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INTROPOLTION

In all factorial desizns in w the numhee of different sels of fictors tested is
large, or those in which their nmber is small but wne or more of them inveolve a
large nwiaber of variants, or finally, those which show both these characteristics
simultancously, the need for the ealuction of the size of the block for the adeguate
climination of fertility diffcrences is an insistent consideration.  The two technigues
most ¢\ ively used for lishing this purpose are: (i) The Split-plot technique,
and (i) Confounding. In fact, the fornier is esseutially a special case of the latter,
split-pfot arrangements being specialized types of designs involring the confounding
of main effects, which are resorted to primarily for facititating the performance of
agricultural operations and only sceundarily for cffecting reduction of the block size.
These will be found discussed in detail elsewhere by one of the authors* (K. Kishen),
As, however, higliorder interactions are as a rule negligible, sacrificiog information on
ing them up imlisli;lguialml)ly wilh interblock

them only as far as possible by
differences is the most clegant technigue known to the experimenter for effecting the
desired reduction in the block size and therehy improving the precision of the experi-

ment,

No general solution of the problem of confounding in any symmetrical or
unsymmetrical case is so far available. Asymmetrical designs like pxgxrx....
(all p, 4, 7pecneenrenns mot cqqual) form a class apart and require special methods of attack ;
these will not be considered here. It may, hawever, Le useful to recapitulate that the
problem of confounding in the case of designs of the type 3= x 2% (m, n beiug any
positive integers) and all cases redincible to it has been completely solved by Yates
As regards symmetrical arrangements, Nair has, in his recent communications’™*
developied a micthod of solving the problem in the general case sx 5% s X § X vuou.. (= 52),
where m is a positive integer and s a prime positive integer or a power of a prime, based
on his theory of interchanges derivable from the asseciated Iy per-Gracen-Latin syuarcs,
e has demonstrated the working of his method in obtaining confuunded arrange-
menty for the s® type of experiment in sub.blocks of §* plets, for (i) s=3, m=3 and
4, (i) s=4, m=3,.4 and 5, and (iii) s=5, m=3 and 4.
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For the case =2, the problem has been solvad in complite genetality by Barnard!,
who has, by appealing to the principle of gencrulized interaction in the case of 2%
designs, enumerateill the possible confounded arranguments reducing the size of the
block from 2® to 2" plots {r=1, 2,....
useful bal d ar found )] suts of degrees of frecdom in
different replications. It is the purpose of the present paper to demoustrate, with the
liclp of Galois ficlds and the associated finite hy i i projective
that the principle of gunerulized inleraction is not a special featnre of the 2* factorial
designs, but that it also holds in the gencral cate ¢, where £ is a prinie or a puwer of
a prime, and m o positive integer,  This Important principle and anottier allied concept
flowing from it have been utilized to demonstrate a general method of forming suh-
Dlocks of s®* plots (k=1, 2,........ocoht =1} inn the case of s® factorial designs. The
possible types of confounding for s* and s* designs in s and splot blocks have
Ixen investigated in their entirety 1o scrve ns conerete illnsteations, the consideration
of other special cascs having buen reserved fur a subsequent communication.

=1), and has also given alongside the more

§1. PxorEr7Ties of FixiTe GROMETRIES CONSTRUCTED FROM Tng GArols FleLps

(1:1) The number of clements constituting a Galois field, i.e., a field with a finite
number of clements, is s{=p") where pis a prime positive integer and x any positive
integer,  Conversely, given any number s(=p*), there alwaysexists a Galois fickl with
s clements in it and ony two Gulois ficlds \\'ith the samie number of clements are
structurally identical, so that it is possible to sct up a correspondence between the
clements of the two ficlds in such a way that the sum corresponds to the sum and
the product to the product. The Galois ficld with ¢ clements is symbolised by GF(s).

Lot a,=0, @, a3peeneccc.aey be the clements of the G F(s), s=p%, p being a prime
positive integer and n any positive integer.  There are different ways of indentifying
&), @y.oereenilyy With the g—1 sion-zero clements of G F(s) when expressed in the stand.
ard form. In the case n=1, ic., when s is a prime number p, the identification
we ndopt is to set o equal to the residuc class (i), modulo p.  In the case when w>1,
or s is a power of a prime igher than the first, our identification will be as follows : —

Let f(x) be a specified minimam function, i.¢., un jrredieible factor of the cyclo.
tomic polynomial of the order p*—1 of G Fy(a). Then the clements of G F(s) can be
represented uninucly by the residue classes modulo f(x) of the polynomials 0, x =1,
Xy X7 e d® (5= p), the class with standand representative x being a primitive
clement of G IF(s). ‘Then the identification we adopt is to set a,=0 ond ay=x*"  Since
x=1, the rule for multiplication of the clements of the Gulois ficld is as under :

o ay=a, iffcither i=0ror ji=0,
& ay=a, where t={i+j-1) mad (s—1), 1<I€ s-), [ we (D
if5£0 j£0.
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A table of mininmm functions which we shall nse is given below :—

Tavtk [ MiNivuM FuNeTioss For GaLoss FIELDS.

