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Ahbstract

Anew generalized way of signal decomposition and reconstruction entitled ISITRA is proposed. It
is similar to the 2-channel filter bank scheme. In ISITR A, all the filters are obtained from a real vector.
ISITRA allows decomposition of a signal into (1) an approximation and a detail, (2) two details and
{3) two approximations. The latter two cases are not generally possible in the filter bank scheme.
The choice of filter coefficients in ISITRA is much simpler and more arbitrary compared to that in
the existing schemes. This allows one to find better filter coefficients for different applications. One
can straight achieve an image compression ratio of §:1 without doing any coding by modifying the
range of pixel values in the decomposed components. One can also find a better set of decomposition
and reconstruction filters than the commonly used Daubechies” wavelet filters of length 4. ISITRA
is simpler and computationally marginally better than even the computationally efficient polyphase
filter bank scheme.

Keywords: Signal decomposition; Perfect reconstroction; Polyphase scheme: Convolution: Filter hanks;
Wirveelets; Multi-resolution analysis; Compression

L. Iniroduction
Processing of signals is done in various ways according to our need. Fourier analysis

has long been used as a classical ol for the signal analysis purpose. The drawback of
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Fourier analysis is its unsuitability of analyzing ransient signals because of lack of time
resolution in frequency domain. This led to the development of a small windowed func-
tion, known as Gabor transform in which mainly a Gaussian function is taken as a window
function and its size is fixed. Gabor transform has poor performance as regards resolution
because of its fixed window size. Then came signal analysis using varable windows with
the development of wavelets and filter bank. In both cases the window size is varying be-
cause of the so-called multi-resolution technique. The logic behind the wavelet transform
is to find a set of filter coefficients for decomposition and reconstruction of a signal from
a pre-determined function known as wavelel. The history of wavelet is much older but it
became popular for various application areas only after 1988, when Ingrid Daubechies [4]
constructed compactly supported orthonormal wavelet using QMF (gquadrature mirror fil-
ter) [3] properties of filter bank that led to the development of the current discrete wavelel
trans form (DWT).

In the stict sense, DWT is not a direct discrete version of the continuous wavelet
transform (CWT) which Grossman and Morlet [7] introduced for multi-resolution sig-
nal representation through dilation and translation of a basis function known as mother
wavelet. In DWT, there are two basis functions respectively known as scaling function (or
father wavelet) and wavelet function (or mother wavelet). It seems to be a mystery why
scaling function would be required in DWT when there is no requirement of the same
in CWT. Also, the term “scaling function™ is a misnomer, as the function has nothing to
do with scaling operation. Another mystery in DWT is the issue of inversibility or perdect
reconstruction. Theoretically, perfect reconstruction of CWT is given on admissibility con-
dition [4], even though it is not possible to get perfect reconstruction in CWT in practice.
What makes the perfect reconstruction possible in DWT when the same is not possible
in CWT? Because the wavelet filters are of QMF type which is a sufficient condition for
perfect reconstruction. So, the obvious reason for introducing scaling function in DWT is
o establish a relation between wavelet and filter bank, which at the same tme would allow
perfect reconstruction. The main advantage of such an establishment is the possibility of
finding short length perfect reconstruction wavelet filters in the filter bank scheme. We in-
vestigate the conditions for perfect reconstruction in 2-channel filter bank scheme and find
them o be dependent on how reconstruction is performed. That is, different reconstruction
schemes give rise to different conditions for perfect reconstruction. The existing perfect re-
construction theory of 2-channel filter bank is also one possible way of reconstruction. The
transform ISITRA (Indian Statistical Institute Transform) proposed in this paper provides
a generalized model for a subband decomposition and reconstruction scheme.

ISITRA is a new generalized transform for signal decomposition and reconstruction.
The decomposition procedure is similar 1o that of DWT. But unlike in the case of DWT or
filter bank decomposition scheme where a signal is always decomposed into an approxi-
mation and a detail, here a signal can be decomposed into an approximation and a detail
or into two details or nto two approximations. By “an approximation”™ we mean a decom-
posed component having less local vanations in the values of its data elements (usually
obtained with a low pass filter) and by “a detail”™ we mean such a component having high
local variations in the values of its data elements (usually obtained with a high pass fil-
ter). Also, the coefficients of the filters can be chosen quite arbitrarily, a unigue feature
of ISITRA. There is a general condition known as the member condition to be satisfied
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by a decomposition filter and its corresponding reconstruction filier o ensure perfect re-
construction. We call a set of decomposition filters and their comesponding reconstruction
filters satisfying the member condition, a PRF (perfect reconstruction filter) set. Whether a
PRF set is of QMF type or not depends on how one chooses the filter coefficients o form a
framework of a PRF set. A PRF set that can be obtained from a non-zero vector is known
as a PRF setof ISITRA. We will discuss in detail PRF sets of lengths 2 and 4 of ISITRA
and give a generalization of it so that longer PRF seis can also be found. In this paper, bold
letters denote vectors or matnees and others scalars.

Computationally, ISITRA is significantly better than the direct 2-channel filler bank
scheme and is marginally better than the computationally efficient polyphase filter bank
scheme. The rest of the paper is divided into five sections. Section 2 breily describes the
decomposition schemes of filter banks and ISITRA and makes a comparative study of their
computational efficiencies. The decomposition and reconstruction schemes of ISITRA are
desenbed in Section 3. The properties and advantages of ISITRA are discussed with exam-
ples in Section 4. A discussion is given in Section 5 and conclusions are given in Section 6.

