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Abstract

We consider thie problewn of construcling perlect noalinear rmulti-ouipul Boolean luncliong salis(ying
higher arder strict avalanche cviteria (SAC). Our first consoruction is an infinite family of 2-ouput porfoct
nonlinesr funetions saeisfng higher order SAC, This constraetion 15 schieved nsing the theory of bilinear
forms and sympleciic malrices. Nexi we build on a known connection belween 1-laclorizalion ol a
camplete graph and SAC to construen more examples of 2 and Soutpat porfoct nonlinear fanetions.
I ceriain cases, the constrncted S-boxes have oplinal trade-oll belween the [blowing parsneters:
numbers al inpul and oucpul variables, nondineariey and order of SAC, In case the number ol Inpul
variables 14 odd, we modify che constrnetion for perfoct nonlinear S hoses to obtiin g construetion for
maximally nonlinear S-howes sacialving higher order 5AC, Our conalructiona presend the flirst examples
of perfoct nomlinear and maximally nonlinear ot S-hoses satisfring higher order 3AC Tastly,
we present a simple tnethod] Lo improving the degree of vhe consteucted lunctionz with a amall Lrade-oll
in nonlinearity and the SAC property. This vields tunecions which have possihle applicacions in the
dlesipgn of block ciphers.

Keywords : S-bax, 5AC, benl [unciion, bilinear fovm, svmplecule matrix, nonlinearily, symmevric
ciphors.

1 Introduction

A Boolean function is a map from {0, 1}" to {0, 1} and by a multi-output Boolean function we mean a
map from (1, 1]7 to {0,1}™. Multi-output Boolean functions are wsnally called S-bozes and are used as
bragie: promoitives for designing syiometric ciphers. For example, the S-bowes used in TS hase v = § and
w4 and Uhe 3-box used in bhe design ol ATSS hag no o 80 We nexl deseribe some propeclies of
S-boxea which have been atudied previonsly.

M nulinearity is nue of the basic properties of an S3-hox, The nonlinearity of a Boolean finckion measures
the distanee of the function to the set of all affine functions. The nonlincarity of an 5-box is a natural
veneralization of thig notion, For even we, funetions achicving the maxinmm possible nonlinearity are called
perfect wonlinear S-loxes 9. Tl 1. sueh Tunelions are called beved Tunclions [T Tor odd n and w > 1,
linetions achieving Lhe maximium poasible nonlinearily are called mozimally romdinear linelions,

The comeept of propagation characteristic was Introdiuced in the cryprology literature in [10]. An 5-box
fiz) is said to satisfy propagation characteristic of degroe [ and order & (PO of order &) if the following



hilds: Lot g{y) be a funetion obtaimned from f{z) by fixing at most & luputs to constant values and let o
be g non zer veclor of weighl al mast . Then gly) < gly & o) s a balanced Tunelion.

IM & — 0, then the Tunelion ia siimply said wo satisly POU). PO of order & Tinctiona have been suudied
in |4 4] and constructions of Boolean fanctions and 5-hoxes satiafying 'C{l) of order £ are known |7, 6, 12
S-bomes satisfying PC(1) of order & are sald to satisfy strict avalanche criteria of order & (SACEDN. Ifk =10,
them the B-lwe is said to satisfy SAC. The notien of 3AC was inbroduced in 130 T s known [8] thal any
benl Tunclion or any perlecl nonlingar S-lox salisfies POln). Tl s also possille 1o conslruel benl Munclions
aalislying SAC(n — 2). However, lor va 2= 1, conslruclion of perlect nonlinear S-boxes satialying SAC(E)
for £ = 00 has been A open problem.

In this papoer, wo (partially) solve this problem by providing constructions of perfect nonlinear S-boxes
with e = 2,3 and satisfying SAC{L) for & > 1. Owr contributions are the following,

o Comslbroction ol an infinile Tamily of 2-oulpul perfeel nonlinear S-boxes galislving higher order SAC.
More preciaely, Tor sach even n > 6, we conalruch a 2-ouipil perfect nonlinear 5-box sadialying

SAC[n/2) — 2.

« In an earlier paper 7. a l-laclorization of Lthe complete graph on f-verlices waa nsed 1o conaleuct,
5-boses satisfving higher order SAC. However, the 5-boxes constructed in |7] did not satisfy perfect
nonlincarity,. We make o more detailed analysis of the connection heteween 1-factorization and higher
order BAC to construct 2 and 3 outpat perfect nonlineer S-hoxes satisfying higher order SAC.

o In cortain cases, the functions that we construet achicve the best possible tradoe-off among the fol-
lowing parameters: number of input wariables, nunber of output wariables, nonlinearity and order
of FAC TTenee For such funciong, i s ol pogsible o improve any one parameter without changing
AT UL}IET ]_Ié_'l.'I'E;I,.ITIf;‘LEf'.

o For small w, our construetions provide S-boses which canmot e obtained from the corvently knosn
conslruclions [7. 6. 12]. Bome examples ol such funclions are Lhe following.

— B-input, 2-output perfect nonlinesy S-box satisfving SAC{Z).
— #-inpmt, 3-output perfoet nonlinear S-box satisfying SAC{1).

