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Abstract

Several schemes for checkpointing and rollback recovery have been reported in the literature. In this paper. we analvze some of these
schemes under a stochastic model. We have derived ex pressions for average cost of checkpointing, rollback recovery, message logging and
piggybacking with application messages in synchronous as well as asynchronous checkpointing. For quasi-synchronous checkpointing we
show that in a system with n processes, the upper bound and lower bound of selective message logging are Oin?)y and O (), respectivel v,

Kevwords: Checkpointing: Message logeing: Rollback recovery: Pedormance evaluation

L. Introduction

The technique of checkpointing and rollback reeovery 15 a
well-known method to achieve fault wlerance m distnbuted
computing systems. In case of a fault, the system can roll-
back o a consislent global state, and resume computation
without requiring additional efforts from the programmer. A
checkpoint 1% o snapshot of the cumrent state of a process. [L
saves enough information in non-volatike stable stomge such
that, if’ the contents of the volatle storage are lost due 1o pro-
cess fuilure, one can reconstruct the process state from the
saved mformation. The action of the receiver of a message
may depend on the content of the message. Thus the receiver
15 considered to be dependent on the sender of the message.
This dependency relation is transitive. I the processes com-
municate with each other through messages, rolling back
4 process may cause some inconsistency. Within the time
since its last checkpoint, a process may have sent some mes-
sages. IF it is rolled back and restarted from the point of its
last checkpoint, it may creale orphan messages, 1.C., Mes-
sages whose receive events are recorded in the states of the
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destination processes but the send events are lost. The pro-
cess, that receved the onginal message, now orphaned, 1s
called an orphan process.

Sunilardy, messages received durning the rolled back pe-

have no idea that these messages are o be sent agan. Such
a message, whose send event 1s recorded in the state of the
sender process but the receive event 15 lost, 15 called a miss-
ing message.

A set of checkpoints, with one checkpomnt for every pro-
cess, 15 sd W be Consistent Global checkpointing State
(CGS) it does not contain any orphan message or missing
message. However, generation of missing messages may be
acceptable, if messages are logged by sender.

Checkpointing algonthms may be classified mto three
broad categones: (a) synchronous, (b) asynchronous and
() guasi-synchimonons [15]. In asynchronous checkpointing
[17.26] each process takes checkpoints independently. In
case of a failure, after recovery, a CGS is found among
the existing checkpoints and the system restarts from there.
Here, finding a CGS can be quite tricky. The choice of check-
points for the different processes is influenced by their mu-
tual causal dependencies. The common approach 15 Lo use
rollback-dependent graph or checkpoint graph [7,29,3,20].
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If all the processes ke checkpoints at the same time in-
stant, the set of checkpomts would be consistent. Bul since
globally synchronized clocks are very difficult to imple-
ment, processes may take checkpoints within an imterwval.
In synchronous checkpointing [3.4,6,12-15,17,20.22] pro-
cesses synchronmize through system messages before taking
checkpoints. These synchronization messages contnbute o
extra overhead. On the other hand, in asynchronous check-
pointing some of the checkpoints taken may not Lie on any
CGS. Such checkpomnts are called wseless checkpoints. Use-
less checkpoints degrade system performance. Unlike asyn-
chronows checkpointing, synchronous checkpointing does
not generate useless checkpoints.

To overcome the above tadeofl of synchronons and asyn-
chronows checkpointing, guasi-synchionons checkpointing
algorithms werne proposed by Manivannan and Singhal [15].
Processes take checkpoints asynchronously. So there s no
overhead for synchronization. Generation of useless check-

checkpoints at appropriale Gmes.

Some works on performance evaluation of checkpoint-
ing and rollback recovery algorithms have been reported in
the literature. Plank and Thomason [ 19] calculated the aver-
age availability of parallel checkpointing systems and used
them in selecting runtime parameters ike the number of pro-
cessors and the checkpointing interval. These can minimize
the expected execution time of a long-running program in
the presence of failures. Vaidya [27] proposed a two level
distributed recovery scheme and analyzed it to show that
it achieves better performance than the traditional recovery
schemes. The same algorithm was also analyeed by Panda
and Das [18] taking the probability of task completion on
a system with limited repairs as the perfformance metric.
Rao et al. [21] presented an experimental evaluation of the
performance of different message logging protocols during
TECOVETY.