2. Filter bank scheme and ISITRA

We will briefly discuss here the single stage 2-channel filter bank scheme which may
be useful for a better understanding of the proposed transform ISITRA. In the filter bank
scheme, a signal is decomposed into two components using a high pass filter and a low
pass filter. Then each of the filtered outputs is down sampled by a factor of 2 as shown
in Fig. la, to give the outputs. The decomposition filters need to be of QMF or CQF
[conjugale quadrature filters) type to ensure perfect reconstruction. The down-sampling
operations performed in the decomposition process are useful for data reduction. In most
of the literature on filter bank, it is mentioned that the down-sampling introduces an alias-
ing effect. But that is not the case as explained in [ 10] and later in Section 3. The process
of down-sampling is required for both perdfect reconstrocion and multi-resolution analysis.
The decomposition scheme in Fig. 1a performs computation of unnecessary terms in the
filtering operations, which would be simply discarded in the succeeding down-sampling
process. As filter bank is usually studied using z-transform, signals and filters are given in
z-domain.

Suppose the input signal X (z) is a polynomial of degree m — 1 and the decomposition
filters are polynomials of degree L — 1. The anthmetic operations in the computation of
a filtered output are (L +m — 1)L multiplication and (L 4+ m — 1)(L — 1) addition op-
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Fig. 1. {a) Filter hank decomposition. {h) Filter bank reconstruction.
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Fig. 2. {a) Polyphase decomposition. (h) Polyphase reconstruction.
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Fig. 3. (a) ISITRA decomposition. (b) ISITRA meconstruction.

erations. In the reconstruction process, the decomposed components are up-sampled by 2
as in Fig. 1b, thus making their length L + m — | before filtering with the reconstruction
filters. The total numbers of muliplication and addition operations in the reconstruction
process are (2L +m — 2028 and (2L 4+ m —2)(2L — 1), respectively.

The computationally efficient polyphase scheme [2,6] of 2-channel filter bank is shown
in Fig. 2. In the decomposition process, the signal is first divided into two, even and odd,
components using two down-samplers, one coupled with a delay operator. Here, the total
number of addition (as well as multiplication) operations needed in the computation of
Xolzdor Xp(zhis (L4m /2 — 1)L, During reconstruction, the decomposed components of
length L +m /2 — 1 are first added and subtracted and then passed through the reconstruc-
tion filters to give outputs of length 2L + m /2 — 2. The computation of the reconstructed
signal ¥iz) requires 4L +m — 4 muluphcations and as many additions.

ISITRA is similar to the filter bank scheme in its decomposition scheme as shown in
Fig. 3a. [t is studied in discrete time domain. A signal vector b of lkength m is decomposed
into two component vectors A and B using the decomposition filler coefficients [, and §, of
length L. The amow symbol that precedes the filier denotes advancing of one index which
avoids performing extra multiplication operations in the fillering process. In other words,
we skip alternate data points in the computation of a decomposed component in the filiering
process. The length of each decomposed component then is m /2 + L /2 — 1 and hence the
computation of a decomposed component requires L(m /2 + L /2 — 1) multiplications and
(L —1)m/2 4 L2 — 1) additions. The computational advantage, though marginal, will
be maore for longer signal and decomposition filters. Also, no down-sampling is required,
it is done in the filtering process iself.
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Table 1
Mumher of multiplication and addition operations in different subband schemes
Subband scheme  Total number of Extra openitions required
Mul tiplications Additions
I. Direct FB LAL 42— 3) ILAL +2m —5) —3m+ 4 Up-sampling, down-sampling
2. Paolyphase AL +m—114m—4 AL+ m-—-HN4m-12 Up-sampling, down-sampling,
delay operators
3 ISITHA 2L 4+m—12) HL— 1)L+ m—12) Mane

The reconstruction scheme of ISITRA, shown in Fig. 3b, also requires marginally less
computation. Here, we do not up sample the decomposed components. Instead, we do the
filtering operation with only the halves of the reconstruction filters. Let Ey, denote the odd
parts and Ly, the even parts of the reconstruction filter £, Similar is the case for the other
reconstruction filter £y Addition of the outputs of the two odd filters gives the odd indexed
components of the reconstructed signal. And addition of the outputs of the two even fil-
ters gives the even indexed components of the reconstructed signal. 1t can be seen that the
numbers of multiplication and addition operations required in the computation of odd com-
ponents or even components of the reconstructed signal are respectively Lim/2+L /2 —1)
and (L — 1)(m /2 + L2 — 1), The odd and even components are simply imtermerged o
obtain the reconstructed signal. It is denoted by the symbol ¥% in the figure. In actual
computation this requires no arithmetic operation. A summary of the overall arithmetic op-
erations required during decomposition and reconstruction processes in direct filler bank,
polyphase and ISITRA schemes is given in Table 1. As compared o the polyphase filter
bank scheme, ISITRA is simpler and requires marginally less amount of computation.

In both filter banks (direct and polyphase), the equality of X iz) and ¥ (z) depends on
how the decomposition filters Hy(z), Hy{z) and the reconstruction filters Go(z), G z) are
chosen. With a proper choice of decomposition and reconstruction filters, it is possible o
make X (z) equal to ¥iz). In that case, the corresponding filter bank scheme is known as
perfect reconstruction filter bank. Several researchers worked on the perfect reconstruc-
tion theory of filter banks. Mention may be made of Akansu and Hadad [ 1], Smith and
Bamwell [12], Mintzer [9], Vandyanathan et al. [13-15], and Venerli et al. [16-18].

Later on scientists working on wavelets established a relation between wavelet theory
and filter bank [4,5.8]. For that purpose, they introduced an extra function known as scaling
function to correspond to the low pass filler in filter bank. With this introducton the in-
versible discrete wavelet ransforms can be developed based on the perfect reconstruction
theory of filter bank. Perfect reconstruction theory of 2-channel filter bank involves recon-
struction filters. However, reconstruction filters are not explicitly studied regarding their
roles in perfect reconstruction in DWT, nor any explicit wavelet functions are mentioned
that would correspond o the reconstruction filters. There are certain conditions Lo be satis-
fied by wavelet filters. The decomposition filters hy, corresponding to the scaling function,
and hy , comresponding to wavelet function, should satisfy the following conditions:

3 hg(n) = /2,

1
Zh|{!!}l=ﬂ. &
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Condition (1) alone is neither a necessary condition nor a sufficient condition for perfect
reconstruction. For orthogonal wavelet filters, the following relation is required to ensure
perfect reconstruction:

hyin) = (—=1Y"ha{L + 1 —n),
goin) =ho(L +1—n), (2)
giiny=h (L +1—n)

Condition (2) is generally known as QMF relation in filter bank community [1.6,14]. Usu-
ally the first equation in condition {2) is used to specify the QMF relation. But for pedect
reconstruction, the first equation is not sufficient. The relation of the reconstruction filters
with the decomposition filters is also required and hence the reconstruction fillers gy and
g are also given in condition (2).