Ficll Minimum fanction
G Iy AT ox o+l
G r2 e AT+
G (24 PO
G I3 N+ ox +2
G F(@3) Al+2x +1
G F(5") ATH2v 43

The number p is said to be the characteristic of the fickl G F(p*). It may be
observed that for ficlds of characteristic 2, addition is cquivalent to subtraction. For
further details about Galois ficlds, reference may be made to the recent papers by
R. C. Bosc™.

(1°2) The Finite Projective Geometry P G(m, 5).

With the help of a Calois ficld € F(s), we can construet a finite projective geo-
metry of wm dimensions in the following mamier :—

Any ordered set of m+1 clements

{Xo0 X1y Nay seecnrerveneesrensssesnranrane U} I ]

where the xy's belong to G IF(s) and are not all simnltancously zero, may be termed o
point of cur projective gecometry P Gm, s), it being implicit that the set (4, ¥iieenn 3n)
Xw} when and only when there exists a non.
..m). We may speak of

represents the same point as (x,, &y,
zero clenent a of G F(s) such that y, y
(Xgu Xppoeernnnn xa) s Ahe co-ordinates of the point. It may readily be shown that the

ax(i=0,1,...

where s=p*

All the points which salisfy a set of m—1 (! <m) independent lincar homogen-
cons equations

A Xy  Fa, N, Fa, Xy ko . +amvq =0

Gy oy X, 0%y F e, +0mXa = "
.
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may be said to form a Ldimensional sub-space, of briclly, a lflatin P G(m, 5). The
cquations may be said 1o sepresent this Nat. Clearly, any other st of m =1 indepen.
dent cquativus, which can be obtained by linear conbinations of the cquations (4),
will have the same set of solution il conseguently represent the same I, A
O-Mat is of consae identical with a point, aml we shall, folluwing the usual nomen-
clature, call o -Mat a line and a 2-flat a pla

The number of Eats in P G{m, ) ‘can be shown to be

{
olm, 1, 5) = " (5)
where, as before, s=p° It may be noticed that
olm, 4, s) = o(m, m=1-1,5) . (6)
It is also convenient to put formally ¢{m, =1, si=1 o (D

(1'3)  The Finite Tuclidean Geomefry E Gim, 5).

Mgain, any ordered set o0 m elements (x,, 4, wxa) belonging to G E(s) may

be called a point of the finite m.dimensional Euclidean Geometry E G(m, ), where

the pognls (x, x xa) and (y,, ¥ ¥ are identical when and only when

sy fi=1, 2.

(
The numher of poimts in K G(m, ) is evidemly s, where =8,

All the points satislying 2 sct of w=1 {I<m) consistet and independent linear

cquations
e R JUE THRNR Y- 1Y S + 0, %0 =0
' . 0, X, +3xy  F i + 2 Xe =0 . (B

Qutyo 4 Quedsy X+ 0mety Ny F e + Gootim Am=0

may be said to constitute a {-flat of L C(m, 5) represented by the cquations (8).  Any
other set of m =1 consistent and independent linear cyuations, obtained by linear com-
binations of (8), represents the same Lfat. The number of Lhats in E Gom, 5) is
olm, 1, s)=g(m~1,1, 5). e @

11°4)e Relation between P Gim, s) and E G(m, s).

The (m—1)-flat x,=0 of P G{m, s) may he conventionally called the (m— [)-flat at
infinity. Points lying on this flit may be called the points at infinity, und the other
points way be called finite puints.  Since the x,.coordinate of a finite point is non.zero,
we can, by dividing all the conrdinates by x,, express the coordinates of a finite point in
the unique form (1, v, 85,..xa). et this point correspond to the point (x,, xypeova) of
LG(m, s). T %3 a (1,1) corr between the finite points of PGm, 5)
and shose of EG(m, 5). Again, a I-Mat of P G{m, 5) ({<m) may be said to bhe rely
at dnfinity if all its points are points at iphinity. Al other [flats are spoken of as
finite LMats. To any finite IMat of P G(m, ) given by the cquations (4), let there
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correspond the Lflat of T G(nt, 5) given hy the cqnations (8). It is casily scen that
the wquations (8) are consistent when and onty when the hftat of P G, 5) given by
the vquations (4) is Guite. 1t thus follows that thete exists a (1,1} correspondence
between the finite I-Nats of P G, 5) and the I-flats of E G(m, s), the finite points of the
Iats of P Gim, s) corresponding to the points of the Lflat of E G(m, 5). The geo-
metry EG(m, 5) is thus derivable from I'G(m, s) by culling ont all the points
Iving at infinity and the flats Iying wholly at infinity.

We thus sce that T G(m, s) can be regardal as a portion of P Gm, s\, the latter
bring derived from thie former by the adjunction of the elements atinfinity, Thus in
the following pages, when dealing with the fisite clements of P Gm, s), we shall, fur
convenience, write their cquations and cowordinates, cte., as if they belonged to
EG(m, s).