Section 2 describes the stochastic model used for the anal-
ysis In Sections 3-5 expressions for checkpointing and re-
covery cost are denved for synchronous, asynchronous and
quasi-synchronous checkpointing, respectively. In section 6,
the different schemes are compared.

2. The underlying model

For the purpose of analysis, we consider the following
stochastic model:

(1) Time 15 assumed o be discrete.

(2) The system consists of a loosely coupled system with
1 PIOCesses.,

(3) Inter-process communication s through message pass-
ng.

(4) Message sending, checkpointing and faults oceur inde-
pendent of each other.

(5) At any point of Lime, 4 Pprocess may generale a message
with probability 4, . The destination of the message can
be any one of the remaning (n — 1) processes with
equal probabilities.

(6) At any point of time, a process that s not ivolved in
taking checkpoints, may start checkpointing with prob-
ability 4.

(73 AL any point of tme, a process may Fail with probability
AF.

3. Synchronous checkpointing

In synchronous checkpointng algorithms, processes com-
municale through system messages and make sure that the
checkpointing scheme yields a CGS. In the schemes pro-
posed by Prakash and Singhal [20], and Cao and Singhal [3].
the imitiator of the checkpomting process forees the depen-
dent process o take checkpoints. The dependency melations
are maintained by atlaching an r-bit vector with every ap-
plication message. Every message senl makes the receiver
dependent on the sender. In the worst case, checkpointing
mnititor may directly or tansitively depend on the remain-
g (n — 1) processes. In that case, all processes take check-
points for the checkpointing inibator. We consider the algo-
rithms [13,14,6.22] where the checkpointing mitiator forees
all processes in the system o take checkpoints, The results
of our analysis gives an upper bound for the overhead n
the other algonthms (where only dependent processes take
checkpoints).

3.1 Checkpointing overhead

Al any point of time, a process initates checkpoint with
probability 4. It also takes checkpoint if at least one of
the other process initiates checkpointing and propagates a
checkpointing request w all other processes. Probability that
at least one process initiates checkpointing is (1— (1 —4,.)").
Expected inter-checkpoint gap = Tll—.."? Suppose t; de-
notes the average cost of taking a checkpomt. Ower and
abowve the cost of taking a checkpoint, there 15 also the over-
head of message communication for synchronization. An
inititor generates (n — 1) checkpoint request messages and
another (n— 1) commit messages after the acknowledgment
comes back. A non-mitiator generates only an acknowledg-
ment message. Since one inon of the checkpoints taken by a
process 15 initated by itsell, the average number of messages
generated per checkpoint taken s 2(n —1) % +1-(1— %}I =
@. Let Copr denote the average cost for sending and re-
ceiving a message alongwith the network congestion cost
of 4 message. So the average cost per checkpoint is 1) =

Ain—1)
te + =5—Car.

Checkpointing overhead for a process per unit time
o =R
T+ (1— (1 — &
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3.2, Rollback recovery overhead

If failures are rare, we can safely assume that a falure
may oceur at any point between two successive checkpoints,
with equal probabilities. Let Crap denote the recovery cost
for every unit time rolled back.

Thus, the average rollback recovery overhead for a process
i%

= .'_, (average nter-checkpoint gap) Craeo
CI'L"L":!I

21 —(1— i

4. Asynchronous checkpointing with message logging

In checkpointing and message logeing protocols, each
process Lypically records both the content and the receive
sequence number of all the messages it has processed ina
location that will survive the faillure of the process. In case
the proeess has w rollback, the logged messages are replayed
from the stable sworage; they need not be retransmitied by the
sender. The messages which are not logged will have to be
resent, and may force the sender to wollback too. A process
may also periodically create checkpoints of its local state,
thereby allowing message logs w be removed. The periodic
checkpointing of a process state 15 only needed to bound
the length of its message log. There are sender and receiver
bused message logging algorithms in literature. Here only
receiver based message logging protocols are considerned.

4. 1. Pessimistic message logging

A pessimistic protocol [9.25] 1s one in which a process
Fi never sends a message untal it knows that all messages
received and processed so far are logged. Thus, pessimistic
protocols will never create an orphan message. The recon-
struction of the state of a crashed process is also straightfor-
ward compared to the optimistic protocols. Received mes-
sages are logged synchronously. This may be achieved by
blocking the receiver untl the message is logged to astable
storage. The other option 15 to block the receiver only ifit at-
tempts o send o new message before this received message
15 logeed. Blocking the receiver can slow down the through-
put of the processes even when no process ever crashes.
On the other hand, during recovery, only the faulty process
rolls back to its latest checkpoint. All messages reeeived in
the tme between the latest checkpoint and the faull are re-
played to it from the stable stomge in the same order as they
were received before the fault. Messages sent by the process
during recovery are ignored since they are duplicates of the
ones sent before the failure.