The conditions given above are sufficient conditions to get perfect reconstruction in
2-chamnel filter bank scheme. But they are not a necessary condition for perfect recon-
struction. In Section 3, we will find vadous decomposition and reconstruction filters which
do not satisfy the above conditions but give perfect reconstruction in ISITRA. Also, it is
very difficult o find filters that satisfy the above conditions as none of the above rela-
tions suggests anything about how to find perfect reconstruction filters. We summarize the
drawbacks of the filter bank or DWT as follows:

(1) There is no rational justification for why filters need o be of QMF type and why there
are always o be one approximation and one detail decomposed components.

(2) There is no exact mathematical expression for a decomposed component in ime do-
T,

i3) Finding perfect reconstruction filters is not straightforward.

i(4) Perfect reconstruction issues are not well addressed. There are several possible ways
of perfect reconstruction in the 2-channel filter bank. Only one of them is addressed.

(5) The condition for perfect reconstruction usually studied in z-domain is not very helpful
for finding filter coefficients.

ISITRA takes care of these drawbacks [11] which will also be clear from the following
seClions,

3. Decomposition and reconsiruction schemes in ISITRA

Let b =[by 02, b3, ... byy] be a discrete signal and £, and Iy, be the decomposition
filters. Let us consider the following decomposition:
L
Aln) =) L(ib2n+1-1), (3)
i=1
L
Bin) =) _fu(i)b2n+1— i) (4)

i=l
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forn=1,2,..., M, where A and B are the decomposed components of b and L, an even
integer, is the length of the filier and the length of each of the decomposed components
is M = [m 2]+ L/2— 1. If we decompose a signal into two components using filter of
length 2, then the length of each of the decomposed components will be [m /2],

Equations (3) and (4) are the general decomposition equations. The choice of values
of the decomposition filters depends on the desired nature of its decomposed components.
Using approprate reconstruction filters L and i, reconstruction of the original signal
from the decomposed components is possible. How this is done is described below.

I PRF2 sets of ISITRA

Let us first consider the decomposition and reconstruction schemes of ISITRA with
filters of length 2. The decomposition equations obtained from Egs. (3) and (4) by putling
L=2are

Aln)=Li1)b(2r) + L(2)bi2r — 1), (5)
Bin) =1a(1)bi2n) + 6(2)bi{2n — 1). (6}

The reconstruction scheme using Fig. 3b can be wrillen as

Far(1DA(R) + o (1B (n) = { £, (1E,(1) + B (1)F, (1) fb(2n)

4 LD 1(2) + For( DE(2) [ B20 — 1), (7)
Lar(2)A () + Eur(2)B (1) = {£ar(200a(1) + Bir(2)En(1) }b(20)
+ { B2 (2) + Fur(2)E5(2) [ B(2n — 1), (8)

From Egs. (7) and (8) we can solve for bi2r) and bi2n — 1) in two different ways.

First method. Putling
Far(1)fa(2) + B (D(2) = 0 (9
i Eq. (7), we can wrile
EriliAin) + £, (1)B(n)

bCm) = DR+l (Dh(D) )

provided

Far(1fa(1) + i (DA (1) # 0. (11}
Again putting

far(2)fa(1) + B (D) (1) =0 (12)

in Eq. (8), we can wrile
Far(2)A (n) + Bor{2)B(n)

bl =D = RO 6O (13)

provided
Far(2)02(2) + for (2)6(2) # 0. (14)
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If we find £, Ty, U and £, of length 2 such that conditions (9), (11), (12) and (14) are
satisfied, we would be able to get back the orginal signal b from its decomposed compo-
nents. BEquations (9) and (12) wgether are known as member conditon 1 and mequalities
(11)and (14) are known as member condinon 1. Member conditions 1 and 11 ogether are
known as the member condition. Any set [£, £, £, f;} whose members satisfy the mem-
ber condition will be known as a perfect reconstruction filter (PRF) set. Since the members
of a PRF set here are of length 2, it is called a PRE2 set. If the members of a PRF set are of
length L, itis referred to as a PREL set. We can easily find numerous PRF sets that satisfy
the above member condition. For example, for any non-zero vector f = fi, f2] of any two
non-negative real numbers f and f, the vectos I, =[ fi, 2. =11, — 2], Ly =1, and
Iy = I form a PRE2 set. Also, we can see in what follows that the elements of veclors in
a PRE2 set {L, 0, [ B} can be obtained by simply changing the sign andfor the order of
the elements of the vector [ The above PREZ2 set is not used in the wavelet and filter bank
community because of the difference in the reconstruction process.

However, we may find PRF2 sets which have similar charactenistics as the ones used in
discrete wavelet or filter bank scheme, using the reconstruction scheme given below.