For further Jdetails en finite geometrics, reference may be made to Carmichacld,

§2. CONNEXION OP DEGREKS OP PREEDOM WITH FINITE GEOMETRY

Let us consider a factorial design =, iuvolving m factors, cach at glevels. Any
treatiment combination can then be represented by a symbol of the form

[ € STI P RTRIE 2) B

a3 denating the Tevel of the ith factor in the tréatment combination. Now x, can
assume s possible values. These valunes we now identify with the clements of the
Galois hickd GF(s), so that every clagent represents a level. Now (x,, x4 cven¥m)
can be taken as the coordinates of a point in T G(m, s) which, as expluined, corres-
ponds to the finite point (1 soveeesserneannNa) Of I'G{m, s). Thus there is 2 (1,1)
correspondence between the ™ treatments and the 5™ finite points of the projective
geometry I G(m, s).

Let O be the point (1,0,0,., ..0) of P G{m, 8} and X, the point for which
2,=0, 1, =0, =0, 1y=1, x,,=0,ucccce. xa=0. Then the lines OX,, OX,,.....
.o OXa play lhc same part ss the axes ul rr[uulcc in ordinary Reometry, O being
lhc origin, The points X,(i=1,2,..........m) are, of conrse, at infinity. Then he simplex
= Will be termed the fundamental simplen, since it occnpies a key
position in the further development of our theory, The points Xy (i=1, 2,
may be called its vertices or zero cells; the lines No X) (i, j=1,2,........
cdyes or onc-cells ; the triangles X, K, Xu (i, j, k=1, 2,000 BT l;é);ﬁl) its 2cells,
general, the (k= 1)<limensional partial simplexes fprmed from any *k of the’m
w (k<m) may be called its (k=1)-cels.”

amd
poiuts X, X,

’l:luough any (m~2)-flat at infinity there will pass a pencil of s parallel finite
(nt=1)-flats, cach containing s™! finitc points. These will divide the s® trcalments
into s scts of = treatmenls cach, if the treatments corresponding to the s™ ! points in
any onc of these (m=1)-flats are considercd’as belonging to the same sct. The contrast
between these sets represents s—1 degrees of frecdom.  \We shall speak of these degrees
of freedem as belonging to the pedeil of {m=1)-Mus considerel this pencil I‘.»ciug
determined by the (o= 2)-Mlat ot inQnity which may be ealled the vertex of this pencil.
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Now the number of {m—2)-flats in the (m = 1)-flat at inlinity is 3% + 5%V 4+ 57454
To cach of Wiwse there corresponds a pencil of ¢ finite (m=1)-Mats with s=1 degrees
of frevdom. Thus the total number of degrees of freedam carried by these pencits is

£=—1, which we know to be the total number of degrees of frecdom for all treatment
comparisons.

Consider the pencil x,=a) {j=0, 1, s=1; i fixed), a4, (j=0, 1,
, as already explained in (21) of §1, duncuu of G F(s). Each (
pencil passes through the (m -2)-cell X, X Ny -o- X of the fundamental
simplex. The s=1 degrees of frecdom corresponding to this pencil are none othier
than the degrees of frecdom corresponding to the i-th main effect.  This is so because
e set corresponding to the (m=1)-fal xy=aq, (i, jfixed) is constituted by just those
points for which the ith coordinate is ay, i.e., o}l those treatment eombinations in which
the i-th factor has the level a. Varying j, we now see that the contrast be-
tween the xts gencrated by the pencil xy=ay (i fixed; j=0, 1,......5~1) is the contrast
Letween the various levels of the i-th factor, smmmed np over oll the other factors, i.e.,
the main ¢flect of the i-th factor, ‘Thus every (m—2).ccll of the fundamental simplex
serves as the, vertex of a paraliet pencil of s (m—1)-fats, corresponding to a crtain
main effect. It will be seen that there me just moof these (m=2)-cells and also m
main cffects, cach having s—1 degrees of frecdom.  Thus the tolal munber of degrevs
of freedom, i.e., m(s=1), cnwmerated in this manner 3s just the number of degrees of
frecdom corresponding to the main cflects,

=1) deno-
1)-fat of this

Now lct us consider pencils with equations of the form
xntag xy=a (r=0, 1, s =1 5wy, j fixed) - (10)

The (m-1)-Nats of this penacil all pass through the (m—3)-ccll X,,
Xa of the fumdamental simplex.  \We now proceed to consider
the sets into which this pencil decomposes the s® treatiments.

Let us, in particnlar, consider the st corresponding to the {(m —1)-flat
xitagxy=a, (u, 1 fixed) w {1

of this pencil.  To every value of x) there corresponds a definite value of x, diffcrent
valies of x, correspondding to different values of x,. Ience x varies over all the
possible s values as v, assunes all the s possible values,

With each of the s pairs of values of (v, x)), e nssaciate all the passible combina-

tions of values of the other m =2 variates xyy ¥y T TR S R ORUR Y

thus obtaining the = cogresponding Lo this flat,  Giving r all values frem
0 to s=1, we obtain the s scts ol treatment combinations into which the penci! (10)
partitions the s® © i As all hinati of the m—=2 fictors

other than the i-th and the jth, buf not thase of any of the m=1 [actors, vceur in
cacli-of these s sets, the contrast Iotween them gives s—1 degrees of freedom for the
first order interaction between the i-th and the j-th factors.