Owerhead due to this protocols may be partitioned into

(1) blocking time for logging received messages and
(2) mollback overhead due to fault.

Expected number of application messages (Epygg (T ) re-
ceived by a process in Tp unil of time 15

Eumsg (Tp) = 4 Tp.

Total message overhead due to pessimistic message log-
ging (Epescmistic_cost) depends on two parameters; Ceye and
Cpessi_log- the cost of stonng a message. Total pessimistic
message logging cost per unit ime is A, (Conr + Crecsi_og)-

Total cost (checkpointing and message logging) per unit
Lime

te .
Epem'_ckpt_mﬂg - m + A {Canr + Cp:mi_l-::g;"
n i
1
where T, = 7

If failures are rare, we can safely assume that a faillure may
oceur at any point between two successive checkpoints, with
equal probabilities.

The average rollback recovery overhead (Epesi reco) for
a process 15 the sum of recovery cost and message-replaying
cost from stable storage. Let Creplay denote the cost of re-
playing a logged message from stable storage.

5 Cp;._n -;-m Cn: play 1 & .
hPGid_mm = 27, + 27 = E{Lmﬂu F -’-mcn:pl.u}'}'-

4.2, Optimistic message logging

In optimistic message logging protocols [5,10.23.26.28],
messages may not be logged immediately. The receiver con-
tinues its nommal actions. The messages are logged al some
point of tme in the future so as o minimize logging over-
head. This may be achieved by grouping several messages
or logging during idle ime of the system. Checkpoints are
Laken asynchronously.

Let Copti_jog denote the average cost for logging o message
in this scheme. Note that Coapi jop < Cpessi_log-

Expected total cost (checkpointing and message logging)
per unil time is

. fe
Iimpt_dipt_mxg =

Tp o I ';-.IH{C:HH =+ Cn.:mi_ln::_l_g_}'-

The receiver, P, of a message m depends on the state of
the sender, Fj. Suppose Pj received a message my from Py,
before sending m. If P; fails without logging ma. P will
become orphan. Thus rollback of P; may cause o rollback
of F; too.

This problem can be solved by optimistic recovery. In
this case, the faully process mestarts by mestoring its latest
checkpoint and replays the logged messages which were
received after the restored state. Since in this scheme of
message logging, messages are logged asynchronously, on
a failure, a process loses all the messages it received but
did not log before the failure. Such processes are said Lo
be in lost states [5]. Other processes which are dependent
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on the lost states must be rolled back. Before rolling back
they log all unlogged messages in a stable storage. Thus no
message 15 lost in this rollback. 1t s important to find out
the expected number of dependent processes to calculate the
ovierhead due to single fault.

In an interval of length &, (1 — [1 — ;—T‘i-]:) is the prob-
ability that process F; sends at least one message Lo process
Pi.j#i,je{0,1,2. 3, ., n—1} The expected number
of distinet processes which receive message(s) from process
F; during this penod is

Amsg !
111—1}[1—[1—"_1]]_

If process P fails at this point, this would be the expecied
number of orphan processes.

Let Cron_paek be the rollback cost for every ime unit
rolled back. So the expected total rollback cost for all orphan
PrOCesses 1%

in—1) A T
T L= | 1= = Lmll_huck-
24, n—1

Let the average gap between two loggings be -;I—I The
average rollback recovery overhead (Egp peen ) Tor o process
15 the sum of the recovery cost, the message replaying cost,
the message resend cost and the rollback cost (Cray_paek ) of

orphan processes.