Second method. Puting
For{ D (1) + Fe(1)E(1) = 0 (15)
in Eq. (7). we can wnle

hiZn—1)= Lir(D)A(R) + B (1)B(n) o

Lar(1)0a(2) + fior(1)f6(2)

provided
Ll DEA2) + e 1) (2) # 0. (17)
Again, pulling
Far(2)£,(2) + e (2)f6(2) = 0 (18)

in Eg. (8), we can wnle

far(2)A(n) + i (2)B(n)

e (19
)= 5 Oh0) + b @h() )
provided
£ DB (1) + Bor(2)E(1) 0. 20)

Equations (13} and ( 18) form member condition | and inequalities (17) and (20) form
member condition 1L Our aim here is to find PRF sets that satisfy the member condition
ii.e., both member condition I and member condition 11). We may find various filters of
PRF sets of length 2 which can be used for decomposition and perfect reconstruction of a
signal. We consider below only a few of them which may be used for derivation of other
PRF sets.
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Case 1. I, = [ f, f2] and Iy, = [ f1,— f2]. where f; and 5 are any two non-zero real
numbers. Let us find the comesponding reconstruction filters. From Eq. (15), we have
fir(1) = —fpe (1) That is, the first elements of £, and £y, should have equal magnitude but
opposite signs. There is no restriction on their magnitude. Again from Eq. (18), we have
£ (2) =11 (2). So the possible reconstruction filters are (1) Ly = [ f1, f2] e = [—f1. f21;
(2) far = [ i, i) B = [— 1, il; 3) fr = [ 2, il Bor = [— 2, il @) Lo = [, £,
yr = [—f, f] for any non-zero real number f and so on. Also, the member condition 11
is valid in all the above reconstruction filters. In other words, if we decompose a signal
using L, =[ fi, f2] and by, =1 f1, — f2]. we can reconstruet the signal from its decomposed
components using various reconstruction filters.

Case 2. [, = [ f, f2] and Iy, = [— f2, fil. From Eq. (15), we have fifg(1) = falp(1)
from which a possible solution is £5,(1) = f> and Iy (1) = f). Again, from Eqg. (18), we
have faf,(2) = — fil},(2) from which a possible solution is £,(2) = — f, §(2) = f> or
(2= fi. §l2) = — f5. So two possible reconstruction filters are (1) By = [ f2, — fil.
for = [f1. f2l and (2) B = [ f2, fil, e = [f1.— /2] As in Case 1, the member condi-
tion 1 is valid in both the above reconstruction filters. Here the PRF set is similar to that
of the PRF set of QMF type. When fj = f> = 1/+/2, the PRF set becomes the PRF set of
Haar’s wavelet filter, the only known wavelet filter of length 2. We cannot have any values
of fi, f> other than ll.-’ﬁ because of the restiction in Eq. (1). But here we can use any
two real numbers and use them for decomposition and perfect reconstruction, which is an
interesting feature of 1SITR A

Case A L, =[fi.— fal and fy = [ f2. — f1]. We get L = [— f2, fil and o = [ f1. — f2] s

one of the four reconstruction filter pairs of the above decomposition filiers. In all these
D 3 ¥ -3 ¥ “F e v L

cases, the denominator terms are either f7 — 5 or f5 — f7, implying an additional con-

dition that f} # f>. Both the decomposed components here are details or high frequency

components of the original signal. But the perfect reconstruction is possible since the above

choices of decomposition and the reconstruction filters form a PRF set with the condition

fi# f2.

Case 4.1, = [ fi, f2] and §, = [f5, fi]. It is similar (o Case 3. However, both the decom-
posed components here comespond Lo approximations or low frequency components of the
original signal.

As mentioned above there are vanous ways in which a signal can be decomposed us-
ing different filters of length 2. For example, one can choose filter coefficients of length 2,
which can be used for decomposition of asignal into two details or inlo two approximations
or into a detail and an approximation depending on the application. The decomposition fil-
ters used in Cases 1, 3and 4 are not of QMF type, and sill wecan get perfect reconstruction
from the decomposed components. Thus, we see that o make perfect reconsiruction pos-
sible, it is not necessary that the fillers used for decomposition and reconstruction be of

OMF ype.
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3.2, PRF4 sers of ISITRA

In this section, we will discuss how various types of PRF4 sets can be obtained for
decomposition and perfect reconstruction of a signal.
When L = 4, the decomposition equations (3) and (4) can be wnllen as
Ay =0LI10b2r) + 020020 — 1) + E030b(2n — 2) + F{41b(2n — 3), 21)
Bin)=L{1biZn) +[(2)b(2n — 1) + 5(3b{2n — 2) + [L(4)bi{2n — 3). (22}

The method of reconstruction of the original signal from the decomposed components is
ziven below. For simplicity and ease of computation, let us define the following for L = 4:

L2

Ay =Y L2 — DA(n+1—1), (23)
i=1
L2

As(n) =" L(2)0Am+1—1), (24)
i=1
L2

B|U:}|=Ef},;{2f—1}|3{n+l—f}l, (25)
i=l
L2

B,(n) = Zrml[zf}mn +1—1) (26)
i=1

forn=1,2 .. MI(M,as defined eadier, is [m /2] + L/2 — 1). Here, A{i), B(i) terms
are taken as zero for i < 0.
Simplifying Egs. (23) and (25), we get
Arin+ 1) +Bi(n + 1) = [L(1f (1) + B (1fer(1) }bi20 + 2)
+ {ra{3}rur{1} + B (1Er(3) + (30 B (1) +fh{1}'fhr{3}'}h{2fi}
+ {L(3r(3) + (3)Eac(3) }bi2n — 2) + [L(2)Er (1) + (2)Fer (1) (20 + 1)
+ {faH}'fur{l} + B (208 (3) + fa() B (1) +fh{3}'fhr{3}'}h{2fi —=1)
+ {ra{4}rur{3} o th}'fb:H}'}h{zH —3). (27)

Similarly, from Egs. (24) and (26), we have

Az(n+ 1)+ Baln + 1) = {L(1)fr(2) + B (DE(2) | b(2n + 2)
+ {L(3r(2) + (DB + B3 (2) + B (DEse(4) | b(2n)
+ B3 d) + B3 (4) [b(2n — 2) + {£(2)60(2) + 5200 (2) [ (20 + 1)
+ B ar(2) + L(2)ar(4) + () (2) + B2 (4) | b(2n — 1)
+ B D ar(4) + B (4 (4) [b(20 — 3). (28)
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FPutting
Fa(1far(1) + Ip(1fr( 1) = 0,
Fa(3)Ear (1) + La(1Har(3) + B (3)hr(1) + £ 1 fe(3) =0, (29)

Eal 300 3) + B3 3) =00
in Eq. (25), we can wrile

Ajin+ 1)+ Biin +1)

biZ2n—1)= a0
G =) = () T L 0) + T @) + BT () &
provided
£a(2)ar(1) + By (D (1) = 0,
La()ar(1) + Fu2)Ear(3) + B () Br(1) + fo (D (3) £0, (31)

L ()Lar(3) + B () (3) = 0.

