For non-distinct entries in SortingIn-
dex, i SortedinterSecty=SortedInter Sect, ; + 1, then the corresponding entries in
Sortingfndexy and SortingIndex; ;. are filled up with index values &1 and k2 (when
SortedInterSect; = SortedInterSect;; | = InterSect; ;y = InterSect;;-), such that
kl = k2 < . All entries in Sortingfndex corresponding to pure end points and inva-
lid values in SortedinterSect matrix are set to an invalid index value of —1.

Example 12. Again we use the first row of Sorfingfndex in Fig. 4 as the example.
The entries are —1, 2, 3, 4 and —1 respectively. They signify that (a) there are no
entries corresponding to /| and ry in the first row of the matrices fnterSect and
fnterSectIndex (since they are pure end points) and (b) the entries corresponding to
the intersection points @, b and b in first row of SertedlnterSect can be found in the
columns 2, 3 and 4 respectively in the first row of the matrices InferSect and
InterSecindex. Thus this matrix can be used to find entries in the matrices fnter Sect
and InterSectindex corresponding to a point whose position in the matrix
SortedinterSect 1s known.

A Laha et all | Parallel Computing 31 (2005 | 2903 1) X9

(4) InterSectindex: An nxn matrix of integer values. [is purpose is to create an
inverse correspondence as done by Sortinglndex. Thus, if InterSect; = Sortedinter-
Secty then Inter Sectindexy = k. All entries corresponding to invalid values in Iner-
Sect matrix are set to an invalid index value of —1. In case of non-distinct entries in
Sortedfnter Sect, the corresponding entries in fnterSectfndex are so entered that the
index values are in ascending order from left to right.

Example 13. Again we refer to the first row of InterSecifndex in Fig. 4 as the
example. The entries —1, 2, 3 and 4 tell us that the entries corresponding to
the intersection points fnterSectis, InterSect;s and InterSectiy can be found
in the columns 2, 3 and 4 respectively in the first row of the matrix
Sortednter Sect.

Before presenting the algorithm in a formal manner we first describe its basic idea
with the help of the example of Fig 2.

Each basis polygon will be outputted by means of a list of its vertices in order,
with the first and last vertices being the same. For example, the two basis polygons
in Fig. 2 may be outputted as <abca> and <bdeh>. The essential idea of our pro-
posed algorithm is to generate the vertex list for each basis polygon by an appropri-
ate traversal along the edges of the polygons. A traversal for detecting a basis
polygon starts from an intersection point on one of the intersecting lines. This point
is marked as the starting verfex and put in the vertex list describing a basis polygon.
The line on which this starting vertex lies, is termed (temporarily) as the current line.
Suppose we start from the point @ on line L, i.e., o is the starting vertex, and line L,
is the current line. The next vertex is always the closest intersection point on the cur-
rent line on the right side of the starting point. This is called Start Rightward strat-
egy. The next vertex can be found in the following way. Since « is the intersection
point of lines L and Ls, fnterSect|s = InterSects) = a. Starting from fnter Sect)s = a,
we move along the current line, i.e., line L. The right neighbor of & on line L) can be
found from row 1 of SertedInterSect, if we know the position of the entry corre-
sponding to the intersection point a (=futerSect|s) in this row. This is done by look-
ing up the (1,2)th entry in the matrix fater SectIndex, which gives the value 2. Thus,
column 2 in row 1 of SortedinterSect, 1.e., SortedInterSect, 2 is the entry correspond-
ing to fater Sectys. Hence, SortedinterSectys = b is the next vertex on right of a along
line L;, and b is added to the vertex list of the polygon.

To continue the traversal from b, we need to (1) first identify all the lines (other
than the current line) intersecting at b, (2) find the two neighboring points of b on
each of these intersecting lines (a neighboring point may alo be an end point),
and (3) finally select one of all these neighboring points for inclusion in the vertex
list representing the basis polygon. Note that we treat both the intersection points
and end points as possible candidate points for inclusion in the vertex list at this
stage. The differentiation between these two types of points will be done later.

For the first step, we first make a rightward scan on row | of SortedinierSect
starting from its (1, 2)th entry to get Sortedinter Sectyy = SorvtedInterSectyy = b. The
identity of the lines intersecting with line L, at b can be discovered by looking up
the entries in SorfingIndex corresponding to SortedinterSect;y and SortedinterSect .