) 1 1 1 i
I:"ﬂpt_rmn = [2 A7 :l Creco + [ ey :|—‘-JMCIC|‘-'|-'1!|"

A 24 24 24

e Sl
2, an Lesnr
n—1) e

+ % y [1 e [1 ot . TL“I:[ :l Cn:all_?muk

where r = [L:l
24

l :
= K [Cru:-_':: + A C:-:pla}']

1 ;
+— | {Cenr — Creptay)dm — Crec
2, [{ nr :qtula_'r}' " rcn:.::]

n—1) y —
G 7 [1 — [1 = "—n‘_ﬁ%] :l Cn:-ll_m':.'k-

4.3, Causal message logging

Causal message logging protocols [1,2.8] neither create
orphans when there are failures nor do they ever block a
process when there is no faillure. Dependency information
s piggybacked on application messages. In order o make
the system f~fault wlerant ( fF + 1) processes log the depen-
dency information in their volatile storage. In this protocol,

message contents are logged only in the volatile memory of
the sender. Total message overhead due o cawsal message
logging depends on Cye 0. the cost of stonng a message
in volatile memory. Total causal message logging cost per
unit ime is Ay [Coms_log + Canrl.

Atany point of tme, the probability of Py sending a mes-
sage o FPjos ::TMI Suppose the current time s 7. Probability
that the last checkpoint before T was taken at tme (T —1) 1%
(1 — i) i,

P (last message was sent o Pj at © — if last checkpoint
wias laken at T — 1) = (] o ::_—ml')‘ I .u:_fl' =
pRE i, P A t—1.

P (there was no message w P since the last checkpoint

(say) for

| last checkpoint was taken at T — 1) = 1 — Zj;: q =
(1-i=)=rl Gayfori=12.....01—1

E (time lapsed since the last message to Pp oor since
the last checkpoint, if there was no message | last
checkpoint was taken at T — 1) = Ef;: [:'q‘?] +trl =
FIE [2 +p+tpt—tpt —ip(l — p}lI_l] = &', (say) where

o

Th:_[rclll:-n:, E (time lapsed since the last message 1o P
or since the last checkpoint, if there was no message) =
Yoo sl — A4,

Let Cpgn be the cost for one piggybacking information.
Let Epg be the expected cost of piggybacking information.
Theretore,

ad

Byih = Cigohin 3 $'(1 =404,

=1

The average rollback recovery overhbead (Eegusm reeo) for
a process 15 the sum of recovery cost, messages and deter-
minants [2] collection and message replaying cost from the
logs U!‘ from another process. Let C;qal::}' denote the cost of
replaying a logged message from another process,

i ’.-.lu{c;q-_.m}- + Canr)
o T 27

Emsal_recn -

I g gt
= E [Cn:c:: + "‘JN{Crc'pl_']}' =+ Csnr}] .

5. Quasi-synchronous checkpointing with message
logging

5.1 Checkpointing overhead
There are three factors contributing to chec kpointing over-
head in quasi-synchronous checkpointing protocol.

(1) Processes are allowed o take checkpoints asyn-
chronously.
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(2) Processes take forced checkpoints on receiving some
application messages.

(3} Process may take checkpoint on receiving checkpoint
request message from a process that wants o establish
a CGS.

According to the algorithm proposed by Manivannan and
Singhal [ 16] each checkpoint is assigned a unigue sequence
number. The sequence number assigned o a checkpoint 1s
the current value of a counter. The local counters maintained
by the individual processes are incremented perniodically.
The time period. Tregog. 15 the same for all processes. Since
the sequence numbers assigned to checkpomts of a process
are picked from the local counters, the sequence numbers of
the latest checkpoints of all the processes will remain close
W cach other. For simplicity, we assume that cach process
takes checkpoints periodically with fixed ime period. The
gap between two checkpoints Therigg 15 the same as the pe-
rod for incrementing the counters. The differences in the
times for checkpoints in different processes will be due w
the skew in their clocks. So the latest checkpoints of all pro-
cesses are very likely to be in CGS. In this situation proba-
bility for forced checkpoint 1s very low. We can ignore the
checkpointing overhead cost due to forced checkpoints.

In this protocol, checkpointing cost for a process 1s the
sum of asynchronous checkpointing cost and cost of extra
checkpoints which may be needed for establishing a CGS.
Let .:.: be the probability of taking a checkpoint for establish-
ing a forced CGS. Since the processes do not establish foreed
CGS very frequently, we can safely assume that z! <A

Expected total checkpointing cost per unil Lime 1%

e T
Tp+ite  14+(1—(1—i )y

Equati_dipt =

5.2, Selective message logging

A recovery fine (a globally consistent set of checkpoints)
divides the set of all events of the computation into two dis-
Joint parts. When a process molls back, all those application
messages whose send cvents lie wo the keft and the come-
sponding receive events lie w the right of the current recov-
ery line are lost messages. All such messages should be re-
played. To cope with messages lost due to a rollback, all such
messages should be logged into stable storage. Manivannin
and Singhal [16] proposed selective message logging proto-
cof that logs only these messages mstead of all messages.