T0-irpnd, F-ovdpaul peclect nonlinear S-box satislying SAC(E).
The lagl example is alae an example ol an $-box achieving Lhe Teal possible Crade-ofl.

o Our construetions are based on hilinear forms and symplectic madrices used in the stady of socond
order Reed-Muller code. We show that if w2 as odd, then the constraction for {4+ 1) can be modified
L obdain maximally nonlinear 3-boxes satiglying Wigher arder SAC.

o Wo provide s simnple techmigue for improving the degree of an B-box with a stoall sacrifice in nonlin-
eavily and Lhe SAC properly. This resulls in S-boses which hasve possible applicalions in Lhe design
al aymmelric ciphers

2 Preliminaries

Lei f5 = (1[2). We consider the domain of a Boolean [inciion 1o he Lhe vector apace (F1 3 aver I,
where 7 is used to denote the addition operator over hoth £ and the vector spare #3'. The inner procduct
of two vectors w0 C FP will be denoted by {1 2h. The weight of an n-bit vector w is the number of ones
im o and will be denoted by wi(uw)., The (Hamming) distance befwoeen two veetors @ = (B, 30,00, 1)
and ¥y = (g1, 40,0y 18 the number of places where they differ and s denoted by diz, v The bitwise
commplemenl ol a Tl dbring o will Te denoled Ty &



2.1 Baolean Functions

An n-variable Boolean function is a map f @ £ — #5. The weight of §, denoted by wt{f) is defined as
wi(f) =|{m: fiz) = 1}|. The function f is said to be balanced if wi(f) = 2% . The (Hamming) distance
between two n-varlable Boolean functions § and ¢ is &{f, g) = [{=: f{z) & gl=z)} .

A parnmeter of fundamental importanes in eryprography is the nonlincarity of a Booelean funetion.
This quanlily measures Lhe distance of a4 Boolean Nunclion Trom the sel of all alline Tunclions. An -
variable alline Tunction is of the fowem £, p(x] — {ux) &b where w € F9 and b € /5. lel 4, be the
set of all n-variable affine functions. The nonlinearity nl{ f1 of an n-variable Boolean function is defined
as nl(f1 = miye s, (7,1, The maximum nonlinearity achicvable by an n-variable Boolean fimetion is
n=1 o 9= Punctions achicving this value of nonlinearity are called bent and can exist only when n is
even [11]. When w is odd, the maximum vonlinearity achicvable by an n-variable Toalean function iz not
known. TTowever, Munclions achieving a nonlinearily of 2¢ - — 200 - are ey Lo conslruel and are called
almost optimally nonlinear ).

An n-variable Boolean function f satisfies strict avalanche criteria (SAC) I f{z) @ f{z D) is balanced
for any o € F} with wt{a) = 1 [13]. A function §f satisfies SAC{E) if overy subfunetion obtained from
Flat, -, o) by keeping at inost & input bits constant satisfies SAC.

Anoppevarigble Toolean Tunclion can be represenbed as o mullivariale polynomial over Fpo The degres
al Lhis polyvnomial 18 called the degree of the lmcilion. Alline Tunclinns have degree ane and lincilions of
degree two are called quadratic.

2.2 5-Boxes

An [nom) S3-box {or veclorial Tunction) is a map f {012 = {0,110 Tel f {1 — {0, 11" be an
S-bo and g ¢ {0,1}™ —» {0, 1} be an m-variable Boolean function. The composition of g and f, denoted
by g = f is an n-variable Boolean function defined by (g0 f)(z) = g(f (=),

Lot f be an (r,m) S-box. Lhe nonlinearity of f is defined to he nl(f) = min{nl{i o f] : { s 2 non-
comstant re-variable Hoear function}. The maximmm achievable nonlincarity of an w-variable function is
or 1 _9in 22 40 Sboxes achigying Lhis value of nonlineaily are called perfecl nonlinear S-besen, Such
S-beooes exiat only if i even and m < (n/2] 9. For odd n and m = «», the maxinmm possible nonlinearity
achicvable is 27~ 20— 102 ypd §-boxes achicving this valne of nenlinearity are called maximal nonlinear
S-bowos. For odd noand 1 < m < n, the maximum possible achicvable nonlinearity is an open problemm,
Tlowswor, for odd v, 1 <0 e =2 my aned gquadratie functions the maecdmmm possitbile achicvable nonlinearity is
o 1 _ ol 152 W will also call such Tunelions Lo be maxitnally nanlingar.

We deline Lhe degree of an {n,m) S-box [ 1o be the minimum ol the degrees of {2 f. where [ rangea over
all nom constant m-variable linear functions. This definition is more meaningful to ceyptography than the
definition whero the degree of an 5-box s taken to boe the maxiomum of the degrees of all the component
funetions. ‘The later definition hag been nsed in [2].

An (rnm) S-box f Is saad to be SAC(E), if s f s SAC(E) for every non-constant re-variable lincar
funclion & Ty an {n.we k] B-box we mean an (nom] S-box which is SAC(E). We will be interesled in
{n, m, k) S-boxes with maximnm possible nonlinearity. More specifically, we will be interested in (#,m, &)
poerfect nonlinear S-hoxes if n is even and in (n, m, &) maximally nonlinear S-boses if 7 is odd. Such S-boxes
hivee: important applications in the design of sccure block eiphers.