300 A. Laha et ol | Parallel Computing 31 (2005 | 200-310

We find that Sortingindexy = 3 and SortingIndex,, = 4. Thus, the lines intersecting
with line £, at b are lines Ly and L.

For the second step, we have to find out the neighbors of b on lines Ly and L. For
this, we first identify the entries in SortedinterSect corresponding to Inder Seciy; and
fnterSecty. Now fnterSectfndexy = 3 and faterSecilndexy, = 2. Thus, Sortedinter-
Sectyy, and Sortedfnter Sect» are the required entries corresponding to InterSecty
and InterSecty, respectively. Looking up the neighboring columns of elements
(3, 3y and (4, 2) in SortedinterSect, we find two candidate points SortedinterSectys = ¢
and SortedinterSeciys = ry on line Ly, and two other candidate points Sortedinier-
Sectq = and SortedinterSeciyy = o on line Ly,

For the third step, to choose the peoint to move from among the candidate
points, a two stage strategy is used. The traversal will move to a peint if the point
is on the left of the current line. This is called Move Left strategy. Each of the inter-
secting lines in consideration can contribute at most one candidate point satisfying
this condition. In our case ¢ and & are those candidate points. Among these points,
the one on the line that makes smallest angle with the current line on the left side is
chosen. This is known as Move Left Sharpest strategy. In our case Zabe < Zabd. So
¢ is chosen as the next vertex and added to the vertex list and line L4 is set as cur-
rent line.

Following in a similar manner, line L+ can be found as intersecting line L. at point
¢, and hence, the point o on line L will s polygon, according to the move lefi strat-
egy. Since @ is the start vertex, the algorithm ends successfully detecting the basis
polyzon abea.

Similarly, a traversal starting from b along line L, would detect the polyzon bdeh
and a traversal starting from « along line L» will end without success when it reaches
fy via .

The formal presentation of the algorithm is shown in Fig. 5. The following nota-
tions have been used in describing the algorithms:

1. Operations on a collection of data elements (e.g., list, array) has been denoted as
collection_name. operation(ar gumenis).

2. Some functions compute a tuple of two values. These will be represented in the
form [Faluel, Value2] — function_name{ argumenis).

The functions fntersection, Leftfnd and RightEnd in Fig. 5 are self-explanatory.

The procedure Detect Polygon is described in Fig. 6. In this procedure, data type
Point is a 2-tuple of co-ordinate values, type fdentity is a 2-tuple of index values (for
processors) and type Line Number is an integer identifying a line. The functions and
several termination conditions used in DetectPolygon are explained below:

The variable Position is a 2-tuple of index values corresponding to the entry of the
Next Vertex in SortedIniersect. The function Row Valuel Position) extracts the row in-
dex part, which is the number of the line connecting the CurrentVertex and the
NextVertex that becomes the Current Line for the next step of traversal. The column
index for the entry of NexiVertex in the CurrentLine-th row of SortedinterSect s
extracted with the function Codumn Valuel Position).

A. Laha et al | Parallel Computing 31 (205 | 2913 i) 301

Algorziline
Step & Fard, § =1 wenaml £ 3§
All processors Fiy do in perallel
interSect;; — Intersectionl L, L;);
Hiep :Fari=ln
Fach row of processers By odo in pacallel
|Serted InderSecl; v | 1, Jerbmglder; ve 1] —ParallelSort] Mder3eol)
#* In the above stop, she processoms o the 4% row sort (o porallel] the intereection
pointa in the i" row of the matrix faferSect o produce the sormed intersection
pointa in the i™ row of the matrix SertedinterSect, filling ita cohimna 2 throngh w + 1
The pracessors alan fill tha errresponding entries in the matrix Sorting foden with thea
caluimn agealers Lhal the sorted entries originally coepled o the mates
InterSeef. In the above serting procedore it wes asumed thst fvedid = g, for any
walid point 2. ™/
Step Srbori=lron
All pracesaors Fy do Tnopacallql
If LefEnd(F,) 2 Sorledlnie Seciy o
SurledInierSeel; o = LeftEnd (L
SorfcdinterSect; 1 — Invalid;
Eleo
SortedInterSent;) = LeftEnd (L)
de
While [§ =+ DANDSorledinterSecte g 7 Trecalid) do
InterSeetIndee; portingindeng ©
FJe—ji+1
Erndwhile:
I RightEnd i} # SartedlnterSect, ;)
SurfedTrerSeoly y —Righl B L,);
£ Inthis @nep one processor from coch row of processors (we choose the processor
By fror i row) worke on the coresponding row of the metric Sertedfntergoat
o deal wich the poeaibilicr thar the end pointa also can be nterseccion points.
Fasch provesant alan prepares the correaponding mow of the matrix Feter Sect Frdes. ™)
Step foPor b f="1Twnand i # 3§
All proeessors By odo o poecallel
If tmterSecty; #f fnoalin
DetectPolyzonii, 7);
/# Ia this azen asch proceasor eorresponding ta sach valid incersection poinc atarcs