Again, putling

£,(2)E,,(2) + By () (2) = 0,

Fa(2)0ar(4) + La(ar(2) + Bp (2 (4) + ()M (2) =0, (32)
Fa(d)ar(4) + Ip (4)f1e(4) = 0

in Eq. (28), we can wrile

Azin+ 1+ Bzin+ 1)
hiZn) = 33
) = D@ L0 ) + T )@ + 6O (D 3)

provided

Fa(1)far(2) + Ip(1)fr(2) = 0,
Fa(1far(4) + La(30ar(2) + Bp(1fe(4) + (3 (2) # 0, (34)
Fa(3)ar(4) + Ip(3)fr(4) = 0.

Equations {29) and (32) together are known as member condition 1 and conditions
{31y and (34) as member condition 11 for filters of length 4. Once we choose a set of de-
composition and reconstruction filters of length 4 satisfying the member condition, we can
decompose a signal imto two components using Egs. (3) and (4) and reconstruct the original
signal from its decomposed components using the reconstruction equations (30) and (33).

For reconstruction above, the odd terms b(2n — 1) are chosen from Eqg. (27) and the
even lerms bi2n) from Eq. (28). However, one can choose the even terms from Eg. (27)
and the odd terms from Eq. (28). In that case, member conditions 1 and 11 will be inter-
changed keeping the inequalities in right places. Also, the reconstruction equations require
modifications accordingly.

The decomposition and reconstruction filters should satisfy the member condition in
order to make perfect reconsiruction possible. The evaluation of the PRF4 set can be done
in the same way as in the case of PRF2 sets from member conditions Land 11, However, we
can find the PRF4 set in the following way as well.

First we choose the filter coefficients in such a way as to satisfy member condition L.
Once we find the filters that satisly member condition 1, the actual filier coefficients are



14 YK Singh S.K. Parui/ Digital Signal Processing 16 {2006) 3-23

then evaluated from the set of conditions of member condition 11 All the four equations in
member condition 11 should be such that all the terms in an equation should not be of the
same sign (i.e., should not be either all positive or all negative) and at the same time the
two inequalities of the condition should hold.

Let

fa =[—f1. f2. 5. fal, for = [fa, f3. 2. — fi,

fo=Lfa. —f5. f2, A1), for = [f1. f2. = f3. ful
be a trial framework of PRE4 sets that satisfies member condidon 1. Now we will test
whether this set of filters satisfies the member condition 11 also. Substituting the values of
the decomposition and reconstruction filters in Egs. (31) and (34), we get —f1 fa + 2 fi
=0. And from the inequalities we get 2 + f5 + f7 + fi #0.

Thus, the above set of decomposition and reconstruction filters satisfies member condi-
tion 11 as well and hence form a PRE4 set. The coefficients of the filters are obtained by
solving first the equation — fi 3 + f2 f3 = 0. We can choose any three values arbitrarly
and find the remaining one from the equation. As this can be done in infinitely many ways,
we can find infinitely many PRF4 sets.

Let us consider another framework of PRE4 sets L, = [ fi, f2. f. fal. & =1 f1. f.
—f=fil Y= fa. — f3.— f2, fil and fr = [ f1, f2. —f3, fa]. This type of PRE4 sets
is not possible in wavelet or filler bank because the coefficients of a decomposition filter
cannot be all positive. The coefficients here also are found from the member condition
which again reduces to — fi fa+ fafa =0and f + fi + f7 + fi #0. Several cases of
PREF4 set frameworks are given in Appendix A,

In all cases of the frameworks of PRE4 sets, the actual PRES sets are obtained by solving
the equation — fi f2 + f> fy = 0. Thus, once we find the values of £, f2, fi and f for any
case, the same values of the coefficients can also be used in other cases provided the corre-
sponding denominator terms are not zero. As in PRE2 sets, the different cases will give dif-
ferent decomposed components. That is, we may decompose a signal into an approximation
and a detail or into two details or into two approximations in the case of length 4 also. We
have derived the decomposition and reconstrucion equations with the member conditions
for filters of lengths 2 and 4. We can obtain decomposition equations and comresponding
member conditions for filters of any even length greater than 4 as given in Appendix B,

The decomposition of the signal can be done successively up Lo a certain desired level
on only one or all of the decomposed components at each successive level in order 1o get
multi-resolution signal decomposition.

4. Properties and advantages of ISITRA

In this section, we show, through some examples, certan properties and potential ad-
vantages of ISITRA.

4.1, Maodification of pixel range in the decomposed components

Let us consider the PRF2 sets of Cases 1 and 2 of Section 3.1, In both these cases,
a signal s decomposed into an approximation and a detail. When the two coefficients of
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fa)

Fig. 4. {1 Original Barbara image. (b} Compressed image 8:1 using ISITRA filter [(0.125, 0.125]. () Compressed
image 3.5:1 using Haar's wavelet.