Let

Nt ey a, (o fixedstn'y =0, L, . 12
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be the oquations of nnother parallel pencil of (m—1)-fluts. Arguing as hefore, tht
contrast between the scts given by these also represents s—1 degrees,of freedom for
the interaction between the ith and the jth factors. Now, for r and # fixed, the lincar
cquations

Yt x,=ar . (13
xXtag vy=a . (14)

have a unigue solatinn.  As ¢ is varicd from 0 to s—1, s solutions in all are
obtained which must all be different.  Thus the s pairs of values of (x), x)) given by
(13) occur once cach in cach of the s different scts represented by (12). It imme-,
diately follows that the ¢ trcalment combinations corresponding to {13) are distribu-
ted 5™ cach in the sets represented by (12). Varying v from 0 to s—1, we sce that
cach of the s scls of s°°! treatments into which the s treatments are split up by the
pencil (10) occur cqually among the sets given by the pencil (12), and vice versa.
Thus the s—1 degrees of frecdom corresponding 1o the pencil (10) are orthogonu! to
the s=1 degrees of freedum corresponding to the pencil (£2),  Varying u and w’(usu')
over all possible values, we see that the peucils given by the equations

(1)

Mt x=afu=1,

yicld (s=1)* degrees of freedom, which conslitute the totality of the degrees of free-
dum corresponding to the first order interaction of the i-th and jth factors.

Next, let us consider pencils with cquations of the form

Xt aw xytue xezay iy §, k1 v fixed; r=0, L s=1) w. (16}

The {m=1)-Nats of this peneil all pass through the (m—4)-cell X,y X,...o..
51 Nligereee a X Xa of the fundar 1 simplex.

Let us now obtain the s sets inta which the different (m—1)-flats of this pencil
parlition the s® trcutment conmbinations, Keeping v fixed, we see that 1o every pair
of values of (v;, ay), there will correspond a definite value of xi. To every value of
the triplet (x), Xy, ) We associate all possible combinutions {s®* in number) of the
remaining m—3 variates. The number of values which the triplet can assunie being
s?, we get the s treatment combinations corresponding to one of the (m—1)-flats of
the pencil (16),  Changing r from 0 tw s—1, we obtain s such scts.  A\s only all com-
binations of the m—=3 faclors, other than the i-th, jth and k-th, but not toscof any
larger number of factors, occur in each of these s sets, the s—1 degrees of freedom
cotrespomding 1o the pencil (16) are the degrees of frecdom belonging to the second
order interactivn between the i-th, )th and k-l factors.

Let

=ap (1, V' fixed; P=0, 1, s=1) w 1D

Nyt a, Xyta,

represent another parallel pencil of (m—1)-flats.  The {s—1).degrees of frecdom corres
pouding to it will evidently represent the degrees of freedom fur the sccond order
interaction Letween ‘the ial, j-b and kth factors. We shall now show that the s=*
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treatments given by any of the fluts of the pencil (16) are distributed cqually in groups
of 5= amung ne scts given by the s (m=1)-flats of the pencil (17). Considering the
1wo linear cyuations

st ag N ta, v=ay (u, v, 7 fixed) we (18)
N re nFae a=a (i, v hxed) o (1M

it will e scen that to every value ol x; there corresponds vne wniue solwtivn for
{3 M), 2mid the solutions corresponding to the s different values of x, are all differ.
ent. We thus obtain in this case s values of the triplet (v, x), a2) satisfying both (18)
and (19). To cach of these may be associatad any one of the s possible combina-
tions of wvalues of the other m=3 variates, giving in all s*? comnion treatment
combinations,

From here it follows, as helore, that the s—1 degrees of frecdom represented hy
the pencil (16) zre orthogonal to the s—1 degrees of freedom corresponding to (17),
another pencil of the same type.  Varying 1 and v over the values [, 2,...... .51,
we obtain (s—1)! different pencils of this type, the (s—1)* degrees of freedom cor-
responding to which represent the totality of the degrees of freedom corresponding to
the sccond order interaction between the jsth, j-h and L-th factors,

In the same way, it may be shown that the s—1 degrees of freedom given by the
contrast between the s sets of treatment combinations into which thie s® treatinents are
divided up by the pencil of (m=1)-flats represented by the cquation

-1 @0

Xigtay, X taw X bt an Xy =a (i iy i My, Uyt fixed; r=0, 1

heloug to the k-th order jnleraction. Also, by arguing as before, it is casily scen
that the two scis of s=1 degrees of frecdom corresponding to any two pencils of this
type are mutually orthogonal. Lvery {m-1).flat of this peucil paeses throngh the
(m=k-2).cell of the fund: | simplex, obtained by luding the k + 1 points X,

from among the veetices of the fundamental simplex. s cach of wy, ...
uy can assume s—1 differeat values, the total number of pencils of the type (20) is
(s=1)", which give (s—1)** degrees of {recdom corresponding to the k-th order inter-
action between the iy-th, i,-th.........7ii-th factors.