In a distributed computing syslem processors are con-
necled through communication links. We assume that a sin-
gle process runs in a processor. The wpology of the system
may be represented by a graph. A node represents a process
and an edge represents a communication link between a pair
of nodes. The time for one hop message passing 15 assumed
o be constant {(ipep) for all edges. Edges are bidirectional.
The distance d{i, j) between Pyoand Pjois the length of the
shortest path between them.

Definition 1. Let G = (V, E) be any connected graph,
For every node v £ V, we define the pathsum of v,

def
pathsumiv) de) ¥ uevdiu, v). The maximum pathsum of
(r 15 defined as MPS(G) “Iér Max, ey | pathsnmin .

Lemma l. Let T = (V. E) be a tree. If MPS(T) =
pathsum(v) for some v € V, then v is a leaf node aof T,

Prool. If possible, let v be a non-leal’ node such that
MFPS(T) = pathsumv). Let the nodes adjacent w v be
TR | 5 PR uy for some k=2, The removal of v splits T
into & different trees, with wy, w2, ..., g in different trees.
Let the number of nodes m the tree having n; be
ng for i = 1,2,...,k Without loss of generality, let
nipsnrs -2 Let |V] =n. EL, n; = n — 1. Then
n—n={n—11—n))+1= E?=11i,-+1;3:11+1 =M.
pathsumin)) = pathsum(v) —ny +(n — n) =
pathsumv), which is a contmadiction as MPS(T)
pathsum{v)z pathsumin) for any n e V. O

Lemma 2. For a path graph P, with n nodes, MPS(FP,)

nip—11

Prool. By Lemima |, MPS{P,) = pathsum(v) where v is

a leal node of the path. For a leal node v,
pmhmm{u}=1+2+3+---+{n—1}|=L2_l]. O

Lemma 3. Let T, be a tree with n nodes. Then MPS(T,) =
MPS(P,) = "=l

Prool. The result is true for n = 1. Suppose the result is
true for n = m. Let v be any leal node in Ty Let T, =
Tnsr — {v} MPS(Tp)) = MPS(Ty )+ m =< w +m
(induction hypothesis) = L”-‘If_,:-ll_ O

Definition 2. For a connected graph G, we define the total

de
pathsum of 7 to be TRS(G) =f %_ Zr.-:-v G pathsumiv).

Lemma 4. Fora path graph Fy . TPS(Fy ) = é{n"" —n). O

Theorem 1. Ler T, be a tree with n nodes. Then TPY(T,) =
I3

(R —n).

[

Proofl. The result is true for n = 1. Suppose the result is rue
form =m. Let vbe a leaf node in Ty11. T = Tipe — {v}
is also u tree.
TPS(Ty+41) = TPS(Ty) 4+ pathsum(v)
< Hm? —m) + MPS(Tis1)
(induction hypothesis)
mim-+ 1)
—_—

A

e'-,{m'l —m)+ (Lemma 3)

=tm+1)7 —(m+1). O

Theorem 2. Suppose P; and P; are two processes which
take checkpoints att; and tj (i1 ), respectively. Letd (i f)



104 By Mandal, K. Mukhopadiivava /1 Parallel Distrib. Compus. 66 { 2006) 99— 07

denote the disiance between them. If d{i, j) = t; — ;. P
will log the messages, sent by Py during the interval [t; —
dii, j), ) otherwise P; will not log any message sent by
Fi. P will log the messages, sent by Py during the interval
It —di. ). ).

Prool. Since d(i, j) isthe time taken by a message to reach
F; from P;, the messages sentin the mterval [ —(d(f, j)—
tj+i;), i) are the only ones which were sent before #; (the
checkpoint time for £ ) and reached after ¢ (the checkpoint
tme for Pj). Hence, these are the only messages which are
logged.