2.3 HRinary Quadratic Form

An n-variable Boolean fanction g of degree < 2 can be written as (see 8, page 434)) glz) = oQz" O Lz! Ob
whore € = (gi;) 1s an upper triangular nox o binary matrix, L = {4, -+, 4,) 1s 2 binary veetor and b is O or
1. The expression £Qa” is called a quadratic forn and Le” is called o lincar form. Tet B = Q@ £¢7. Then



I 15 o Dinary symmetric mattix with zero disgonal. Such aoinatrix s called o symplectic matrix {sce [8,
page 435]). Thus from & quadalic TBoclean Tunelion we can define a sympleclic malvix. Conversely, given
i symplectic modvie 12w con eonsiruel o guadealic Boolean funedion by recerstneg e aliove steps. We
denote this Boolean funetion by fg.

It is known that the rank of a symplectic matrix is always cven [%, page 436 . The nonlinearity of the
Thoolean function g s related to the rank of 73 by the following result [8. page 447].

Proposition 1 Fef g be o guedralee n-verieble Boolean funelion wead 7 b il associeled syrpleciie form.
Ther the nonlineovily of g is equal o 2% D20 bl sphewe the rank of 17 is 2h.

Clonsequently. a quadratic Boolean function is bent if and only if the associated symplectic matrix is of
full rank.

3 Basic Results

We will be interegied in nonlinear guadratic Tunclions salislying higher order SAC. From Propogilion 1,
a convenienl way 1o study Lhe nonlineariiy of gquadralic lunclions ig through the rank of the associaled
symplectic matriz. We now develop the basic relationships between the nonlinearity and SAC property of
a quadratic 5-box and the symploctic matrices associated with the component functions.

Proposition 2 Let £ be o guadratic Boolean function and B iy associated symplectic matrdr. Then f
satisfics SACRY if ond only if for all 1 <4 < n, we have wt(ri) = & 1, where 18 da the it pow of B.
(Since B is symmotric, a similor property holds for the columns of B.)

Proof : Lot flz) = 2z o Lx' &b Let o be such that only the ith component of o 15 1 and all
other components are zero, Further, let the éth column of ¢ be @' and the ith row of € be 5, Then
A T @ bl We have
fla) o flzTa)l = Q2" ¢z To)Qir o) T Lo’
= Qo' ToQz' T Lo’ ¢ oQa’
= e (@), 2) & Lo £ oo’
= {2 Lo’ oafe’

Note thal Lo & aQe? 2 a conslant. Now suppose wtlz-r'-rﬂ:l = h4+1. Lel glx) be a linction otdained by
setting any & bifa of f{x) @ flz T o) to conatant values. Then {-rff],rr:} iz a non constant linear funceion
and hence g{z) is balanced. Conversely, if wt(?"-’i:':l =k, then wo can set & variables to constant values in
such a manner that giz) is a constant function. 'L'his proves the resalt, [

Lot f = {f1. -, fn) b an (o) quadratic S-box. Then cach of the component functious f; is an
a-variable quadralic Boolean Tunction. Tor 1 <04 <D e, Tel T be the sympleclic malrixs associaled wilh the
component function f;. Clearly, any linear combination of aymplectic matrices is also a symplectic matrix.
Wo have the following cxtension of Proposition 2.

Lemma 3 Let [ be on (n,m) 5-boz with quadrofic component functions f, ond assecioted symplectic forms
B for 1 <4 <. Then [ sabigfies SACEK) f and only of the weight of every row in any non zero Bnear
combinadion of the % i wl Teasl B4 1.

A similar resull for nonlinearily can be ataled by extending Proposition 1.

Lemma 4 Let [ he en (n,m) S-fox with guadmtie component functions f; and associoted symplectic forms
B, for L < i < m. the nonbincarity of f is 2271 278~ wphere 2k 45 the mirdmum of the ranks of any
mot serg lincar combination of the By s, Conscquently for cven n, the S-box F is perfect nonlinear if and
ondy if cvery von sere fnear combination of the Ifs has full rank. Simdlarly, for odd n, the S-box § s
wsgeirreetfly reovelrneear o weed ondy 1 every non zerv Divear cornlerafion of the ;' Dox rank (o — 1),



Lommmas 3 aned 4 will e used in proving the correctuess of our constrietions mthe next sections.

4 Construction of (n,2,} — 2) S-box

Chir comstruction will be via svmplectic matrices. Given any ([, 7} gquadratic S-box, it 13 clear from the
above discussion that the syinplectic matrices associatod with the output component function defines the
H-lox. Thus Lo descrile Lhe congbruchion, il i3 sullicienl o deline Lhese svinpleclic malvices and use
Temmas 3 and 4 Lo prove Lhe correctness of the construction.

In this section, we describe the construction of {n,2] 5-boxes. Henee it is sufficlent to define two
symplectic matrices. Weo procoed to do this as follows. For each cven n > B wo define two sequences of
7% n matrices and show that these matrices are the symploctic matrices roquired in the construction. For
the vost of this papoer, we will use the following notation.

o Tor each n = 1, deline i, 1o be a siring of length o which is the allernaling sequence of 0% and 173
starting with a (1. For example, #y = 0101 and w5 = (0L0L0. Define w, = 15,7,

o For cach oven n = 2, define w, as w, =1... 10, .10, For odd w = 3, define x, = 19,7,
e e
ngd) i

Define My = 0010,0010, 1101, 0010]" and Ny = [0101, 1011, 0101, 1110]" . Further, for even » = 4 define

t Yo I 0 i LA 0
My = | 9T, My vl |, ¥o = | o5, My ul_,
( P i d i 0 Thyp —a ] J )
{ Yooz 1 0 e 2 1
Niw = '!l;'::. o N TJ;':. o Gn = T«';{. o Np—z ”-;{I o
1" | 1 w0

The following vesult is casy to prove by induction on even n 2 6.
Lemma 5 I, O, and I, 90, are symplectic mobvices, where I and G, are defined by egaadior 1

The matrices F, and €7, are our required aympleciic matrices which define the two ontpul component
functions of the required (x, 2) 5-box. In particular, we have the following result.