The degrees of freedom corresponding to the highest order interaction correspond
to pencils of the type

=1 ..o@2n

Xy @y Xyt Xyt F oy Xa=ac (U, 1y, tta fixed; r=0, [

Since cach of 1, y..eeciene. Mty can vary over s=1 possible values, there are (s=1)="'
such pencils, yieling (s=1)= degrees of Yréedom for the highest order interaction.
The (m=2)-flats at inficity which are the vertices of these pencils pass clear of the
fundamental simplex, i.c., they do not pass through any vertex of the fundamental
simplex.  In general, a k-flat at infin ty may be said to pass clear of the fundamental
simplex if it does not cut any (m =k =2)-ccll of the simplex.
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§3. Tug PRISCIPLE OF GENKRALIZED INTERACTION

{3'1) We now prucead to enanciate the principle of g
general case of a 5™ factorial arrangement,

alized nteraction in the

Given any two of the pencils of (mr=1)-flats symbolised by the equations

o 22)

Xj o, X0 F @y X e @y Xy, = A

1. fixed; =0, 1;

(Gor Jua Jaue o T Vae

. (23

cach representing s—1 degrees of freeilom for o main ¢ffect or an interaction in a 3=
factorial design, their gencralized interaction is given by the (s=1)* degrees of freedom
belonging to the main cffects and interactions represented by the s=1 pen
the equations are

of which

(.\'..4—:-.‘l it vt

s et X))

an (Vi m vy e Ny tay v )=a,,

=0, 2,0 s=1; 0=0, )= 1) e (24)

Thus any two given pencils, cither representing s—1 degrees of freedom for a
main effect or an interaction in o ,* factorial design, determine as \leir gencralized
interaction, s—1 other pencils, cach representing a main effect or an interaction. It
thus follows that in the general case of a «® factorial arrangement, there subsists an in.
ternal configurational symmetry so that if any suitably selicted m of the pencils be
called the main cffects, the remaining peneils will represent all the interactions in their
entirety,

This procedure is best carricd out in snceussive stages.  We may start by taking
any two peneils and and calliog them two main cffcets.  These will then, by their
gencralized interaction, fix s—1 other pencils which will denote the interaction of

N . =1 -
the two niin cffects, There being ! (= =T )pcucnlsm all, we may term any of the

remaining I-s-1 pencils as a lhir‘d main cffect.  The latter will, by ils generalised
interaction with each of the former s+ | pencils, fix s* =1 further pencils, the totality of the
number of pencils fixed at this stage being s+ s+ (. Out of the revainmg 1—37—5— |,
pencils Teft at this stage, we may designate any as the fourth main effect. Then,
again by the principle of generalized interaction, s*—1 further peneils will be speci-
ficd, the total nnmber of these now being s+ s+ s+ 1. This process may be repente]
snti) the m-th main effect hias been speaified, when all the s= '+ 5274 ..+’ +5+1
pencils will have been exbausted.

(32) A concrete example may pow given to further clucidate the procedure.  fLet
5=3, m=3, so that we have a 3x3x3 fctorial design. The three factors mzy be
tuken to he nileogen, potash aidd superphosphate. * The following are the cquations
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to the pencils representing the muin offects and interactions, N K(1), N K(2) denoting
the pairs of degrees ol freedom constitming the totality of degrees of frecdom for
the interaction NEK, with o similar potation for other degrees of freedom,

Tk 2. Eeuations vo Paxcils CokRESIONDING To MAIN EFFECTS AND INTEMACTIONS
IN A 3 Drsion.

Seral Xo. | Ml | fpntions it | N6y sl nain e

1 N x=a, (v=0,1,2) 3

2 K (u=0,1,2) RS (2
3 r (n=0,1,2) ST ()
[ NK () [ xda y=a (n=0,1,2) S

5 NK @ Ntayma (u=0,1,2) RS (1)
6 Kr o Yt z-a. (n=0,1,2) RT {2
7 KP 2 i zsa, («=0,1,2) R ST
8 NP o ta, xca, (n=0,1,2) RSTWY
9 NP @ ta,xra. (n=0,1,2) R ST(2)
10 NK P(1) xta, _\'0«.::«.(n‘=0. 1.2 T

I N K P2 Ata ytaysTa(u=0,1,2) ST ()
12 NK PQ) xtay yta, sadn=0,1,2) RSTH)
13 N K r) xta,ytmcmafu=0,1,2) RT (1)

Now let the Ist pencil deaole « new main cffcet R and the 4th, the main effect
K. “Then, by the prineiple of generalized interaction, the 5t and 2nd pencils will
represent the inteeactions RE(1) and RS(2) respecti ally, take the pencil (10)
to represent the thied v effeet T, sa that the 13th amd Gih pencils represent the
intcractions RT(1) and RT(2) respectively and the 12k and 3rd pencils the interac-
tions ST(l) and, ST(2). Finally, from the generalized interactions of ‘I with R${1)
/A RS2), we find that the ath, 9th, Rth and 12th pencils represent respectively
RST(), RST(2), RSTE) and RST(1). The corresponding change in the nomencla.
ture nf treatinent comhinations may be casily effected,

