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Abstract

Inm the past, cellular automata based models and machines [The Theory of Self-
Reproducting Automata, University of [linois Press, Urbana, 19%6; Rev. Mod. Phys.
35 (1983) 601; Am. Math. Month. 97 {1990} 24; Matrix and Linear Algebra, Prentice-
Hall, India. 1991; TRE Trans. Circuits CT-6 (1959) 45; Cellular Automata Machines,
MIT Press, Cambridge. 1987) were proposed for simulation of physical systems, but
without any analytical insight into the behaviour of the underlying simulation process.
The set of papers [Int. J. Comput. Math. Appl. 33 (1997) 79; Int. J. Comput. Math.
Appl. 37 (1999} 115; Matrix algebraic formulae concerning a particular rule of two
dimensional cellular automata, Inf. Sci., submitted] made a significant departure from
this traditional approach. In the mentioned papers, a simple and precise mathematical
model using matrix algebra built on GF(2) was reported for characterising the behav-
iour of two-dimensional nearest neighbourhood linear cellular automata with null and
periodic boundary conditions. As a sequel, in the present paper an attempt has been
made to characterise a number of exceptional transformations or rules, each of which
behaving uniquely, not matching with any other rules. Thus this set of exceptional rules
demand special attention.

Kevwords: Two-dimensional cellular automata; Linear algebra; Periodic boundary condition;
Mull boundary condition
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1. Introduction

The cellular automata (CA) studies the mathematical formalization of dis-
crete dynamical system whose structure is a regular uniform array of a par-
ticular dimension. The two-dimensional CA in its simplest form consists of
m x n cells arranged in m rows and n columns, where each cell takes one of the
values of 0 or 1. A configuration of the system is an assignment of states to all
the cells. Every configuration determines a next configuration via a linear
transition rule that is local in the sense that the state of a cell at time ¢+ 1
depends only on the states of some of its neighbours at time ¢ using modulo 2.
For 2D CA nearest neighbours, there are nine cells arranged in a 3x 3 matrix
centering that particular cell. Mathematically, the (r + 1)th state of the (i, j)th
cell can be written as

ﬂ,__..l::f + 1:' — __if"l:ﬂ,_]__f_]|:.FI|._ﬂ,_]:f{fj._ﬂ,-]__..+'||:f:|1ﬂ,__|._]|:f:|1

ﬂ..j{f:l1ﬂu+1{f:|-ﬂ1+1.i—1 ':f:l1ﬂ.+1.j{f:|1ﬂ4+1.1+1':f:|:|

The ruke according to which the content of each cell is altered is called the
rule number of that particular CA. If same rule is applied in case of all the cells
of m rows and » columns of one 2D CA configuration, then the CA is called
uniform or regular. Otherwise it is called hybrid. Our discussion is restricted to
uniform type CA. Regarding the neighbourhood of the first and last cell there
are two approaches. If the first and last cells are considered to be adjacent, then
it is called periodic boundary condition (P). But if the first and last cells are
connected to 0 state, this condition is called Null Boundary condition (N). If
in a CA the neighbourhood dependence is on EX-0OR, then the CA is called an
additive or linear CA. Regarding the various nomenclatures of transformations
we follow the already existing ones [7-9]. If a next state of a cell is described in
the form of a truth table, then the decimal equivalent of the output is called the
rule number. The conventional method of defining a rule number for a linear
rule in 2D CA can be explained in the following way:

64
32
16

ey

28

oo —
Sy O O

Here the current cell is represented by the centremost box and the other
boxes are 8 neighbourhoods of that cell. If the next value of the current cell is
dependent on a particular cell {or cells), then the value of that cell (or cells) will
be filled up by 1 and the others will be (0. The rule number will be the decimal
equivalent of the output as explained in the above table. There may be 27 = 512
{rule number (0 to rule number 511) rules all of which are linear.
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Let us try to form the clusters of different rule numbers in the sense of
similar looking behaviour. It has been done successively by taking | neighbour,
2 neighbours, . . ., 9 peighbours at a time. It is imporiant to note that taking 4
neighbours at a time, the rule numbers 170N and 170P and 340N and 340P,
taking 5 neighbours at a time 171N and 171P and 31N and 341P, taking 8
neighbours at a time 510N and 510P and taking 9 neighbours at a time 511N
and 511P are showing exceptional special behaviours that do not match with
any other ruke numbers. In this paper an attempt has been made to explain and
characterise the odd nature of these exceptional rules. In Section 2, mathe-
matical formulation and results are highlighted. Section 3 contains the con-
cluding remarks.