Similarly, the messages sent by Py Lo F; are logged iff and
only if they are sent in the given interval. [

Let us consider a distributed  system with underdy-
mg topology &G = (V,E). Suppose process Fy initi-
ates checkpointing at f;. Without loss of generality, let
did, D=di0, 2)= --- =d{l,n — 1). We assume that all
messages Like a shortest path o the destination and each
hop takes g units of time with no congestion delay. For
the checkpoint initiated by Fp, a process Py (1<i<n — 1)
receives checkpoint request and takes checkpoint at § =
iy + dii, Mitpep. It is also assumed that there 15 no other
new request for checkpointing. Let Ejgppeq be the expected
number of messages logeed by all processes.

Theorem 3. thop i 1 < Elgggad S % fhap 4m n(n +1).

Proofl. Applying Theorem 2, we see that £ will log a mes-
sage sent by P if and only if § = j. Py will log mes-
suges senl by Py duning [1; — dii, Oiepep. £ + i, Oiiep ).
l<i<n — 1. S0, the expected number of messages to be
logged by Fy s

n—1|

thop 4m Y d(i, 0).

i=l

2

n—1

Similarly, process Py ois expected o log

n—1

thop Am Y dik. i)

k=i+41

messages from processes By, Piga, -+, Bt

2 ) w—1 n—1
Elopged = : Thop Am [Zd{f, 0y + Zd{i, 1)
i=l1 i=2
n—1
+-r+ dii.n — 3)
']

i=n-2

+ din— 1,:!—2}j|

4
= [ fhop im TPS(G) (Definition 2)
n—
e
& ; thop 4 min+ 1) (Theorem 1).
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Table 2

The recovery costs af different checkpointing and message logging algorithms for different values of Ay

1/ dm Synchronous Chuasi-synchronous Asynchronous checkpointing
checkpointing checkpointing
Selodtive Topging s iaabis Optimistic Causal
Minimum Maximum logoing logming logging
2 a6 IR 362 8110 2250.0000 3349 5680 40500000
11 3 a0l 321931 g7.002 1 E90.0000 200000 24 30,0000
50 36601 9667 93,9461 LELE.0000 1E3E.2400 1926000
1001 RATTOIN R34 37.3031 1 R09.0000) 1 806,600 18630000
500 RATTVAN 306907 319887 18018000 178 1.3200 18 12,0006
100X] RATTVAN 36754 313244 1 R0 90000 1778, 1600 180600
SO0 RATTUAN I padl 307029 1800 1800 17753000 1801, 3600

Cie =10, Cregiay =5.0,

replay = 250, T = 10, Croll_teck = 3, &= 51" dp= .Tt!ﬂ‘ g = 1.0, n =064

Table 3
The recovery costs of different checkpointing and message logging algorithms for different values of 4.

(P Synchronous Quusi-synchmmnous Asynchronous checkpointing
checkpointing checkpointing
Selective loggi
e erTe Pessimistic Optimistic Causal
Minimum Maximum logging logeing logging
720 58748 0l.685 180035 3780000 4250.710 4 800K
1441 114,979 121728 Ind 102 TA60 000 435180 A720.000
2160 171.223 179,784 542007 1 1340000 1 2664.60K 14580.000
880 227470 2IREH T3 15120000 LEE94, 10 194401.0(X]
3n(X 283718 2497904 BUR 441 LEOO000 21123600 24300000
Cane = 10, Crepiay = 5.0, Chagiyy =250, Greco = 10, Cron_tack = 5 &4 = 5+ 4w = 150 thop = 1.0, 7 = 64.
Table 4
Message logeing costs for different values of &,
L 2 Selective logging Pessimistic Optimistic Causal
logging logging logging
Minimum Maximum
{1200 13,0000 220000 L 00N 40000
0142 Q2857 15,7143 100004 28571
12 (L0833 54167 9. 1667 58333 1.6667
15 00667 4.3333 73333 40667 1.3333

Cir = W, Cpemai_tog = 100, Copi_tog = 60, Com_tog = W0, Zm = oo thop = 1.0, n = 64,

It 15 casy o see that in a complete graph the least num-
ber of messages would be logged. Checkpointing message
reaches all other processes in the very next moment. A mes-
sage would be logged only if the message s sent dunng the
ime when the message travels. S0, Elggped 2 thop 4m 1. O

5.3, Rollback recovery overhead

While recovering from a failure, the failed process Py
mlls back o ils latest checkpoint, and all other processes
P, i #6je(0,1,2,3,..., n — 1}, rollback to their last
checkpoint with checkpoint sequence number greater than

or equal to the checkpoint sequence number of the failed
process. IF such a checkpoint does not exist, P olakes a
checkpoint with checkpoint sequence number equal to that
of the failed process, Pi.