(3'3) We now consider the special cise of aas™ factorial dexign, where =2, and
proceed 1o demonstrate thht the principle of geieralized interaction, ns defined by
Burnard in the case of the 2° design, cones aul as a particular case of vur more
Kencinlized definition.  The following are the cquagons ta the pencils representing
the vacious main ¢flects and interactions
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Tane J. EQuaTions 1o PrnciLs CORREXPONDING TO MALN | FPEUTS AND

INTER\CTIUNS IN A 2™ DHSICN

Main effects and interactions

Eequations to peneils

A, =01

A, A3=0,1

An Am=0, 10
AA, X+ x,=0,1

Ay A Nty =01
Anoy N\a Nm t Xa=0, |

Ay Ay A Xy Xy +x,=0, 1

Ay A AL A, NpbxyFay+x,=0, 1

A A Nt &t o, +ya=0,1

Let us consider the generalized interaction of the two pencils
LNt e 00 =0, 1 (r<<m) e (25)
v e #Np=0, 1 (P} e (260

Xt Nt

This is immediately scen 10 bhe

FVE R chNebag e =0,1 e 121

Ay s

o oAr with A .
the two

Thus it appears that the interaction of Ay A

A A oAy, i accordance with Marsard's definition.  Again, co
pencils
ETR LT OO O 2 | . 23
XNt e Net poenians st a0,=0,1 (29
where 0<r, 0P, répgm.
Their generalizad interaction is given Dy the pencil
Xt g F s $0,,=0, 1 e (30)
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From his it fullows that the generalized interactivn of A, A, Ar and A,
Ay » is given by Ay, N\ Ay, it accordance with the definition given by,
Darnard.  From this and the preceding resuits, it appears that the definition of the
generalized interaction in the general ease of a s® factorial arcungement reduces, when
3 is equal to 2, ta that given by Burnard' in the case of the 2* design.

§4. FormaTION OF CUNEOUUNDED ARRANGEMENTS [N A 5™ DESIGN IN DLOCKS OF 5 1LOTS

‘I'he peinciple of generalized interaction may now he utilized in enumerating the
various possible types of confounding by studying the relation in which O-flats, 1.flats,
2.{lats, Hluts,.........(n = 2)-flats in the (m=1)-flat ot infinity stand to the fundamental
simplex.,

Tach (m = 2)-ftat in the (m—1)-flat at inbnity constitutes the vertex of o paraliel
pencil of s (m—1)-fats, which, as already scen above, partition the ™ treatment
combinations into s scts of st treatment combinations cacli.  Thus to cach (m=2)-
llat ot infinity oce associated s—1 degrees of frecdonm.  If it constitutes vne of the
m (m=2)-cells of the fundamental simplex, the s—1 degrees of freedom belong to
a main cflcct. I, however, it is one of the JC,(s=1) {m=2)-Hla1s representing the
first ondee interaction, passing through the (m=3).cclls of the fundumental simplex,
the s= | dugeees of freedom are clearly those of u first ondee intcraction. In general,
the degrees of freedom belong to a k-th order interaction if the given {m—2)-flat is onc of
the k-th order (m =2)-{lats, uCy., (s~ 1)* in nuimber, passing through the uCy., (m =k =2)-
cclls of the simplex.  The puniber of (m—2)-flats in the (m—1)-flat at infinity being
™ -
”_ ll , these are also the different numiber of ways in which couvfounded arrangements

in blocks of 5! plots may be formed, confomnding s—1 degrees of freedom.

Consider mow a (m=3)-[tat at infuity. This is detenmined by the intersection
uf two (n=2)-flats at infinity, which are the vertices of two pencils of (m = 1)-flate,
determining by their inmtersection s* (m=2)-flats in the finite space having the
Riven (m=3){lat at infinily for vertex. As the number of finite points in a flat in

PG (9 is 5, this pencil of (m=2)-flats partitions the s® treatment combinations

into s scts of s treatments cach, so that to cach (m'— J)-flul at infinity are associa-
ted '~ 1 degeees of freedom, 2 (s—1) of which are associated with the two (m=2)-(lats
which fix the (m=3).flat, and the rest with the other (m=2)-flsts, s=1 in number,
passing through the (m—=3)-flat. This also follows from tlic consideration that the two
sets of 5’1 degrees of freedom nssociated with the two (m=2)-[lats at infinity which
fix the given (m—3).Mat at infinity, determioe, by their generalized interaction, (s=1)*
other degrees of frecdem associated with the other (m—=2)-Dats at infinity, s—1 in
number, concurrent with the initial (n—2)flats. The main cffects or iulcmcliun? to
which the s+1 scts, cach of s—1 degrees of freedom, belong may he deteomined by
considering, os before, the nature of the {s+1) " (m —2)-{lats in relation to the fundamental
simpl‘cx. In this case, the number of ways in which different confounded wrrange-
== (s=1-1)

