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1. Introduction. Let X, X;, ---, Xx be a random sample of size N (inde-
pendently and identically distributed random variables) from a population with
distribution function #(z). It is known that the population can some.
times be characterized by the independence of a suitable statistic' § =
S(X,, Xy, -+, Xx) aod the sample mean X = 39 X,/N. If § is a poly.
pomial istic then the independ of S and X yields a differential equation
for the characteristic function of F(z). In order to determine F(z) we mus,
study this differential equation and find all its positive definite solutions. In the
case of certain polynomial statistics, such as the k-statistics or quadratic poly-
normials, it is comparatively easy to obtain all positive definite solutions of this
differential equation. [n many cases however, this procedure is not feasible since
it ia often very difficult to decide whether a given function is positive definite.
If we consider, for ple, 8 normal population then any central sample moment
my = 301 (X; — X)"/N and the sample mean X are independent. But, when
we investigate whether this property characterizes the normal population for
p > 3, then it ia practically impossible to determine all positive definite solu-

tions of the corresponding differential eq
In the present paper we prove the following theorem.
Tueonem. Let Xy, Xz, -+, Xu be a sample of size N from a certain popula.

tion. Lel p be a posilive inleger such thal (p — 1)1 s not divisible by N — 1. The
population is normal if and only if the sample central moment m, of order p is
disiributed independently of the sample mean X.
Reuarx. The condition that (p — 1)1 is not divisible by N — 1 is eatisfied

UN>(p- I+ 1

For the proof of this statement we use a theorem which waa recently derived
by Linaik (1] and Zinger (2).

In Section 2 we derive two combinatorial lemmas which are essential for the
proof of the theorem. In Section 3 we give some analytical results and deduce
finally the theorem in Section 4.

2. Combinatorial lemmes. Let xu, Z1, - -, Za be ©n 4+ 1 real variables. Sup-
pose that

(2.1 PomPlze,n, %) = X Appeepaliad o le
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1A statistic is & real, single valued and meéasurable function of the observations
X, Xay oo, Xur .
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is 8 polynomial of degree p with real coefficients. Here and in the following the
summation Z' is extended over all non-negative integera jo, ji, - , j. which
atisfy the condition jo + ji + +++ + ja = p. If we replace each z{* by »'» =
wr— 1) --- (r = j» + 1) in the polynomial P, we obtain a polynomial

(22) o= wp(r) = LY Appes 7O R
of degree p in the real variable ». We write here »™ = 1. The polynomial #,(s).
is called the adjoint polynomial of P.

In this section we study the adjoint polynomial when P has a special form.

Lemma 2.1, Let

P=Plm,z, ", 2.) = ‘g(z.— 2y,
where £ = Y 2a2/(n 4 1). The adjoint polynomial of P is then
_ (=1)’p! Y nv
ne) = £ e () ()
Proor. We note'that
-1 .

)@= = AT (e i (-l b

Here (p; jo, -~ v Ja) = pY/(jol -+ - jal) i6 8 multinomial coefficient. It follow
from (2.3) that

BT (e (= mbals o

Therefore
i (nll)l)’:l' ' '")h() (J)
We write
ez () ()
0 that

24 T = (—1)ple,/(n + ).
1t i easy to verify that

(25) Z:c,z' - (1 = n2)’( + )™,
Thus

(28) =5 0.

Lemma 2.1 follows immediately from (2.4).
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Lemma 2.2. Let
PaPlamz, - z) =3 (=1,
=0

where 2 = (n + 1)71Y Lo x. If (p — 1)14s not divisible by n, the adjoint poly.
nomial »,(v) of P har no non-zero inleger rools.

Suppose that for some integer », v # 0, we have x,(») = 0. Then, for that
value of v, ¢, = 0 and, according to (2.8),

=G -G 6T+ o+ o ().

Thus, multiplying by p! and cancelling the common factor n», we find that
(nv—1)nv—=2) .- (nv—p+1)m0 (mod n)
so that (p — 1)! m 0 (mod n). Lemma 2.2 follows immediately.

3. Some analytical results. Let P(z,, 74, - - -, zx) be a polynomial of degree
p 2 1. We say that it is an rdmissible polynomial if the coefficients of the terms
zf(j = 1,2, -+, N) are not zero.

We state the following lemma which is due to Zinger (2].

Lemma 3.1, Let X, , Xy, -+-, Xu be a sample of size N from a certain popula-
tion. Let P = P(X\, Xy, -+, Xn) be an admissible polynomial statistic and let
A = X/ X;. If P and A are independently disiributed then the common charac-
teristic function (1) of the X;, Xa, ---, Xy i8 an entire function of finile order.

Lensa 3.2 (Theorem of Marcinkiewicz). Let Pu(t) be a polynomial of degree m
and suppose that [(1) = exp [P.(l)) i2 a characleristic function. Then the degree m
of P.(l) cannol exceed 2.

Lenmma 3.3. Suppose that the conditions of Lemma 3.1 are salisfied and that the
characleristic function f(l) has no zeros in the entire complez plane. Then the
population is normal.

The function f(#) is an entire function of finite order m without zeros. Ac-
cording to Hadamard’s factorization theorem, f(t) = exp [Pa(t)]. The state
ment of Lemma 3.3 then follows from the theorem of Marcinkiewics.