2. Mathematical formulation amd results

2.1 Characterization of rule numbers 170N and 170P

In general for any m and » the map matrix (Naw),,,. . 15 of the form:
(S I 0 0 0 . e 0 0N
I 5 & 0 0 0 o
o I+ 5§ 1 0 0 o
o o 1 8§ T | |
o o - - - 0 I 8§
\0 0 0 .- - ... 0 & S8/

where each partitioned matrix is of order n x n. And

0 1 0 0 0 00\
10 1 0 0 0 0
01 0 1 0 0 0
00 1 0 1 00
Bosi=
D 0§ swe e e § £ 0 3
\o0 0 0 - - o 0 1 0)

In general for any m and » the map matrix { Tiqp) is of the form

LoD ]
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fs. 1 0 0 0 {1 A
I 5 1 0 0 a 0
o r s i 0 - a 0
o o 5 5 I 0 0
o o - e o0 I 5 T
\:f 0 0 - e o0 18
where each partitioned matrix is of order n x n. And

f0 1 0 0 0 0 13

10 1 0 0 a 0

a 1 0 1 0 a 0

; o o 1 0 1 a 0

|:IS"-:IJ.I.XJ.I: P P P b e e ey mrey

a 0o - e 0101

v\ 1 0 0 - .o o0 1 0

Dimension of kernel of these two rule matrices have been studied in the earlier
papers [7.9] whose values are equal to be GCD{m+ LLn+1)—1 and
2GCD(m,n) — (m x n mod 2), respectively.

2.2 Characterization of rule numbers 17IN and 171P

The rule matrices of these two rule numbers are exactly same as those for
rule numbers 170N and 170P, respectively, except only there are 5+ 7 and
8. + £ in places of § and 5. So proceeding as in the same way for 170N and for
170P [7,9] we have two results:

Theorem 1
(a) The dimension of kernel of Ty =dim of ker(p, (5 + 1)).
(b)) The dimension of kernel of Ti7p

ker(S. +1) ifm=1
2ker((S.+ DNpupa-(S.+17) if m = even
ker(piu—1y2(5: +1) + Piu-sy2(5: +1))

+ker((Sc +1) - (pw-12(5c + 1) +Pi-sy2(S: +1)))  if m = odd

where the polwmomial piX) & defined as p (X)) =0, miX) =1, plX) =
X-paX)+paX) izl

For the proof, the reader is referred to [7.9].
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Let us now recall some well-known results [7] of this polynomial definition
such as the following:

Lemma Ia). p(X) = pii(X) - p(X) +pi o1 (X) - pialX), f =10

By putting 2i + 1 in place of i and i + 1 in place of j in the above formula we
can get a useful result such as

2

Lemma I(b). p;1(X) =X - (p(X])".

And by putting 2i in place of i and { in place of j, we can also have an another
formula such as

Lemma l{t] PEJ{X:I ! I:PJ{X:I +.PJ—]|:X:I:|3
At this stage we have the following theorem.

Theorem 2. I m = 2" - g — 1, where k is any +ve integer and g=any +ve odd
-1 I
integer, then p,(X) = X7 -pf:,_]{X:I.

Proof

PulX) =P3h,-—1':X:| =P3|3*-'q-—11+1':X:| =X -Fi*'l-q—]{X:I
=X (X pha (X)) =X X ph.  (X)
=}[’-.3['3 -X‘ 'J"ga-!_g‘._]{X] = =XJ+3+4+3+"'+?.1 'P;:.-_I]{X:'
qt-1 -~ -1
=X -x " P ()

Hence the proof. O

Corollary 1. Let ws put g=1. In this case m=2%—1, then p,(X) =
k-1

e DES s S U 2 B g i B

Corollary 2. Lot us consider that m = 2% - g — 1, where g = any +ve odd number
other than 1, let g=2t+1, t=1,23,... In this case p(X)=X>""1
Akl g sol_p k-l gbol_g bl k-1 _g 3 oy
Py (X)) =X Py (X)) =X P (X)) =X - -p X)) =

e P gl g e IR g
To proceed further ket us study the rank of 5+ 7 and 5.+ 1.

Lemma 2. rank{S+ ) =full if order n=3tor 3¢+ land isn—1ifn =31 + 2,
r=0,1,2,3,...
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Proof. The characteristic polynomial of §,., in i can be written as [7]
Puld) = S+ 4-d] =4 pa(4) + paoald).

1§ £E 4 Aot = S LD 0 = (A 1 pald £ ) s (A 1

Putting 4 =0 in the second equation

pll) = IS+ 1| = pua(1) +pua(1) = pua(l) + pus(l) +pu2(l)
= pu_sll) = p._e(1) = p, ofl)
i1l if m =3y,
s bpil) AF e 3pl;
poll) AL 02,

Now, since p (i) =0, m(i) =1, m(d)=4i m(i)=4++1, therefore,
mll) =1, pi(1) = 1, pa(1) = 0.