{in parallel} execicing the procedure for detecting a polygon. ¥/

Fig. 5 Algorithm [or basis pelyegen detection.

A Laha et al. | Parallel Computing 31 {2005) 200-311)

Froeeddiere ThebeetPalygon (i, 5]

Liwl Werlewlisl; M Lisk of verlios, */

Lagt Comedidntelineg) 7% List of line ouobers. ™/

Liwt CandidetePMmns; /7 Liss of peines, =

Liwl PoiitPodilione; [Lisl of posilione [Lwe-lwplee ol ldeses). =/
Print StartPerter, Curyentlerter, Nepterter

Teleratity Pawition

LinieMNoender ClurerndbLing

Verdenlast «— Lmgdy;
BiartVertew — Ioterfock ;1
Vergnm Ldat.add) StarsVerter];
S b wbove cperalion represeals sdoiog o weroee e Lo verlex sl =

e Disee — &

fi — Jnder Seclindes,
[f Sorbodluber Soct, pe = etV ertes

Termicate’;

Curred Verder « Somtedinter 8ot o
Veerden Listomaed) rand I et

Bl utiin — ko

Whike (DarcentVerten # SioetVertes) do
Cragrdtdnte Latves — FmdCandidoteline) Cwrent Lave, SortedC ol |
TF Candidate Ldaes 8 ety
Lermminaee; MY Currend Yerler 4 o pure end pomd, *F
Candidate Paints, Point Positianal « FindTondidate Painte| Candidetelines, QurremeLina);
enbl s, Mosition] — Find el e e [Cendidele Poinle, Juinbd weilions]
I WemtTerten — Movalid
Trerminanse /% 0Wa et e s possdle The teaversal hios tn end.)
1L el erder 2 Blorilerla

Terrminase™;
CopieredLivie — Feawlolue Position];
SortediCainmn ¢ Colymaloluwe Pastion);

{CarremedV erier — NezlVerier:

Vet List add! Marrmnt Vereaz
ol v luile.

Bepart polygon.

Exd TracactPolygon

Fig. 6. The DetectPolygon procedure for convex basis polygons,

A Laha et all | Parallel Computing 31 (2005 | 2903 1) 303

Terminate': If the Start Vertex is an intersection of more than two lines, more
than one processor will start from the same point along the same line, thus perform-
ing duplicate computation. The condition Terminate' allows only one processor (the
processor having the lowest value of column index) to start traversal from a point
along a particular line.

The function FindCandidateLines uses its arguments to find the Current Veriex in
the SortedinterSect and scans the neighboring columns for Current Veriex. Then it
finds the line identities for all entries of Current Vertex from the Sortinglndex and
outputs the list Candidate Lines with the values found in Sortingindex. Thus, this list
contains the number of each line intersecting with Current Line at the Current Vertex.

The function FindCadidate Points takes the list Candidate Lines and CurrentLine
as input, and it outputs the list of two tuples [Candidate Poinis, PointPositions]. This
function first looks up the fmierSectindex using the values in the list Candidate Lines
as row indexes and CurrentLine as the column index. The values found are the col-
umn indexes for the entries of CurrentVertex in SortedInterSect in the rows corre-
sponding to the lines in CandiduoteLines. Then for each of these entries of
CurrentVertex the left and right neighbors are found in the SortedinterSect. Each
of these neighbors found is listed in Candidate Points, and the values corresponding
to the row and column indexes in SortedinterSect are entered in the st
Point Positions.