Tahle 2
Reduction in pixel mnge and its use in compression

Fi lter type Pinel range Compression Average pinel MSE PSNR
af Appxs vilue of R1

[{1.5,01.5] 10250 41 12581 35800 5

[(1.25,0.25] 3-nl 531 12583 15930 X 57

[(125,0L125] 1-16 g1 12579 9.2 nM

Haar's wavelet H-500 | 12576 35800 5

a decompositon filter are equal, the PRF2 sets of both cases give essentially the same
decomposed components. So, we will consider {[f1. AL [—=A. ALLA. ALLA. = ALL
the framework of PRE2 sets of Case 2 only. The value of fi can be any non-zero real
number. When f) = 1/+/2, we getthe same PRE2 set of Haar's or DB1 wavelet. We cannot
choose any other values of fi for wavelets filters of length 2 as explained in Case 2 of
Section 3.1. But in ISITRA, there is no such restriction. By choosing various appropriate
values of fi, we can control the range of pixel values in the decomposed components.
This may be an advantage from the compression point of view. For compression we are
interested mainly in the approximation component. We decompose the gray level Barbara
image of 128 x 128 size, shown in Fig. 4a, into four components, one approximation and
three details. We retain only the approximation component rounded off to integers afler
decomposition rejecting the remaining three details. That is, only one fourth of the size of
the original image is retained, providing room for compression. If we can reduce the pixel
range of the approximation, more compression would be achieved. Table 2 gives the pixel
ranges for approximation components (Appxs) using various PRF2 ses. We reconstruct
the orginal signal from only the retained approximation component in each case of the
filters, replacing the three details with zeros. The average pixel values, mean square emror
(MSE) and peak signal to noise ratio (PSNR) of the reconstructed images (R1) for different
PRF2 sets are also given in Table 2.

From the table we see that the average pixel values of the lossy reconstructed image
are slightly higher for the filters of ISITRA than that for Haar's wavelet filier But the
MSE values are slightly higher for f; = 1/4/2, as a result there is slight decrease in the
PSNR values. But we can achieve a considerable amount of compression, as storing of the
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Fig. 5. Decomposition of Barbara image into details.

approximation components with small pixel range requires less number of bits. Thus, we
zel a compression ratio of about 8:1, if we use only the approximation component whose
pixel range is 1-16. The lossy reconstructed image, which has been compressed 8 times,
is shown in Fig. 4b, and the one in the case of Haar's wavelet is shown in Fg. de.

4.2, Decompasition of an image into all detail components

In the reconstruction theory of ISITRA, what is required for pedect reconstction
is 1o find a set of decomposition and reconstruction filters that satisfy the member con-
dition. Consider the framework of PRF2 sets of Case 3 of Section 3.1, If we choose
£, =[0.125 —0.124] and £, = [0.124, —(0.125] as the decomposition filters, we get all
the decomposed components as details. The perfect reconstruction of the original signal
from its decomposed components is possible using appropriate reconstruction filters, quite
contrary to the popular belief that reconstruction is impossible without an approximation
component. The reason why this is possible is that the decomposition and the reconste-
tion filters satisfy the member condition. For PRF2 sets, it is found that the more close
the magnitudes of the filier coefficients are the more details are obtained afier decompo-
sition. By the term “more details™ we mean the components having more local vadations,
and more and more distinguishable (global) features of the orginal image are lost in these
components. This may have potential application in encryption as we can hide the global
features of the orginal signal in the detail components. The same Barbara image, when
decomposed with the above decomposition filters gives all detail subimages as shown in
Fig. 5. Note here that the two coefficients cannot be equal, in order to make perfect recon-
struction possible.

4.3, Decompaosition of an image into all approximation compone nts

From above it is clear that we can decompose a signal into details and get a pedect
reconstruction from them. The reverse is also possible. That is, we can decompose a signal
into all approximation components and get back the orginal signal from these compo-
nents. Let us consider the framework of PRF2 set of Case 4 of Section 3.1, Suppose
£, = [0.125,0.124] and £}, = [0.124,0.125] are two decomposition filters. If we decom-
pose a signal using these decomposition filters, then the decomposed components will all
be approximation components. Perfect reconstruction is possible with appropriate recon-
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Fig. 7. Compressed image {#:1) reconstructed from only one approximation.

struction filters. Experimentally, we find that the more close the values of the two filter
coefficients are, more approximation is obtained. In other words, the decomposed approx-
imation components become smoother and smoother. The interesting feature of this is that
we can reconstruct the orginal signal from any one of ils approximation components. In
that case, all the four approximation components are 1o be replaced by any one of them be-
fore reconstruction. This can be used for lossy compression point of view. 1 we decompose
the same Barbara image with the above decomposition filters, the decomposed components
are all approximations as shown in Fig. 6. The ranges of pixel values of the approximation
components are 1-16. So if we reconstruct the image from only one of the approximations,
we gel a compression ratio of 8:1. The reconstructed image has 22 34 as the PSNR value
and 15 shown in Fig. 7 which 1s comparable to the reconstruction in Fig. 4b. When the pixel
range is 3-60, the PSNR value becomes 22.59. The guality of image becomes as good as
that in Fig. 4c. In addition we can achieve a compression ratio of 53.3:1 instead of 3.5:1
obtained in Haar's wavelet case.

d.4. Finding better PRF4 sets than that of DB2 wavelet filter

By DB 2 wavelet filter, we will mean the popular Daubechies” wavelet filter of length 4.
Here we will see, whether we can find a better PRES set of ISITRA than that of DB2
wavelet filter. In Table 3 we show the energy content of each subband in a single level
decomposition of Barbara image using PRE4 sets of DB2 wavelet filter and ISITRA. The
filters in the case of ISITRA are given in non-nomalized form for easy entry in the ta-
ble. In actual decomposition, they are normalized as DB2 wavelet filter is also normalized.
Except DB2, the filters are from the following framework of PRE4 sets where the coef-
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Tahle 3

Reconstruction error and energy compaction of B2 wavelet filters and PRF4 sets of ISITRA

Filter type Energy contents MSE PSNE
DBz B4.916 0l 424 0587 .76 B.19255 22 258 996
Reverse DB2 B4.917 6l 284 65755 6786 B 1923322 258 99
[4.8,8 2 —1.2] B4.919 al 0493 65669 0777 2T 6e—-27 314764
[27.3,30.4,52 -39) 4927 00264 h5.280 60,785 6.80402e— 25 319764
Table 4

MSE and PSNRE values of the lossy reconstructed image from only the approximation component

Filter type MSE PSME
B2 360.752 X2 558
Reverse DB2 343906 22766
[48.8 2 —1.2] 340,343 RN
[27.3,36.4,52 -39) 330881 M

ficients can be chosen quite arbitrarily. Consider F= [ fi. f2, fi, fi] where each entry is
positive. From this can be generated the framework of PRE4 sets {8, = [ fi. 2. f2. —fal,
= [—f4. f3.—fr. —f1]. far = B By = B}, where T denotes the reverse vector of T.