Theorem 6 Lot n = 6 be ane even dnteger. The S-bow §: FI — F2 defined by flx) = {fr (2), fo, (&) s
a perfect nonlinewr S-bow salisfying SACE - 2]

We now furn to the proof of correctness of Theorem 6. The proof is in two parks  in the first part we
prove the statement about SAC and in the sccond part we prove the statcment abowt nonlinearity.,

Lemrna 7 The S-boe [ defined in Theorem 6 satisfy SACTE — 2],

Proof : Tel r; denole the j-lb row of M, We make Lhe [ollowing claim which can be roulinely proved
by induction on even n o> A

wtirg] = -1 ifl<j<5h and § s odd;
wiir;] = § 2 ifl<g<] and  § Is oven; (2)
wtir;] = 3 ifS+1<7<n and jisodd s
wiir;) = §—1 iM% 4+1<j<n and jiseven

Wo will use the notation r_’r for §-th row which i obtained by dropping first and last column of My, Lot
g denole Lthe gili row of 7o We now have several cages.



Case 1: 127 <3 and j odd: There are two subiases,

Sulbcasge l[a} : 4 1. To Lhis case wi{s;]  wiley, g) ﬂ%z 3 —'|

Subcase 1(b) : j = 1. In this case th-s J = 14T 4wty *.'»I el 2_ 9 ? —1.
Case 2 : 1 < j < § and j cven: In this case wi{s;) =1 | wir "h}l | ”J‘E l=% L
Casgse J : § + 1< 7 < nand §odd: To this case wi{s;) -1 -|-W't|,'. : :-::.?'2 : %_ 1

Cage 4 : 5 +1 < 5 < and j even: There are lwe ‘*Lﬂﬂﬂ‘-ﬂ‘ﬁ

Subcase 4(a)  § < n. Tn 1his case wif ) wilrt ) = ”;‘5 % _—

Subcasc 4(b) : j =n. In this case wi(s;) = wtl[uﬂ_gl ,2 =& 1,

This proves that the weight of cach row of F, Is at least (/2] — 1 and henee the commesponding Boalean
funclion salislies SACGHn,/2) — 2). Ty a similar argument Lthe Toolean Tunelion associaled with & also

salisfies SAC{(r/2) — 2). Also nole

[ Fo 1
g X I Mlpea Bl i |y
1 S b 0

wherve Jy, g all T vecler. Trom Lhis 10 68 simple booverily by induction that Ty, &G, salisles 5A (_]{% —
Neow uging Lemma 3 we oblain the required resili. ]
We next turn to the nonlinearity of the 5-hox defined in Theorem .

Lemma 8 For coen n = 6, e vank of F, 15 n.

Proof : First woe prove that the rank of M, s w2, It is casy to check that the rank of A, is 2, Assume
that the rank of 4, . is n — 4. It i3 clear that 1-st columnm and n-th colmnm of A, are Identies]. Lilowiso
1-st coluinm snd n — 2-th colunm of M, o are identical, Consider the maodyix

f o Yo I
M = .
Vit [ 135_2 M, 2 ]

From the definition of we, wo have that the first bit of o,y 18 U and (5 — 2)-th bit 15 1. So wy_s is Hneardy
indepondent of rows of M, o0 S0 rank of .-'lff;? iw ol lesat v — 44+ 1 — o — 5 Thot .-‘L-f,:? i wymplectic matris
and hence its rank musl be even {see [, page 436]). 50 the rank of M'; (and henee M) g — 20

Moy we burn o Lhe rank of I As 1'1]7r has rank n— 2, the rank of I, i3 al leasl v — 2. T is %irll]:lf' L
verify by induction that 5-th mlunm anel (5 4 2)-th colnmm of M, are identical. From definition, the 3-th
bit of Oy 1s 1 and t]:u‘ (% | 2)-th bit is ). Henee the last row {htn_ul) of F, is lincarly mdc,pcnd{.nt of
the proviows [n— 1) rows Thus the vauk of F, s ot lowst e — 241 = 0 — 1. Duat Fy is a binaey syplectic
imgdrix andd hence ibg ranl musl be even. TTenee Lhe rank ol 7, s n. (]

Lemma 9 For cuen w2 6, the rank of F, & (G, is n.