The function FindNexi Veriex takes the list of 2-tuples [Candidate Poinis, Poini-
Positions] as input, and it outputs the tuple [NextVertex, Position] to indicate the
point where to move next. It first applies the Move Left strategy to select a candidate
point. If more than one point qualify for left move, Move Left Sharpest strategy is
used to select a single point. The selected point is returned as the Next Fertex and
its row and column indexes as found in Point Positions are returned as Position. 1f
no point qualifies for left move, an invalid value is returned for Next Vertex.

Terminate®: If NextVertex < Start Vertex and both of them are vertices of the
same basis polygon, then Stard Vertex must be reachable from an intersection point
which is again a part of the same polygon using a right move (initial move), and the
vertices computed so far must be the part of the vertex list of the processor starting
from that intersection point also. Thus ultimately, at least two processors will report
the same polyzon, with more than one processor ending up with detecting the same
basis polygon. Using this Terminate® condition, we allow only that processor to
complete the traversal for which the point it is starting from is the leftmost vertex
of the polygon.

312 Complexity of the algorithm

In step 1 of the algorithm in Fig. 5, each processor F; finds the intersection of
lines L; and L; by simply solving the equation of the lines. This step involves O{1)
time. In step 2 processors in each row i works as a linear array of processor to sort
the intersection points on the ith line. They also generate sorting indexes for the line.
This step can be performed in O(n) time if simple Odd-Even Transposition is used.
In step 3 one processor in each row § augments the ith row of Soriedfnter Sect with
the values of the end points of line L; (provided they are not intersection points as

304 A. Laha et ol | Parallel Computing 31 (2005 | 200-310

well) and computes the ith row of the fater Sectdndex. This is an O(n) operation. In
step 4 all the processors Py for which fater Sect; is a valid point starts a traversal for
detecting a basis polygon with start vertex InterSect; along line L,

If a polyzon has s<n (since polygons are convex) sides the traversal that detects it
has to cover s sides. If all the intersection points encountered en route are intersec-
tion of two lines, choosing the next vertex at each vertex is an O(1) operation. How-
ever if a vertex is intersection of & > 2 lines the algorithm has to choose one line out
of k — 1 lines. Thus finding the next vertex is an O(k — 1) operation. But due to the
convexity of the polygons & — 2 lines rejected at one vertex can never be sides of the
same polygon. So the total number of computations for finding the next vertex is at
most Ofn) for a polygon. Since one polygon is detected by one processor, step 4 of
the algorithm also has the worst case complexity of Oin). Thus the whole algorithm
has the time complexity of O(n). The algorithm uses four data structures each of size
n*, with a space complexity of O(n?).

3.2 Algorithm 2

We now modify the algorithm in the previous section so as to consider the detec-
tion of basis polygons of the most general type that can be produced by the line seg-
ments. The modified algorithm uses the same data structures as the former one and
its steps of computation are also same as that of Fig. 5. Only the procedure Detect-
Polygon will be modified. We make two changes as explained below.

First, we change our strategy for finding the next vertex. In the previous algorithm
the next vertex is detected only if a left move from the current vertex enables the tra-
versal to reach it. Otherwise, the traversal fails to continue. Now the detection of the
next vertex is done using the following strategy consisting of several steps:

(1) Search for a possible left move from the current line. If succeeded, then take the
vertex corresponding to the left move chosen as the next vertex; otherwise go to
the second step below.

{2) Find the next vertex on the current line (i.e, the neighbor of the current vertex
on the current line along the direction of traversal). We call it Continue along
the same line strategy. If such a vertex is found, then take that as the next ver-
tex; otherwise (i.e., the current vertex is an end point of the current line) go to
the third step below.

{3) Find a possible right move from the current line. 1f there exist more than one
candidate point for the right move (current vertex is the point of intersection
of more than two lines), then choose, as the next vertex, the point in that line
which makes the biggest angle with the current line at the current veriex. We
call this strategy Move Right Widese. If no such right move is possible (ie.,
the current vertex is a pure end point of the current line), then go the fourth
step below.

{4) Set the vertex prior to the current vertex as the next vertex. We call this Turn
around strategy.