1t is found that the energy content {the mean of the squared gray values) of the approxi-
mation component is slightly higher for the PRF4 sets of ISITRA than that of DB 2 wavelet
filter (Table 3). The reverse DB2 in Table 3 denotes the PRE4 set of DB2 where the de-
composition and the reconstruction filters are interchanged. The energy contents of the first
two detail components for ISITRA are less than the energy contents of the comresponding
components for DB2 filter coefficients, with a slight increase of energy in the last detail
component. Thus, from the energy contents of the decomposed components, it is seen that
the energy compaction is higher in the case of the PRE4 sets of ISITRA.

Lastly, we reject the three detail components and reconstruct the image only from the
approximation component (after rounding off 1o nearest integers), by replacing the three
detail components with zeros. We measure the distortion error inroduced in the recon-
structed image. The MSE and PSNR values of the lossy reconstructed images are shown in
Table 4. From the table we see that the PSNR value is lower in the case of DB 2 than other
filters.

Figure 8a shows the lossy image reconstructed only from the approximation component
in the case of the last entry of the PRF4 set of ISITRA in Table 3, and Fig. 8b shows the
lossy image reconstructed from the approximation component in the case of DB2 wavelet
filter. With respect 1o both MSE and PSNR values (Table 4), the PRF4 set chosen above
performs better for compression than DB2 wavelet filler. From Tables 3 and 4, it is also
clear that the PRF4 setof reverse DB2 is better than that of DB2. Hence, it may be advisable
to use reverse DB2 instead of DB2, if one is interested in using PRE4 set of DB2.

Also, we test the emrors introduced when we reconstruct the original image from all its
decomposed components (without rounding off). It is found that the reconstruction emor is
much higher in the case of DB2. The reconstruction error can be totally eliminated if we
use non-nomalized PREY sets.
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Fig. & (a) Image reconstructed from only the approximation component in the case of PRF4 set of ISITRA {last
entry in Table 3). (h) Image reconstructed from only the approximation component in the case of DB2 wavelet
filters.

5. Discussion

A new transform ISITRA has been developed for signal decomposition and reconstruc-
tion. Computational aspects of the decomposition and reconstruction schemes of 2-channel
filter bank, its polyphase scheme and ISITRA have been investigated. The polyphase
scheme is computationally much better than the usual filter bank scheme and ISITRA is
shown to be slightly better than the polyphase scheme. The perfect reconstruction theory of
the reconstruction scheme of ISITRA has been deseribed in detail. To make it more easily
understandable, the perfect reconstruction scheme is dealt with separately for length 2 and
length 4 cases. The process of finding PRF sets is also described. One aim of the paper is
to show that we can easily find shorter kength perfect reconstruction filters without using
wavelet functions. Some of the potential applications of ISITRA are discussed with exam-
ples. An important feature of 1SITRA is the flexibility in choosing the filler coefficients.
There are many ways of choosing the filter coefficients other than that of QMF or CQF
type, as discussed in different cases of PRE2 and PRF4 sets. In the case of wavelet, Haar's
wavelet filter is the only known filter of length 2. But in the case of ISITRA of length 2,
any Lwo non-zero real numbers can be used as filter coefficients. This allows us to keep the
pixel values of the decomposed components at any desired range by choosing appropriate
filters. Thus, by keeping the pixel values w 1-16, for example, we can get the compression
ratio of 8:1 without applying any coding scheme. In the case of wavelet (coefficients of
length 4), DB2 is the most commonly used filier But in case of ISITRA of length 4, any
four non-zero real numbers satisfying certain soft conditions (i.e., the member conditions),
can be used as the coefficients. Even in wavelet or filter bank scheme, there 15 no hard
and fast rule for choosing filters for compression [19]. But ISITRA offers a larger space of
filters and hence there is a possibility of finding a better filter for compression (or for other
purposes) than the wavelet scheme. Also, we could find PRE4 sets which give better energy
compaction in image decomposition than DB2 wavelet filter. This shows the usefulness of
flexibility in choosing arbitrary filter coefficients. Another interesting observation is that if
we interchange the decomposition and the reconstruction filters in the PRF4 set of DB2,
we can sometimes get betler results. We have also provided different cases of PRE4 sets of
ISITRA in Appendix A, which may be useful for different applications. A generalized way
of finding longer PRF sets is given in Appendix B. This will enable one to find longer PRF
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sets than the existing longer wavelet filters. Even if one cannot find a betier PRF set, one
can directy use the known wavelet filters in the decomposition and reconstruction schemes
of ISITRA. Also, the normalized PRF sets of ISITRA can also be direetly used in place of
PRF sets of wavelet filters, if the frameworks of the two PRF seits match. For example, the
PRF sets of ISITRA provided in Section 4.4, can be directly used instead of wavelet filters.