Proof : Note M- (& Ny = [01LL, 100, 1000. ll[]'[l]'r and hence the rank of Ay O N is 4. Assume that the
rank of Mo o B2 N,._u s n— 2 Noto

b Jn 2 1
Pl MopN, Fheg: My pdNse iy
1 fn—= 0

where }n is the all 1 veclor. The row 1.5, 50 is linearly independent, of rows of malrix J”_ (My—5 &
Na—s) 4l 4. So rank of
J?;—z My s Ny 2 -fg—'z



B oot least 0 — 241 = n — 1 and Lhenee the rank of F, & G, s at least no— 10 Apadn since F, & Gy, 15 8
aymplectic malrix s rank musl be even. Tlenee i rank i9 a ]
We deline T5 — [(M010. 10101, 01011, 10101, 01110,

0 P I L

. = 4 . Ty &1 . )
L= g s mle | Broddwsiand, o= -rﬂ : ’;}_] for even n = 6, (4)
0wy, o 1] T

I"ivai, we prove Lhe Tollowing resull.
Lemma 10 &, = H, for all cven n = 6.

Proof : We [iral prove Lhe [llowing siatemeni by induction on .

0 ¥ i
T = i '!': ! for ocdd 7 2> 5and Y, = i [ew even o = 6. &Y
o1 Nno T 0
) 7 0w _ €5 wd ; y
T is eaay Lo werily Lhal  Tg T g and Ny Dol Asaume that (4} holds [or
vy N wy W
: siis : TP PO « 0 o1
(m — 1]. By delinition and using 7,27 = W3l we have that fov odd » > 7, | 5 . =
t, 1 Hno
[ T_u ]
-1:3: i Ay -u:;i' o | = 4. Similarly, by definition and using 1%, = @Wr_10 we have that for even
[ Ty L)
T T 1 To_2 1
n =8, l uf::!" : w,a_| } = |onidige N ﬂji:_,_, = N, This complotes the proof of (1), Now to prove
b 1 Tz 0
1] )
(,, = I, it s soafficient to show T, 1 = l 5 :? : :| andd @, 10 = 1w 20, The first statoment follows
Wo_u  ¥p_u
lroin (4] and Lhe second slatement [ollows lom Lhe delinilion of @, . ]

Lemma 11 For odd w = 5, the folluwing stetemends hold for T,
(1) The first colwnn of Ty 2 ixvl_, and the second columre ix vl _y: (2] The L3 1=tk colwrne wnd (5 +2]-th

cofumni of Ty are iderdicnl; (3 The ronk of Ty, i (o= 1),

Proof = AN (hres slalemenls are proved uging induclion on odd s = 5 We only deseribe Lhe prool e the
Lhird stalement. 1or v = 3 il i3 sasy lo verily Lhal bhe rank of 75 i3 4. Assime Lhal Lhe rank of T,_s i3

!
3 To 2
s

a— 3, Consider the matrix A, = l ] . D the first statornene of the leinma, the fivet and third

columng of the madres [1,','1 il B o are identical. At the swme time the Arst and thind bits of the vector
Oy, o are Dand 1 respeclively. S0 Lhe lasl mow ol A s linewly independenl of alher rows. TTence Lhe
rank of A, e —3+1 — n—2. Congequenily, T, has rank al leasl v — 2. Again since T, 18 a sympleclic
mwatrix, its rank muat be even and bhence mmst be n — L. ]

Mow we are in a position to prove that (7, 1s of full rank.

Lemma 12 The renk of (7, isn.

; T o s . g : :
I'roof : Consider (&, = H, = -,.-F : L'”“_ ] . Since the rank of 25 _- 18 (n  2) the rank of H,, is at loast
dn—l -
wo— 20 Apain [reen Teermma, 17, Lhe _""T_I_-i,h colymn andd Lhe {Lﬂ—EIJ — 2)-il column of T, | are idenlical.

=TI



Dut the |_”E'J—th and the (|_“2;' + 2)1-th bits of x, 1 are O and 1 respectively, Ilence 2, 1 is Hoeady

independent, o T, . Thus the rank of &2, i al Teasl n— 241 n—1. Again since {7, i3 a svmpleclic

imalrix ils rank mugh be even and hence s rank i3 n. ]
Thus we have the following resnlt which completes the proof of Thenrem 6.

Lemma 13 The S-box [ defined dn Theorem 0 &0 o perfect nondinear S-bo.

Proof : Using Termmag 89 and T2, wo know that Py &, and F 8 G hase Tull rank. TTenee tha Toolean
funclions fr.. fo, and [5 & fe. Srooa. are beol, Thus the Tunclion f delined in Theorem 6 s a perlect
nonlinear [unekion. ]

5  Relation With One Factorization of a Complete Graph

A one-factor of o graph & 1s o one-ropular spanning subgraph of G, A one-factorization of 7 is o partition
of the edges of & irdo one-factors,

Lel Ky, be b complele graph wilh ooverlices. Tor even no = 20 0l s well known thal B, can be
decomposed into (v — 1) edge diajoinl, one-lactors [1]. One sinch decomposgition of /; i described as
follows, For even n aned 1 <28 <2 n — 1, clefine

F ; ; : ; 3 ; : i B ; L -
Fr P, )b U (=2 — 74+ med =114+ LG+ — 1 mod (n=1]41):1 <5< 5 1} (3)
The collection T, = {F7....,F7_ |} 18 o one factorization of K where the vertices are labeled by the
integers 1, ... When nis clear from the context we will write 7 instead of F7'. The clements of Ty (i
aoonee faclorizabion of Kg) are given below.