A Laha et all | Parallel Computing 31 (2005 | 2903 1) 35

Another change is concerned with the generation of the vertex list during the tra-
versal of basis polygons. Our goal is to consider the general case of non-convex,
degenerate, touching and nested basis polygons without generating duplicate basis
polygons. To achieve this, we now propose that each processor F;; corresponding to
a valid entry in InterSect; starts a rightward traversal along line L; as before. How-
ever, if at a vertex (say, b) during the traversal, the next vertex (say, ¢) is the right
neighbor of the current vertex b, then the processor Py stops its traversal creating
Just a partial vertex list of a basis polygon. The partial vertex list of Py; would then
consist of the list of the traversed vertices upto the vertex (say, a) previous to the
current vertex (i.e., the current vertex is not included in its partial list). Since ¢ is the
right neighbor of b, there must be another processor that has started a traversal
along the same route (from b to ¢) to traverse the same basis polygon as that by
Py Let this processor be FPy; which can easily be detected by the processor Py by
noting the line on which b and ¢ lie. We call the processor Py, as the successor
of Py in this traversal. Conversely, P;; will be termed as the predecessor processor
of PH.

The processor Py at this stage also writes its own index values (i,/) at a location in
the shared memory designated as the Predecessor Index Bujfer of Pyy

Example 14. Fig. 7 depicts six line segments forming a non-convex polygon. Since a
processor corresponding to a valid intersection point starts initially a rightward
traversal, the processor Ps> would start traversing along line 1 from the intersection
point ¢ and then it finds the vertex b as the current vertex. At b, it chooses a lefi move
and ¢ becomes the next vertex in the traversal. However, since b < ¢ (i.e, cisthe right
neighbor of b on the line 3), it implies that the processor Py, also has started a
traversal from b along line 3 towards ¢. If Py» continues the traversal it will detect the
same polygon as the one detected by Py;. So instead of proceeding further, P s stops
its traversal and keeps the partial vertex list computed by it before the current vertex
(# here), i.e., the partial vertex list for Py» is <¢> and it writes its identity (1,2) in the
predecessor index buffer of the processor Py,

f ; & e
.-;. /.._"
|;'r -\./.
e o 4
- /{‘-J; -
_xr il ,-3
P sy o
Sa . - — ;/I:l__

Fig. 7. Six line segments forming a non-convex poly gon.

36 A. Laha et ol | Parallel Computing 31 (2005 | 200-310

Mow, let us follow the traversal initiated by Py,. This traversal moves to 4 via c.
Here it finds ¢ as the next vertex (a right move). Since d < ¢, it implies that Py has
started a traversal from o towards ¢ along line 5. So Py identifies Pey as its successor,
stops the traversal with a partial vertex list <be> and writes its own identity (3, 1) in
the predecessor index buffer of Psy. Similarly, the processor Psy traverses the points
d, e, f, and a. At g it chooses the next vertex b and finds that o < b, Thus, it detects
P\- asits successor, stops with its partial vertex list <def= and writes its identity (5,4)
in the predecessor index buffer of P(1,2). The lists and the predecessor index buffers
of different processors are as follows:

P52 Vertex list = <a=, predecessor index = (5,4);
Pyi: Vertex list = <bc>, predecessor index = (1, 2);
Py Vertex list = <def>, predecessor index = (3,1).

We thus see that by this process, we would have a chain of processors for a ba-
sis polygon each of them holding a partial vertex list for the complete basis poly-
gon in a definite order. Since a polygon cannot have more than n vertices, it
follows that the above process will be completed in O(n) parallel time. Now the
remaining task is to collect and merge these partial vertex lists to produce the full
vertex list forming a basis polygon. For that we need to devise a protocol for
selecting one processor in the chain that will compile the full vertex list of the
respective polygon.

We fix our idea that the processor with the lowest index value forming a chain of
such partial vertex lists will collect all these partial lists and form the complete vertex
list representing the basis polygon in consideration. At this stage every processor will
start reading its own predecessor index buffer, follow the index value and read the
predecessor index values of the successive processors in the chain, until it reads its
own index value. By this, every processor in a chain forms an index list of all proces-
sors holding the partial vertex lists of a specific basis polygon. This requires O{n) par-
allel time. Every processor will then find in parallel the minimum of all these
{maximum » in number) index values in logn time.