So, [S+I|=1 if n=3 and n=3r+1, ie rank(S5+/7)="rfull. But,
|[§+1| =0,if n =3t +2. A minor of |§4 7| of order n x n is |S+ 1| of order
(n—1)x(n—1). Since n—1=73t4+1, therefore [S+/| _,=1 and so
rank((S+1) . J=n—1,ifn=34+2 0O
Lemma 3. rank(S. + 1) =full ifordern =3¢+ 1 or 3¢+ 2 and isn — 2 if'n = 31,
r=0,1,2,3,...

Proof. ker((S.+1),.,) =ker(P +P" +1)= GCD(3,n) — 1, where P is the
permutation matrix [9].

Therefore ker((S. + 1)) =0if GCD{3.n) = 1,ie.ifn =3r+ 1 or 3r + 2,
t=0,1,2,3... Blse ifn=3, r=1273..  ker([5:.+ 1) .,.) = GCD(3,3r)—
l=3-1=2.

So, we see that (S +7),, isof full rank ifn = 3t or 314+ 1 but (5. +1),,, s
of full rank if s =3+ 1or ¥ +2. O

xR

Corollary 3. fr follows from the results of Theorem Wa) and Corollary 1 that if
m=2_—1, where F=1,2,3,..., arid n=3 or 3+1, r=1,23,... ile.
whenever 5. + 1 matrix iv of full rank, in these cases, ker[ Tz = 0

Corollary 4. fr follows from the results of Theorem WH) and Corollary 1 that if
m=2 where k=1,2.3,..., and n=3+1 or ¥+2, i=0,1,2.3,... ie.
whenever 5. + 1 matrix iv of full vank, in these cases, ker(T7p) = 0.

Let us define two new matrices assuming the invertibility of (8§ + 1, and
(841, Let T =S8(§ +1)7" for n = 3t or 3t + 1, so that rank(T") = rank(S).
And T, = 5.(5. 4+ )" for n = 3 + 1 or 3t + 2, so that rank(T,.) = rank(S,.).
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2.3, Characterization of rule numbers 310N and 310P

In general for any m and » the map matnix { oy ) peeme 15 Of the form

F g GER o 0 O s 00
SHEr ¥ ®LI 0 F aes oaxe, B 0
0 FLE 8 Bl B s s, B @
0 0 S+1 S§ S+ 0 -0
0 B owe s e B OKEE & Eyd
\ 0 B B wee e g 0 FoEE o

If we assume the value of n = 3¢ or 31 + 1 the its dimension of kernel isequal to
that of the matrix

(T I 0 0 0 00y
[T 10 0 0 0
8 F F I 0 s 00
0 0 1 T I 0 0
B 0 e oA es 0 E o

L0 0 0 W W b T

Proceeding analogously as that of (o) e, We see the next result

Theorem 3. Ker({Tswun), ) = ket((pu(T)),.0 for n=3 or 3t+1,
t=10,1,2,3,...

Corollary 5. For even values of n, since rank(8) = full, wsing the results of
Thearem 2 and Corollary 1, we can write that for m=2"—1k=1,2.3,._.,
rank | T ) = full, ie. kernel = zero.

In general for any m and » the map matrix (Gp),,. ., 15 of the form
[ S Sc+I 0 0 0 0S40
S+d 8 &+ 0 0 0 0
0 S+ 5 S+F 0 - - 0 0
0 0 &+f S S+71 0 0
0 0 e ope e B EBAF O® ST

\&+E O 6 s ope o= 0 KA &Y
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If we assume the value of n = 3fr+1 or 3f + 2 the its dimension of kernel is
equal to that of the matrix

{f . o 0 0 [ B
! A a0 o 0 0
o & 1. I o --. 0 0
o o i 1. I 0 0
o ¢ - o .. 0 I T I
Y N R T I A
Proceeding analogously as that of (Tizee),,,. ., We see the next result under the
above stated restricted values of n
Theorem 4
ker{ (Taoe) )
ker(T.) if m=1
2ker((T2)pua1(T2)) if m = even

ker (pim—1)2(Te) + Piw-3,2(T2))
+ker((T) - (Am-—12(T2) +Pra-32(T2)))  if m =odd

So using the results of Theorem 2 and Corollary 1 for m = 2%, where & =any

positive integer, ker{Tuge) = 2ker({T.)pa1(TL)) = 2ker(T27 - p2 (1) =
2ker(T27 -T2 7) = 2ker (T2 ') = 2ker (52" ) = 2ker((P+ P')* ) = 2ker(P* ' +

P™) = 2GCD(2-2*,n) [9]. = 2GCD(2*,n) = 2GCD(m,n).