Fio= {81),(7,2),(6,3), (54} F = {(8.2).(L8).(7.1),(65)]
Fi o= {[35 3,02,4),01,3), (7.6} Fr = {{&84).{3.5).{2.8),01, T]}
F7 {(8,7,(6,1),(5,2). (4 3}}

In [7], ome factorization of K, was uscd as a tool for construction of S-boxes satisfying SAC, We poit
out the connection of the construction of Scetion 4 to the one factorization of K, This connection will
B developed in later scetions to obdain other constroctions of perfoet nenlinear S-boxes satisfying higher
order HAC

Suppose & C T, We nse & Lo define o symplectic motvin g in e folfmning moarner: For 1 < &1 < n,
the entry Bglh. [ = 1 if and onty if either (k1) or (L&) @5 dn FP* for some F) € 8.

Theoremn 14 el n =4 be an even waleger, S5 {5F. . ,IF-__;}- and & T NS, Fel Bg, and g, be (he
symplentic matrices nssoviated vith S| and & respeetively. Then

1. Fy is obtasned from By, by changing the zeros in positions (5 1 1 §) and (5,5 1) to ones.

2. Gg is obtoined from Bs, by chonging the zeros in positions (5 +1,% — 2) and (5 + 2,5 + 1] to ones,

Theorem 141 shows the relationship between one lactorization and fwo ondpud S-boxes of Section 4. Thia
can be generalized to more than two outpnt S-boxes. In fack, the carlier work of 7] provides such a
ceneralization, Howewer, there s one major difficulty with the generalization. I becomes very difficalt to
cigure that the resulting S-box i a perfect nonlimear S-bhox, Thus while the generalivation of [T cnsures
ithe SAC properly, it resuliz in Tunclions wilh gquile weak nonlinearily. G the olher hand, our molivation
i5 to obtain perfeet nonfinear 5-boxes satisfying higher order SAC. The rest of the paper is devoted to
identifying other perfect nonlinear S5-boxes satisfving higher ordor SAC.
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5.1 Improvements for Two Output 5-Boxes

We know frow [7] that for an (n, 2, &-8AC function, & < L@J — 1. Thus the coustruction in Section 4
i5 suboplimal wilh respecl Lo Lthe AT properly. (TTowever, il: is oplimal with respecl Lo nonlinearily].

Here we provide some examples ol lwo oulpul 3-boxes with higher order 3AC. Al these examples
wore obtained using experimental method. The conatructions are based on the relationship between the
symplectic matrices and ooe factorization deseribod above, These cxamples are summarized in ‘Lable 1
The interprotation of the entries in LTable 1 is as follows, Each row describes o construction for the particular
value of . The second coluwnm deseribes twe subsets & oand o of T, Tt Bz and Bg, be the symplectic
mahrices associaled wilh (hese lwo sels. We sel 78 Tgoand T is P, wilh Lhe Rollowing modilicalion:
IF &) 38 i the thivd column, then 25, [£.0] and g [{, k] are changed [vom 0 do 1. The desired S-lwox
FoBF = £V is given by flz) = (fa, (), fr (2)). Kaech of these 5-bozes is a perfect nonlinear 5-boz. The
fourth column provides the order of SAC that is achieved by the corresponding S-box, The fifth column
provides the maximum order of SAC that can be achieved by an (0, 2) S-box. T the sttuation where this
mageinwem g equal lo e achivved order of SAC (e constrction provides oplymoed brede-ofl emony (e
Jodtoirig paremelers o nondinearity, ovder of 5AC, number of dnpnd soviadfes, nambder of oulmel ooriokdes.
None of Hhese parameters con be improved withoud changing some other parameter,

Table 1: lmproved and Optimal Consienciiona of Two Outpat S-hoxes,

n | Description Modification | & | maxk

by _S| = {:-'1:'_:_-,}-3,}_»-___,?'_5.,?7} 3 3
Sy = {FFy, Fe, Fi) {5.6)

10 | Sy =4F 1 Fa, Fo, FroFs ) E| 3
8o = {Fs, Fr, Fo. Fr. Fa) {6.4)

12 [ & AF T Fai FroFeydFii = 6 6
Sg =4 Fiy B Fi Fro FeFeidFiol {2.7)

14 | & = {F, Fo, Fy, Fa, Fy, Fro. Fun Fro Fus - T i
Gy A Fny i e F Ak s F LI 18.9)

16 | &y ="{Fs, Fa, Fu,;Fs. ForFz  Fiiy Py Fa } i )
Sy = {0, F Fa, Fo Fro. i Fras Fus Fua b {3.9)

6 Construction of (n, 3,%) S-boxcs

We deseribe constructions of (w, 3, %) perfect nonlinear S-boxes. These constructions were obtained by
experimental Lrial and ercor methods. Same of Lhe conglructions ssem Lo have a general pablern, Lhaugh
il has nol been possible o prove a general resull. There are several cases in Lhe construction though Lhe
deacription of the constructions in all the cases is similay. We first identily three subseta 85). & and S of T,
These three subsets define three symplectic matrices Bg , Ba, and Bg,. These matrices are then modified
by changing o nmumber of zeros to ones to obtain threee other svmoplectic matrices By, By and By The
positions where the changes are to e inade are given by the third colamm. TF {1 s in the third columm,
then Bz [k and Bg &0 (1 < 5 < 3} are changed from 0 Lo 1. The required (n, 3) S-bes [ 2 PP — FI_'?
ia obtained lom these three malvices in 1he following manner: fe) — {Fg (). fe (), fe (2)). There are
three cazes.