Only the processor whose index is equal to this minimum index found by the
above step, will continue with merging the partial vertex lists of the processors in
the chain, as formed by the processor index buffer values of the successive proces-
sors. All other processors will exit. This requires Oin) time again.

Example 15. The minimum of the index values for the above Example 14 is (1,2).
Hence, only P, will continue to form the complete vertex list and the others will
stop. Py» first takes its own list <a>, concatenates it after the list <def= of its
predecessor processor Poy to form <defa=. Then it concatenates <defu= after the
partial vertex list <he> of the predecessor processor Py, of Py, to form the list
<hedefa= . The predecessor processor of Py is Py», and so the concatenation process
ends there with the final vertex list as <abedefa=.

We now present the modified version of the DetectPolygon procedure formally in
Fig. 8. MNew functions used are explained below:

A Laha et all | Parallel Computing 31 (2005 | 2903 1) 7

In Fig. 8, the variables Chenfdentity, Successor and Predecessor are used for stor-
ing the own index value of the executing processor, index values of its successor and
predecessor processors, respectively. femp is a temporary variable also of type Iden-
tity. The data type Matrix is used to denote two-dimensional (n % n) arrays. Prede-
cessorList (shared global) and fndexLise (local) are two such arrays of type Matrix
which are used for storing the index values of the predecessor of all processors,
and the index values of the processors in a chain which hold the partial vertex lists
corresponding to a specific basis polygon, respectively.

GetPreviousVertex returns the vertex previous to Current Vertex as Next Vertex
and prepares the Position information from the indexes of the entry corresponding
to the NextVertex in the same row of Sortedinter Sect. This effectively reverses the
direction of traversal along the same line. FindLeft Move is just another name of
FindNext Vertex used previously. FindPointOnLine finds the next neighbor of Cur-
rent Vertex on the current line along the current direction of traversal. FindRighi-
Move returns a vertex for right move chosen using Move Right Widest strategy.
The function FindSuccessor{Position) returns the identity of the processor that starts
a traversal from the intersection point indicated by Position.

3.2.1 Time complexity

We now consider the time complexity of the modified DetectPolygon as in Fig. 8.
Mon-convex polygons and degenerate structures can make a line appear in a polygon
more than once so that the total number of sides in a polygon may exceed n. How-
ever for each reappearance of a line the traversal must choose a right neighbor as the
next vertex in between. In this algorithm a processor stops traversal whenever a right
move is detected. So the computational complexity for the contribution made by an
individual processor never exceeds Ofn). Thus the overall time complexity of the
modified algorithm is also O{n).

3.2.2. Load balancing and scalability

As mentioned earlier, each processor Pyisj does the computation associated
with the possible intersection point of lines i and j, if any. Thus, the diagonal proces-
sors do not take part in any computation. Further, other processors corresponding
to non-existent (invalid) intersection points (all non-diagonal processors are engaged
when each line is intersected by every other line, which is not a general scenario) also
remain largely unutilized. However, for the sake of simplicity of the algorithms we
do not attempt any finer load balancing.

When the number of available processors is &, rather than n”, the algorithm can
be easily scaled with a simple load balancing scheme. Each processor can be associ-
ated with [2] x [4] intersection points, i.e., Pj is associated with the intersection
points of lines having numbers within the range (i — 1)[2] 4+ 1 to i[2| with lines hav-
ing numbers within the range (j — 1) [ﬂ +1lio _.riﬂ The scheme can be easily under-
stood if we think of an nxn matrix of the intersection points, where ijth element
correspond to intersection of lines i and j, and the k x k matrix of the available pro-
cessors. The nxn matrix is first partitioned into kx k array of submatrices of size

ik

A Lata et al. | Parallel Computing 31 (2005) 20031

Frocedess DeteclPolysenli, 1
Poind Shoe bV e des, Cavvend Vertes, Nexi Verler;
LineNunhar Currant Line;
st Voerter Lisd, £ ooelicintn Ldnes, Oanciidots Poinde, Uoind Mositdom s,
Selentity Moxibiem, Chemad dendily, Suneexsor, Meadneesaocs
Mateiz Predecegeor Liel, TndexLisl;
Fordea Dist o Fimpnyy Ftartlortor o Inter&Set;
Vergoz Fistodd] Start TV orter s
Clurrond L — i
i — InterSectd adei.g;
[f SartedTnter ot gy = StartVeites
Termineme' ;
Curranflsrtes — SoekedPoder Seel; g
Verburlialodd] CarveenlVer la,;
Sotded ol — B
Flan «— TEI'E.
While Tlurrantl arver 0 SteetVerses ANTY Flag TR do
Clasndiduleiney — PN anedfode Linees(ltre el v, HordedUlohmn;