The average rollback recovery overhead for a process 1s
the sum of the recovery cost and the message replaying
cost from the stable storage which have been logged se-
lectively, Expected minimum message-replaying cost for all
processes s

R

S i
A= Q=g e
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Tahle 5
Muximum and minimum numbers of messages logged in selective message
logging protocol for different values of &

Maximum number
of message logzing

L/ dm Minimum number
of message logging

3 12,800 B320
] L] 416.0
X 3200 HE0
] 2.133 135.6
40 Le00 1.0
50 1.2E0 B3.2
10 0640 41.6

Iy = LA, =104,
Table &
Message logging costs for different values af »

Maximum number
of message logging

" Minimum number
of message logging

3] 1.6 T2.2
32 32 105.6
[i3] 6.4 416.0
128 128 1651.2
] 5.6 65792
512 512 2h265.6
1024 1024 149600
Y 1
A = g hop = L.0.
Tahle 7

Checkpointing cost of different checkpainting schemes for different values
of +.

(FF Synchronous Cruasi-synchronous Asynchronos
checkpointing checkpointing checkpointing

36l (L9548 (LAGIE 02173

T20 09168 015744 L1219

L4441 .8492 05174 LTALEAY

el 079 04967 00442

IR80 (.74 04860 010335

3ol (L6953 04795 00270

Come = 10, fe = 1000, &% = qyoag. T = 1=, n = 64

and maximum message-replaying cost for all processes s
nin 4+ 1)4,,
3= (147

Minimum rollback recovery overhead for a process is

thop Creplay-

1
21 — (1 — i)
+dm Thop C:-:|'.-I.'J_'r':| .

EMin_quati_rem - [cm_'u

Maximum mollback mecovery overhead for a process is
1
IC e
R
+2in+ 1)dy Thop I-J:':-:,r.-l.:u_'.-'] P

E Max_quasi_reon =

Table 1 shows the analytical expressions for different
types of overheads under different checkpointing schemes.
These expressions have been used o evaluate the overheads
for different checkpointing schemes. Tables 2 and 3 show
the recovery costs of different checkpointing and message
logging schemes for different values of 4, and i, respec-
tively. Table 2 shows that with decreasing message sending
rale Ay, the recovery cost of optimistic logging decreases
faster than the recovery costs of pessimistic and cauwsal
logging.

Table 4 compares the message ogging costs of guasi-
synchronous and asynchronous algorithms for different val-
ues of Ay, In selective message logging, maximum mes-
sage logging cost s less than the message logging cost of
pessimistic and optimistic ones but it 1s greater than the
cost of causal logging for different values of 4. Minimum
message logging cost in selective logging is very less com-
pared to any other message logging cost for different values
of 4.

Table 5 shows maximum and minimum message logging
cost for different values of 4, in sclective message logging
protocol. Table 6 compares the message logging costs for
sehective message logging protweol for different values of
i, the number of processes. Table 7 shows checkpointing
cost of synchronous, quasi-synchronous and asynchronous
checkpointing schemes for different values of checkpoint-
ing rate 4. Checkpointing cost of guasi-synchronous
scheme always lies between the checkpointing costs of syn-
chronous and asynchronous schemes for different values
of A,

6. Conclusion

In this work, we have calculated expected costs of differ-
ent types of checkpointing algonthms such as synchronous,
asynchronous and guasi-synchronous alongwith their roll-
back recovery algorithms with message logging and with-
out message logging, These formulac have been used to
evaluate the overheads of checkpointing, rollback recovery,
message logging, and message piggybacking for different
technigues. It has been found that with decreasing mes-
sage sending rate Ay, the recovery cost of optimistic log-
ging decreases faster than the recovery costs of pessimistic
and cavsal logging. In selective message logging, maximum
message logging cost s less than the message logging costs
of pessimistic and optimistic ones, but it s greater than the
cost of causal logging for different values of 4. Minimum
message logging costin selective logging s much less than
any other message logging cost, for different values of A4,.
Checkpointing cost of synchronous checkpointing algorithm
15 greater than the asynchronous checkpointing algorithm
for different values of .. But the checkpointing cost of
quasi-synchronous algonthm lies between the checkpoint-
ing costs of synchronows and asynchronous checkpointing
algorthms.
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