1. Lable 2 describos several ecases of constructions for v = 0 mod 8. For ne = 8, there is o general hoeuristic
which prosides the reguired construction. For v = 8. o special construction is reguired.



2. Tabile 3 describes constructions for n = 4 mod 8. These constructions have o general pattorn,
3. Table 4 describes several consbruclions lor n = 2mod 4 There does nol appear Lo be any geoeral
patlern or these conslruclions,

The constrictions for n = 10, 22 provide optimal trade-off befueen the following parameters: numbors
af input and owtput variobles, nonlinearity and the order of 5AC Further, for = = 12,16, 20 and 24 the
achioved value of & is only one legs than the upper bound on k.

Table 22 Clomstroctions for 1 = 0 1w 8.

T Deacriplion Maelilication i TIERES
H & — R, Fy R {4.3] 1 2
Sz {Fs Fu Fst —
. Sz — {F1.Fa. Fe} (4.7)
162438 |38y ="AFFq vz ..F‘__| Fi il (%,5+1) B—2 min{
& = {Fgqie Fmal (55410058 +1) [~
Ss=[F.Fepiy s Foo i, Pty ooy Fuci) (%, 3 2] %) -1

Tatrle 3: Constructions lor =4 men] 8.

i Tleacripalicon Melilication £ rmax &
122028 | 8§ = {Fa, Fy. oo, Fa g 1} (5.5 + 1] 5 — 2 i
&2 {.Ff=+, s Fan_q} (2, ”-_|_)| El=0E
S ={F,Feri Fy-1.F0 . Fa 2} | (B2 +]) 2| =1

7 Maximally Nonlinear Functions

The ronstruciiona described so far hold when the niumber of input hita #1 ia even. In case » iz odd, there do
not cxist any perfect nonlinear S-hoxes. The best nonlinearity achicved by an (7, m) quadratic B-box with
ano = 1 s 270 — 200172 g Soboxes sehieving this value of ponlinearity are called muoximally nonlinear.
Tr Lhis seclicn, we deseribre g simple modificalion of the previously Jdeseribred consbruelions which provide
imaximally nonlinear S-hoxes,

Thearem 15 el [ be a (2r.m, k) perfect nondinear guadrabic S-boe where the syroplectic matvives associ-

aded with he component funclions are 7,000, P For 1 <8 <. Tef .f?:- be u{n’u."n.r:n!‘. Jrome T Dy deleding
the first row and column. Then the S-bow [ F3 4 = 0 defined by [ (2) {t} ..... g L HECR”

{2r — 1o,k — 1) morinedly nondineor guedralic 5-fog.

Proof : There are two things to be provied — the nonlinearity and the order of SAC, Sinee § is o porfoct
nonlinear S-lox, each nonzero linear combinalion of the 7337 hag lull vank [see Temma 4). Dropping one
rowe and one column decreases the rank by lwo Tor sympleclic malvices. Henee the vank of any nonsero
lincar combination of tho B:- s is 2y 2 and the nonlincarity of the corresponding Boolean function is
2472 p7=1, Wow using Lemma 4 we have that s & macdmally nonlinear 8-box.
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Table 4: Constructions for n = 2 mod 4.

1| Dhggeriplion Modilicalion | & | max k
10| & = {Fs, Fq Fu, Ful (6.4] 3 3
Sy — {1 Fe, Fu Fe P} &
Sy {Fs. F, Fr Fab (5.6)
14 | & = {F ., Fa, Fr, Fv, Fra Fual {1.6) 4 6
Sz = {1, Fe, Fey By Fro. Fra. Frah =
&3 4FLFs, Fr Fa . Flek {1.9)
18 | & = [Fa, Fy, Fu, P, Py P, P, [, 13} 7 3
Sy = {F1.Fe, Fu, Fra, Fro, Fig. Fla. Fis. Fis b =
83 5T FroFee Py FigeFiazFidy (9,11}
22 | & = {F,Fa, Fr, Fao Fe. Fra. Fra, Fus, Fusy Fazy Fuo ) (1.3 4 d
S = {A Fo, Fe, Fas, Fras Frs: Frg, Furs Fra Fre. Faod -
&3 AFr FFyn Frvs Fiae Figs Fra: FigeFigaFig (1.16)

Further. since f aatisfies 3AC(&). the nnumber of ones in any nongero linear combination of the ;s ia
at least & 1. Dropping one row and one column decreases the number of ones in any row {or column) by
at most one. Again using Lemma 3, it follows that the S-box f osatisfies SACE — 1), [

B Improving Algebraic degree

The congtrucltions described in the previous sechions provide guadralic Tunclions. Ton Lhis geclion, we
deacribe a method of improving the degree of the constructed funetioms with a small trade-ofl in the
nonlinearity and the SAC property. We first need to relax the notion of SAC. (See [5] for the notion of
almost TC{D of order & functions. )

Definition 16 An n-veriable Beolean function f is seid fo be (e £)-SAC if the following property holds:
Lot g be an (0 il-varielle Bosloon funclion obtained from £ by fizing 4+ < k& dnput variablcs fo constands.

i) T e L ey ; : . e
Then 2o ’TI;‘I,J =i AR % < e for ang o of weighd 1.0 An (o) 5-Tow s s Lo be (n e, e, B3-S40 8 every

nonzere inear combination of the component functions s an {c, k)-SAC function,

The next result shows how to convert an [(n,m, &) 5-box into an (5.7 6 k) 5-box for a small € and with a
small change in nonlincarity,

Theorem 17 Let f ={f,..., fn) be an (nom. k] S-box where the degree of any fi 45 fess fhan (o — 1),

Yhen it is possible to construct an (n.m. e &) S-box g with algebraic degreen 1, e = El’ikh and nl{g) =
nl{f1 — (m+ 1) if m is odd; nl{g)} = nl{f) — m if m is cven.