6. Conclusions

ISITRA is fast, flexible and easily implementable. 1t is simple and easily understandable
and even a litle faster than the computationally efficient polyphase scheme. The flexibility
in choosing arbitrary filter coefficients may be of great use in finding better filter coeffi-
cients for different applications. [t can be used in place of wavelets and filter banks where
the latter have applications. Moreover, ISITRA has the capability of decomposing a signal
into various ways (into an approximation and a detail or into two details or into two ap-
proximations ) and may find application in problems where wavelets and filter bank scheme
cannol be applied. In other words, 1ts application potential may extend beyond the scope
of wavelets and filter banks.

Appendix A. Some possible cases of frameworks of PRF4 sels

Case 1. The inner product of a decomposition filter and the reverse of its comesponding
reconstruction filter 1s Z;L lfa{r'}l:. The first choice of PRF4 sets given at the end of Sec-
tion 3.2 belongs to this case.

Case 2. The inner product of a decomposition filter and the reverse of ils comespond-
ing reconstruction filter is ZLL{—I}I‘_lfa{f}:. ‘or example, £, = [f1, — f, fi. —fal.
bh=1—fi. fi.—f2. (il L=, o Al and B = [ fo f, fal form a framework
of PRE4 sets.

Case 3. The inner product of a decomposition filter and the reverse of its comespond-
ing reconstruction filter is Zf': | (=YL (i) . For example, £, = [ fi. f2. fi. fal. B =
[fa. fa.—=fa, =il B = [fa. = fo. = f2. Al amd By = [— fi, 2 —f3, fa] form a frame-
work of PRF4 sets.

Case 4. The inner product of a decomposition filter and the reverse of its comresponding
reconstruction filter is ZL, (—DIA=1E (. For example, £, = [— f1. f2. fi. fal B =
= fa. f3s f2, Ailitar == fa. = f3, fo. =il and B = [ 1, f2. — f3. fa] form a framework
of PRE4 sets.

Case 5 The inner product of a decomposition filter and the reverse of its comespond-
ing reconstruction filter is ZL, {(— DA%, For example, £, = [ fi. — f2. f3. fal. T =
[—fa. = = F L L= 1. fa. fro— Al and & =[ fi. f>. fr. —fi] form a framework
of PRF4 sets.

Case 6. The inner product of a decomposition filter and the reverse of its comespond-
ing reconstruction filter is ZLL{—I}I U+D/E ()2, For example, £, = [ fi. f2. fa. fal.
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fw = Lfa, . =, =1l br = [=fa. fa oo — Al and By = [f1,— fo. f3—fa] form a
framework of PRES sets.

Case 7. The inner product of a decomposition filter and the reverse of its correspond-
ing reconstruction filter is ZL, {—1)'L,(i)*. For example, £, = [— fi. —f2. fi. fal. B =
Lfa. . —fr.—fil fe = fa. —f3.— f2, il and & = [ fi. — f2. — f3, fa] form a frame-
work of PRF4 sets.

Appendix B. Generalization for arbitrary filter length

In the general case, Egs. (23)—(26) hold true for any even length L.
Equations (27) and (28) can be writlen as follows:

Afn+ 114+ Biin4+ 1)

3 r
= Z[MEH +4-2r)  {f(2i — Dul(p) + (20 — nrmm}}
r=1

3 r
& E[h{?n +3-20) Y {f@ia(p) + fhii’f}fh;{p}}i|. p=2r4+1-12i,
r=I| =1

Axn4+ 114+ Brin4 1)

3 r
= Z[h{zn +4-2r) ) {fa(2i — DEu(p) + (20 — nfmm}}
r=1 i=1
3 r

+ Z[h{?n +3-20 ) {LQlg) + fh{EF}fm{q}}:| . G=2r42-9,
r=1 i=1
where (k) = 0 for any integer & less than | or greater than L.

Proceeding in this way, for a filter of length L = 2N, where N is a positive integer, we
can write the above two equations in a general form as follows:

Afn4+N -1+ Bin+N-1)

L—1 r
=¥ [h{zn +L—2r) ) {82 — Dl p) +10(2i — Dfee(p) }}
r=I1

i=l

L—1 r
+ Z[h{zn +L—1-2r)) " {fu(2Mar(p) + rhﬂf}'fb:{!?}'}:|~
r=1 i=1

Axn+N -1+ Brin+N-—-1)

L—1 r
=) [hl[zn +L—2r) ) {£a(2i — Dfarlg) +En(2i — 1}1‘1“{:;}}}
r=1 i=1

L—1 r
i Z[mzn FL-1-2A3% W@tie) + fh{Ef}fm{q}}:|.

r=1 i=1
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The set of equations (35) forms member condition 1:
Y iy (a2 — DEr2r 41— 20) + (2 — Dfe(2r +1 —20)} =0,
Yo (2D (2 + 2= 20) + B (2i)ur(2r + 2 - 20)} =0
r=1,2,...,L -1 (35)

The set of equations (36) and the set of inequalities (37) form member condition 11:

3oio [fa(2i — DEar(2r +2— 20) + £,(2F — Df(2r +2 —2i)} =0,

Yr £ N, (36)
Yl L+ 1 — 20) + 20 (L +1 = 2i)} #0,

! T 028 — DEA(L +2 —20) + 6,2 — DL +2 =20} £ 0.

! Z_l (20 (2 + 1= 20) + B (20 (2r + 1 — 20) } =0,

(37}

The comesponding reconstruction equations ae

b2n — 1) = ; An+N—-14+Biin+N-1) 1 (38)
Yo 2D B (L + 1 —28) + B (200 L + 1 — 20) }

b2n) = — - Azin4+N-1) -_l-Bg{H +-N 1) . (39)
S I AL Lo R = D E 0= 30)

PRFL sets can be found from the member condition equations (35), (36) and inequali-
ties (37). From the member condition equations, we see that the roles of the decomposition
and reconstruction filters can be interchanged without affecting the member condition. That
is, once we find a PRF set, we can use the reconstruction filters for decomposition and the
decomposition filters for reconstruction. Also, the member conditions [ and 11 can be inter-
changed. In that case, the reconstruction equations should also be accordingly modified.
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