TGy

Ments in blocks of s plots niay be obtained is
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In geacral, consider a (m =k =1)-flat at infinity and the degrees of frecdom asso-
ciated wilin it. It s fixed as the common (m =k = 1)-Mat of intersection of k indepen-
dent (m=2)-Nats at infinity. The pencils of (wr—1)-flats correspongling to these
intersect in the Anite plane in & (m—k)-flats which have the given flut st infinity for
vertex.  As thiese constitute the totality of (m— k)-flats wilh the given (m =L = [)-flat
at infinity as vertex, to cach of these (m—k—=1)-flats at infinity sre associaled s'—1
degrees of freedom given by the contrast between the s* scts of s treatment combina.
tions into which the s™ treatments are split up.  Of these, k(s=1) degries of freedom
belong to the main cffects or interaclions corresponding to the initial & (m=2)-flats at
infinity, and the remaining 8 =1-&(s—1) degrees of freedom to the main cflects or
interactions dutermined by the generalized interactions in their entirety of the & initial
main cffccts or interactions, It appears, therefore, that for the formation of confounded
arrangenients in the case of  ¢™ design in st sub-blocks, we have to look for a parti-
cular {m =t =1)-(lat at infinity and sct down the 5™ treatments oceurring in cach of the
S finite (= k)-flats having the given (=& = 1)-flut at infinity as vertex. The nature
of confounding tims cffectel would, as above, be deducible from contidering the relation
st
-
the given (m=k-1)-(lat ot infinity stand in relation to the fundamental simplex.
Also the number of diffeeent woys of dividing up a replication with s® trcatment
combinations into * sub-blocks is evidently cqual to the number of (m-k- 1)-flats in
the {m = 1)-flat at infinity, whicliis N, where,

in which the totality of the {nr=2)-{lats ot infinity, in number, passing Anrough

‘The totality of the number of ways of getting a s® design arranged in s®* plot
blocks may he divided up into a number of ¢lasses in accordance with the types ol the
(m=k-1)-flats at infinity in relation to the [undamental simplex, cach ¢f these
different types leading to onc particular type of confounding.  Among these, the best
sets of treatment comparisuns which may profitably be confounded are those in which
the main cffects und first order interactions are aflected as little as possible, and will
correspond Lo tie (m—k — 1h-cells, il any, which pass clear of the fundamental simplex
(c/. §2). Yor convenience, we eall thede the elear (m—Lk = )-cells.

£5. Dossiee Tyres o CONFOUDING PUR s* AND s* DESIGNS IN BLOUKS OP s* AND 5 pLOTS

We now proceed to utilize the artificg developed in Uie preceding article to en-
umerate all the different types of confounding effected when a s* design is arranged in
57 und s-plot blocks, and also when a s* design is arranged in blocks of the same two
different sizes,  Attention.liere will only be confined to these, consideration of s* designs
in 5%, s'-, and s-plot blocks, cte., Leing reserved for n subsequent communication,
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(5°1) s* in s™-pot blocks: In this case, the fundamental simplex reduces 1o a trian-
klc on the planc at infinity. “T'o cach ¢f the s*+s+ 1 lines on the plane at infinity
T

will be associated s—1 degrees of freedom given by the contrast between the s scts of
5" ircatment combinations each into which the pencil of lanes with any ol these lines

for vertex partitions the s treatment combinations,  Clearly, the s—1 degrees of frewtom
may belong o nny of the main cffects, fiest order or second order interactions iceording
as the Jine constitules one vl the sides of the triangle, passes through one of the verti.

ces or. goes clear of the fundamental teiangle.  ‘There are (s=1)7 elear

L pencibs,
cotresponding to which give degrevs of frecdom for the sccond order interaction.

{52 5" in s-pot blocks: Hach of the s*+s+1 points in the plane at infinity lias
s*=1 degrees of frecdom associated with it given by the contrast between the s* sets
of & treatment combinations cach into which the s* treatment combinations are split
up by the pencil of 57 finite lines ing any one ol the given pwints for verlex.
Now the types of points in relation to the fundiumental: simplex arc ¢ (i) Those cons-
tituting any of the three vertices of the fundamentad triangle, (i) Those lying on any
ol its three sides, and (i) Clear points,  The types of confounding corresponding to
these have beeu presented in Table 4.

TanLe 4. ENOMERATION oF Tvigs or CONFOUSDING POR A s DESIGN IN s-rLOT BLucKs

Narvne oF CoxvourNmse
Nature ol poinls Number Fi Tomt
. intLorder | Sccond order
Maia eflects | nicractions | interactions
Verlices o 3 2 =1 - "l
Points lying on the sides ... 3e-1) 1 ] -1 I3
Clear poinl ... (e-1)7 a -2 ITal

(5°3) s* in s:pMot blocks: In this case, the fundamental simplex is a letrahedron
at infinity, und the possibilities of the diflerent ways of confounding of a s factorial
design in s™plot hlocks are casily deduced by studying the relation of (he totality of
tines in the hyperplane at infinity to the fundamental tetrahedron.