IP'roof : We construct an (n,m) S-box g with component functions ¢, gu. ... . g i the following manncr.
For 1= <, define g, -+, @0) = fi{z, @ Bm L@ 1807 - - Sy BY construction, the aloebralc

dogree of any g; is v — 1. Further, the degree (e — 1) terms in the g% are distinet. TTenee any noisero
Tinear cormbination of Lhe ¢4 also has degree (n— 1], Thug the degree of g is (n — 1].

We now prove Lhe nonlinearily. The levm & . oom_ 35— ... which ia XORed o f; 1o oblain g
chanpes exactly two ontpit values of fi. Thus nl{g:) = nl{ f;) — 2. Further. the inputa for which the ontpuia
are changed are the all one vector and the vector with a zoro only in the ith position. Thus if A (rosp. R
is o lincar combination of ¢ of the ¢’ (Tesp. fi's), then & and A differ in at most (¢ + 1) positions. Sinee
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1 =4 = . we have nlig) = nl{f) — (e + 1) whemn e 1s odd, Sinee the nonlinesrity of o fanction of «
variables and degree <2 o i% always even we have nlig) = nl(f) — e when o is even.

Mowy sippoge Whal e} (resp. hi_ {ad] s obrained from Ae) [resp. h,ll[rr::l] by lixing atl meost 3 (1 < 4§ < &)
input bits to constant values. Since &(x) and A () differ in exactly (i + 1} positions, it follows that k) (@)
and h.rl (z) differ in at most (¢ + 1) positions., Further, since By (x) and h'l (z) differ in af most (¢ + 1)
positions, so does k(e o) and bz @ o). Tob gle) — bY@ hiz o) and g — 2 (2) S0 {2 a)
Then ik lolows Lhal Iu.[_:;;] andd ,u.f{,t.'} diller in al mosl 200 + 1) positiong. Since [ salislies SACEY, il
lollowys Lhal Iu.r{;.:r} is balanced and has weighi 2" Pl Al sinee 1 <8 < srand 1< 7 <k owe oblain

B ¢ E 5
: T % B4 L i
= [Etlale) el (el | AT & ] . ‘This completes the proof. =

|kl e 20
s R -y — '_'_>.'L—.'|.—

e’ 1
‘ == L iy

i 2

Table 3 provides some examples to illustrate Theorem 17, The interpretation of Table 5 is as followss,

Talde 5 Values ol k. e and nanlinearily for 2 and 3 oulpul S-boxes lor dillerent values ol v [3ee Theorem 17).

n | dopree me =2 m=23

8 7 (3, 1RTH, 118) | {1, 0.0625, 116)
4 5 (3, 0.0938, 238) | {2, 0.0625, 236)
wl 9 (4, 0.0088, 191) | (3. 0.0623, 192)
11 10 (3, (LOOSE, 9907 | {3, 0.0313, 988)
12 11 | (6, 00038, 2014) | (4, 0.0313, 2012

Each cntry is of the form (%, ¢, ®), where & is the order of SAC, € is defined in Theorean 17 and 1 is the
ponlinearity of the modificd function, (When w33 oven, the value of nonlinearity is one more than the
lower bound given in Theorem 17.) Note that in cach ease the algebraic destoe is v — 1. The drop in
nonlinearity i very smally Toe example Toe o &, Lthe lower bound Trom Thegrem 17 35 117 while the
imaximium possible nonlinearity is 1200 Similarly, in sach of Lthe above casea, the value of e is small. Henee
the deviation from perfect nonlinearity and the {perfect] SAC property is small. On the other hand. the
degrie increases to the masimum possible. Thus such S-boxes arce amply suited for vse in the design of
practical block cipher algorithms,

9 Conclusion

In ihis paper, we have condidered ithe problem of conslrucling perfect nonlinear 3-hoxes salislying higher
order SAC. 'revions work in this area |7| also provided constructions of S-boxes satisfying higher ordex
SAC. However, the nonlinearity obtained was lower. Lo the bhest of our knowledge, wo provide the fivst
cxamples of S-boxes satisfving highor order SAC and perfect nonlinearity, Sorme of the constructed S-boxes
alse achiove optitnal trade-off between the vombers of inpat and cutput variablos, nonlinearity and the
arder of SAC, Qur conslruelion uses Lilingar g and sympleclic malrices and yields quadrvalic Tunelions.
We show that the dezres can be significantly improved by a small sacrifice in nonlinearity and the SA0
proporty.  This yiclds 5-boxes which have possible applications in the design of block ciphers. Lastly,
wir would like to remark that more rescarch is necossary to peneralize our construction wsing symplectic
matrices to more than 3 outpads and alse to obtain direet constructions of higher degres S-bomes which
galisly higher order 3AC and perfect nonlinearily.

Acknowledgements: We wish Lo Lhank Lhe reviewera [or reading the paper and providing several sug-
reaflona.
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