Corollary 6. Let us consider that m = 2% - g, where g = any +ve odd number other
than 1, let g =26+ 1,1 = 1,23 ... In this cave using the result of Corollary 2

Topupa (B =R pai (R =T 27T

(=}

We have not been able to arrive at a neat formula which gives a closed form
expression for the required kernel and further research in this area may throw
more light into the problem. However, given some particular values of ¢, from
the above formulation, it is quite easy to come out with the values of the re-
quired kernel.

For example, if we assume that 1= 1, ie. g = 3, i.e. the values of m = 25.3,
then in this case ker{Tsyp) = 2GCD(m /3. n).
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2.4, Characterization of rule numbers 340N, 340P, 311N, 311 P

Theorem 5. Using the wsuwal notation of Kronecker product of fwo matrices
rank({d @ B) = rank(A4) - rank( 8.

Proof. Let us assume that the basis of the null space of 4 @ 8 to be consiructed
of the wvectors of the form X @Y ie (dyuw @B, X @Y =0. ie
(AX) @ (BY) =10

It implies and is implied by that at least one of the two equations AY = 0
and 8Y = 0 must hold. Let §im x m and S:n x n be the null spaces of 4 and B,
respectively, and p and g are their nullities. The vector space " and R" can be
written as ™ =8, U5} and R" = % USy. Then the null space of 4 @ 8 is
(S ERVUR"®8:)— 5 @ 5%. S0 its dimension is=pxn+mxg—pxg.
Therefore rank{d ® B) = mn —np—mg + pg = (m —p)(n —q) = rank{4)-
rank({8). O

Applying the above result we can have some more formulas of kernels of the
following rule numbers.

Theorem 6

) = rank(S§,, ® §,) = rank(S,,) - rank(S,).

rank( Tu(||1:| rank(S., @ S, ) = rank(S,,) - rank{5_,).

rank({ Tsn) = rank ({8, +£,) @ (5, + 4,)) = rank ({5, +1,)) - rank((5, + 1,)).
ranki Tsyip) = rank ({So + 4 ) @ (S0 + 40 = rank{(S., +4,)) -rank( (S., +1,)).

2.5, Characterization of rule numbers 341N and 341 P

In general for any m and » the map matrix (Fgn),,,. . 15 of the form
ffr 5 0 0 0 - - 0 0N
s 55 0 0 - g 0
o 5 5 5§ 0 - - 0 0
o o § 7 5 0 - - 0
o o .- - - 0 5 [ ¥
vo oo o0 e e o0 8 0

We know that the matrix S is of full rank if the order is even, otherwise its
kernel = 1. So for even values of n, the kernel of Ty is equal to that of the
following matrix:
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f5' ¢ 0 0 0 0o 0%
R | o 0 0o 0
o i s I 0 - o 0
o 0 I s r o 0
O 0 s e om0y F §

L0 0 O e s a0 &Y

Following as in the same procedure of Tiy its kernel = ker (g, ((5,)7')).

Corollary 7. Again using the resulis of Theorem 4 and Corollary 1, we can write
that ifm=2—1,k=1,2,3,...

Pal(8)7) = ((8)7)
Since (S,)”" is of full rank, so ker(p,((S,)7" ) =0, form =2 — 1,k =1,2,3,...

B |

In general for any m and n the map matrix (Tap),,,. ., 15 of the form
ffI & 0 0 0 0 S\
& £ % 0 0 o 0
6o & I 5 0 - (U
60 o s I & 0O 0
6o o - - o 0 S I &
\§& 0 0 .- ... ... O S5 1)}

We have not been able to analyse this matrix. Experiments are being continued
to solve the nature of this matrix. So far computer output shows the resulis of
zero kernel for the values of m equal to any integral powers of 2. Hence before
closing this section we include the following conjecture.

Conjecture. When m = integral powers of two, the dimension of kernel of Togp i
zero for all n.

3. Concluding remarks

OfF the six exceptional rules viz. 170, 171, 340, 341, 510, 511 both for null and
periodic boundary conditions, rule 170 has been completely solved [3.7.9]. In
the present paper, the rules 340 and 511 have been dealt with satisfactorily
ziving compleie solutions regarding the dimensionality of the kernel. Also the
results for 171N, 171P, 510N and 510P considered above are essentially
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incomplete in the sense that only with some specific set of values of m and n we
can come out with resulis. The main difficulties in arriving at a complete
solution for all of them seems to be in sufficiently advancing the results of
PulS + 1) and p (5. + 1) for Ty and Tiqgp, respectively, and also the results of
Theorems 3 and 4 in general for Tygy and Tigp, respectively. Our next effort is

being concentrated along this direction as well as the complete solution of
341N and 341P.
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