11 Credidicle Linces ik guw, waogely M el Vevies doow pwe el poied® [/
CandidateP mnda. FotnitFPastiona) — FidTondidate Point e Candidobe e, CurrentLing;
et orter. Fogition, « FindLefeldmee] Cendicatc Podnda, Foint Fastiona)l;
¥ A et et — dooadie)

epl Y Reiew, Soniliom — Frivedd iU Linee I wrvracbLid e, Soe D elamnds
I NewrTeriee = Invalad;
| Vet Tiortem, Poaiteon] - FusdRaght Mopel Cancdidate Poanita, Foint Fasutional)

I Al arer & Chnreniher S5 Mastliertnr iy the right nedphior af Caerrent VeroesS)

CheTerbY prler — M rwllFerley; CherenbLing — Moy r.ln.'m[!"{.-.-siii-:.'l.:l;

SorledCotaan — Coleanme ¥ aloePuailion ¥erburdialodd] Coreenl VFer le;
Eles

Tartrelim ¢ Vieorsealdst CorrentTortor; O ldrmiey o (4,

Sweeesaor o Uinddannnenripositiom]; Pregfnanesor LSt Swaanssor] - Oven Taemtiiy;
Bl — 2 ALAE: O ot of B aldls lp,
Elza
(WemfVertan, Fazitiog o [reaPramimeet ertenid are ot Line, Sortndl lahsmr);
Hartead oo o Cadnrnod eian] Pasitinn); 1 v e Ldaolel{ 1 mon 1 e)
LEzel W% Juide: M Ube Tl ol bedese valass b all processay iooa chain s coesd balos *f
et +— Suouesaut;
While srinp 2 Ownlasatity do
MedrmRieadd trimp]; teimp o Frodneseaor Liatismmp);
Pozel W hile; ™ ke e wille socallos, irndvse sl o mepdara Lo paiygan *F

Serpsdiestd dendily — moind Irdse L

[T Svaatlestldetdity = Quoiidoniiiy
Omacncraaee che vrrtexTdsts af nll processors n TndexTiss Tirminmt polymon;

1l Dotect Pahgom

Fig. B The DetectPolveon procedure for general basis polveons,

A Laha et all | Parallel Computing 31 (2005 | 2903 1) 304

'] % [#]. Each of the submatrices is then directly mapped onto corresponding pro-
cessor in the processor array, leading to the above result for task arrangement.

Therefore, the upper limit of the time complexity is {.‘l([ﬂzn). Thus, the algorithms

are upward scalable with increasing number of lines for a given processor array by a
factor of [2]".

323 fsswes in implementation and testing

In computational geometry many efficient algorithms, when implemented naively,
result in fragile computer programs due to numerical errors introduced by finite pre-
cision of the floating point arithmetic [17-19]. In the implementation of our algo-
rithm we have taken a few measures to circumvent this problem. They are as follows:

1. The basic quantities involved in the computation are the coordinate values of var-
ious points, which are in decimal form. During the computation they are changed
into rational fractions of the form x; =% where gy and g, are integers.

. All arithmetic computations involving solution of two simultaneous linear equa-
tions, angle computation, etc. are performed in integer field only using these
rational fractions and leaving the results also as rational fractions. Thus no divi-
sion by zero is involved.

3. Mutual comparison of the computed results with each other, or comparison with
some constants like zero, are performed within a tolerance of some small quantity,
say A. This solves the problem of exact value matching, leaving some inaccuracy
in the result, but without causing any bottleneck.

[

We have tested the implementation of the algorithms with several synthetically
eenerated data sets. We have used random number generator to generate the values
of the end points of the input lines. However depending on which algorithm is being
tested, later some lines are manually added/deleted from these randomly generated
set of lines to add/remove special features such as degenerate structure, nested
polygon etc.