Before proceeding further we introduce a special class of polynomials. Let

Pz, o) = 2 At ol

Liv--+insy
be a polynomial of degree p. It can be written as the sum
P(zi,zs, "+ ,Zn) = Po(zi, 20, -, 2w) + Pz, ;o0 , 2n),

where

+r ¥,

Po(za, 22, -+, Zn) -, ) ZF,A/,...;,I{' Nl

is & homogeneous polynomial of degree p, while Py(z,, 22, -+, z») is & poly-
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nomial of degree less than p. We say that the polynomial P(z,, 22, -+ -, z»)
is non-singular if the following two conditions are satisfied:

(i) P(z:, 7, - - -, z«) contains the pth power of at least one variable.

(ii) The adjoint polynomial x,(») of Ps(xi, 72, -+, Zx) does not have &

positive integer root.

For the proof of the theorem we need the following lemma.

Leuma 3.4. Let X\, Xy, --- aneaumplcqfnumemaoaﬂ:mwpuk
ton. Lt P = P(Xy, Xs,---, Xn) be a i
satistic and let A = Y1 X;. IIPmdA mmdcpmdenaydumud then the
population s normal.

Lemma 3.4 is due to Immk [l] In hm puper Linmk made the additional
assumption that the pop has ta up to &
certain order. In view of Lemma 3.1 (due to Zinger) this assumption is super-
fluous. Bince Linnik’s article (1] is not easily accessible while Zinger (2] only
states (a somewhat generalized version) of Lemma 3.4 without proof, we give
here its derivation.

Since P und A are independent, we conclude from Lemma 3.1 that the com-
mon characteristic function f(z) of the random variables X,, Xy, ---, Xy s
a0 entire function of finite order. The relation

(3.1) §(Pe**) = §(P)&(e™)

hoids for all complex z{z = ¢ + i; {, v real). First we show that the funetion
J(z) has no seros in the entire complex plane. We write

2 a f(s) = (@Y/de)f(2) = il5(X%"T)
and note that f(z) = f(z) = f. We seo from (3.1) that
32) 2 Ape MmOl

It +insy
where C = {"§(P).

We give an indirect proof and assume therefore that the function f(s) has
seros. Let the point z = z be one of the zeros of f(2) which are nearest to the
origin and denote the order of the 210 20 by »(» a positive integer). We show
that this ption leads to a

Sinee /(z) does not vanish in the circle 2] < |z |, we may divide (3.2) by
[f(2)]" and obtain

(33) RBy+ B =C,
where
)
(34) Ro = Apetn IJ
DTy Fd
and

W L i
Ri= X Apen f+
bt T i<p i
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Let p = p(z) = Inf(z). It is then easily verified that

(38) o = 8 e =,
where 8; is 8 polynomial in ¢', 9%, - -+ , ¢**". We also write ¢™ = 1 and 8 = ,
Woe substitute (3.5) into (3.3) and get, for [z| < |2],
(3.8) S+ 8 =C
where
(3.7) So= X Apepde™ F 040 B + 8]

FIL IR ]
and

Si= X Apende™ + 8] [+ 0l

PSR YFId ]
Since
(38) 1) = (z — %)0(z),

where g(z) is an entire function and g(z) » 0, it is easy to verify that
¢'(2) = v/(z — 2) + h(2),
and, io general, that
39) 2 = U-DTG - DI 2+ hls) G=12--)

‘The functions h;(z) are regular at the point z = 2 . We substitute (3.9) into
(3.6) and see that

+oo

(3.10) T+

e + H(z) = C,

pil
(z—2)
where H(z) is regular at the point z = zo. We show next that v, »¢ 0 and note
that relation (3.10) leads therefore to a contradiction.

We remark that v, depends only on » and on the coefficients of the homo-
geneous polynomial Po(X,, X3, -+-, Xu). We see that v, is the coefficient of
(z — 20)7” in the expression which we obtain by substituting (3.9) into S in
(3.7). We get the same value for the coefficient of (z — 20)™” if we substitute
(3.8) into R in (3.4). Since f(0) = 1 we see from (3.8) that g(0) = C, # 0.
We note that v, is also the coefficient of (z — z)™” in the expression obtained
by substituting y(z) = Ci(z — )" instead of f(z) into the right-hand side of
(3.4). We get

Tt
(z —z)»!

V8 = 'z — )™, (7 =0,1,2,,5).
Therefore

= ¢
Vo= D Apgy
It ipep
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Thus v, = r,(»), the adjoint polynomial of P; . Since P ia s non-singular poly-
nomisl ,(v) does not vanish for any positive integer » so that v, » 0. This
jeads to the desired contradiction in (3.10) so that f(z) has no zeros,

The proof of Lemma 3.4 follows then from Lemma 3.3.

4. Proof of the Theorem. We show first that the condition is sufficient. It
follows from Lemma 2.2 that the sample central moment m, is & non-singular
polynomial statistic if (p — 1)1 is not divisible by ¥ — 1. Hence the theorem is
an immediate consequence of Lemma 3.4. The necessity of the condition fol-
lows from the well-known fact that in a normal population any translation-
invariant statistic ia independent of the sample mean.
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