‘The total number of lines in the hyperplanc at infinity is (@ +1) (s7+s+ 1),
These divide themselves up into thie following seven clusse: (i) Lincse constituting
the odges, 6 in number; (i) Lines lying on a face and passing through a vertex,
12(s—1) in number; (iii) Lines lying un a facc but not theough a vertex, their number
being 4(s=1)*; (i) Lines through a vertek but not on a face, 4(s—=1)" in number;
(x) Lines intersecting only a single edge, their number being 6(s=1)% (vi) Lines
intersecting two cdges but not lying on a face, 3(s=1)* in number, and (i) Clear
lines, their number being (s—=1)’(s=2). The annexed table shows the types of con-
founding corresponding (0 cach of these different types of lines,.
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Tante 5. ENUMERATION ur Tv1res OF CONFOUNDING FOR A s* DESICN IN s'.rroT Brocks

Nutear. of Coxrounpio |
Nature of lines Number |~y o First | Secund ird” | Tomat.
eliccts | OFlerin- order in- | order in-
Leractiony juns teractiony
Eilges . G 2 -1 41
Liacs lying on a face and throngh o
.. | 8(e=1) 1 1 -1 23]
Lincs lying on a face but not through
& vertex .. 4(e-1)2 1 1 -1 1+l
Lines thraugh a verlex, not on [ace 4(e=1)? 3 -2 e +l
Lines inlersecting a single edge ... G{s~1)? - 1 H =2 241
Lines intersecling two edges and not
vn o face .o | -2 2 -1 2]
Clenr lines o =13 (0=2) . 3 =3 41
!

(5°4) s* in s-plot blocks: The different possibititics of confounding s*=1 degrees
of frecdom by dividing up s* treatment combinations in s* sul.blocks, cach of s plots,
will now be given by e relation which the totality of s*+s*+s+1 points in the
hyperplane at infinity bear to the fundaniental tetrahedron.  There are only four types
of points: (i) Those constitmtiag the vertices, 4 in number; (ii) Those lying on cdges
G(s=1) in number; (iii) Those lying on the faces, heing 4(s~1)* in number; and, finally,
(iv) Clear points, (s=1)* in number. In®Talle 6 are given the different types of
confounding corresponding 1o ¢ach of the above fypes of points,

‘Tape 6. ENUMERATION OF Tvies op CONFOONDING FOR s* IN s-PLOT BLOCKS

Narune or Coxrounnixo
Nature of pointr Number Mein '"""| Fiest onfer org;:qn:l". Third order To1at
tion | intesactior
Verlices 4 3 -1 (=12 4+l
Pointa lying on edges ... 6(s=1) | 2 . 2(s-1) (e=1)7 [LEYEA]
Puints lying un plane faces Ae-1)? 1 a 425 (8=1) (2=2)] 2t4s+1
Clear points ... (s-1)3 w® ] =2) l ?7=3 243 | 24+l

“Uhe problem of constructing halanced arrangements in the above and other cases will
be investigated in detail in a separate note to be shortly released for publication,

RUATBIRY 34
‘The problem of confounding in (e general symmetrical type of experiment
5*), where s is a prime positive integer or a power of a prime and
- integer, has been consideAd in this paper and the itaportant prin-

SYSXSX,
m any positi
ciple of generalived interaction in the 7 factorial arcangement has been enumciated,
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Barnard's definition of the generalized interaction in the 2% factoriul design being
shown to be a particular case of our general definition when =2, “Tliis principle has
been utilized in demonstrating a general method of forning confounded arrangements
in o 5™ design in s* sub-blocks, cach of s plots, and the s* and 5* designs have been
discussed in their entirety to serve as concrete iltustrations, the consideration of other

particular cases being reserved for a subsequent communication.

REFERENCRS

1. BamrnarD, M, M. : An E ion of the Confe lod Ar in the
2x2x2x,.. Factorial Designs.  Supplement to the J. R. 8. S., Vol, I1T, No. 2, 1936,
195.202.

2. Bosr, R, C.: On the Application of the Propertics of Galois Fields to the
Problem of the Construction of Hyper-Grieco-Latin Squares.  Sankhyi ¢ The Indion
Joural of Statistics, Vol. 3 (4), 1938, 323.338.

3. Bosg, R. C.: On the Construction of Balanced Incomplete Block Designs.
Annals of Eugenics, Vol. IX, Part IV, 1939, 353-399,

A Carmiciase, ROWRRT D.: [Iufroduction lo the Theors” of Groups of Finite
Order. Boston, U. S. A. and London: Ginn & Co., 1937.

5. Kmsnex, K.: Symmetrical I pl Block Ar with Blocks of
Uneyual Size.  Abstract published in Science aud Culinre, Vol. V, No. 2, Augnst, 1939.
6. Kisney, K, : Split.plot Teclmique in Field Experi ion. Proceedings of

the Twenly-Sixth Indian Science Congress, Lahore, 1939, Part III, Scction IN, No. 47.
Abstract published in Sankhyi: The Indian Jonnal of Statictics, Vol. 4 (4, 1940, 590

7. Nag, K, R.: On o Method of Getting Confounded Arrangements in the
General Symmetrical Type of Experiment.  Sankhyd : The Indian Journal of Stalistics,
Vol. 4 (1), 1938, 121-138.

8. Namr, K. R.: Some Balanced Confounded Arrangements for the 5* type of
expetiment.  Proceedings of the Second Session of the lndian Stutistical Conference,
Lahore, 1939 (Published in this issue).

9. Yarss, F.: The Design and Analysis of Factorial Experiments. Imperial
Bureau of Soil Science, Technical Communication, No. 35, 1937,



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016