4. Conclusion

In this paper we have presented two algorithms for detecting hasis polygons cre-
ated by n straight line segments. While the first algorithm is restricted to convex poly-
gons, the second one can handle any general situation that can arise. Both the
algorithms uses n” processors with a total shared memory requirement of O(n?).
The worst-case computational complexity is O(n). Both the algorithms have been
simulated and tested successfully on samples of different polygonal structures.

Although the second algorithm can detect the basis polygons of all types, it has a
small side effect. For a set of connected basis polygons it produces an extra vertex list
that describes the outer periphery of the connected basis polygons put together. This
can easily be ascertained from the fact that at the leftmost intersection point at least

3 A. Laha et ol | Parallel Computing 31 (2005 | 200-310

two processors start traversals along different lines. One of these traversals starts
along the line making the smallest angle with y axis and it will always trace the
periphery of the connected basis polygons (e.g., <aclycdrydrsdb ribriblibalsalia= in
Fig. 2). This polygon can be detected and rejected easily in a post-processing stage,
or its computation can be aborted altogether at the beginning of the DetectPolygon
by inserting suitable test conditions.

References

(1] BV.C. Hough, Methods and means For recognizing complex patterns, US Patent 3069054, 1962,
[2] B0, Duda, PLE. Hart, Use of the Hough transformation to detedt lines and curves in pictures,
Communications of the ACM 151 (1972) 11-15
[3] C. Guerra, 5. Hambrusch, Parallel algorithms for line detection in a mesh, Journal of Parallel and
Dvistributed Computing 6 (Febroary) (1989 1-149.
4] R.E Cypher, JLL.C. Sane, L. Snyder, The Hough transform has O(N) complexity on N = N mesh
connected computers, SIAM Journal of Computing 19 (October) (19907 805831,
[5] B. ¥i, H.Y.H. Chuang, Parallel Hough transform algorithms on SIMD hypercube array, in:
Proceedings of the International Conference on Parallel Provessing, August 1990, pp. B3-86.
[6] T. Asano, K. Obokata, T. Tokuvama, On detecting digital line components in a binary image,
Proceedings of the Workshop on Computational Geometry, Caleutta, India, March [8-19, 2002,
[7] A Sen, M. De, B.P. Sinha, A, Mukherjee, A new parallel algorithm For identification of straight lines
in images, Proc. Blth International Conlerence on Advanced Computing and Communicalions,
Decemnber 14-16, 2000, pp. 152-159,
[8] D MeCallum, D Avis, A linear algorithm or nding the convex holl of a simple polygon,
Information Prowssing Letters 9 (1979) 201-206.
9] A.AL Melkman, On-line construction of the convex hull of a simple pelyline, Information Processing
Letters 25 (1987 11-12.
[10] F. Heckbert (Ed.), Graphics Gems IV, Academic Press, New York, 1994,
[11] G.T. Toussaint, A simple linear algorithm For intersecting convex polveons, The Visual Computer |
(1985) 1 1B-123.
[12] J. O'Rourke, A new linear algorithm lor intersecting convex polveons, Computer Graphics Image
Processing 19 (1982) 38439
[13] 5 Kundu, & new Onlogn) algorithm for computing the intersection of convex polygons, Patlern
Recognition 20 ([1987) 419424,
[14] G.T. Toussaint, An optimal algorithm for computing the minimum vertex distance between two
crossing conved polvgons, Computing 32 (1984) 357-36d,
[13] 5. Sen Gupta, BP. Sinha, An Ofloge) tme algorithm for estng isomorphism of maximal
outerplanar graphs, Journal of Paralle and Distributed Computing 56 {1999 [44-1 56,
[t6] G.T. Toussaint, On a convex huoll algorithm for polygons and is application to triangulation
problems, Pattern Recognition 15 (1982) 2329,
[17] C.M. Hoffmann, The problem of sccuracy and robusinesin geometrical caleulation, IEEE Computer
22(3)(1989) 31-41.
[18] K. Sugihara, How 1w make geometrical algorithms robust, 1EICE Transsctions of Information and
Systemn ERX-Dy (3) (2000) 447454,
[19] D, Fogaras, K. Sughara, Topology-orineted construction of line arrangements, IEICE Transactions
of Fundamentals ER5-A (4) (2002) 930-937.

	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg
	17.jpg
	18.jpg
	19.jpg
	20.jpg
	21.jpg

