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Abstract

This paper presents a simple yet efficient algorithm for multifocus image fusion, using a multiresolution signal
decomposition scheme. The decomposition scheme is based on a nonlinear wavelet constructed with morphological
operations. The analysis operators are constructed by morphological dilation combined with gquadratic downsampling
and the synthesis operators are constructed by morphological erosion combined with quadratic upsampling. A
performance measure based on image gradients is used to evaluate the results. The proposed scheme has some

interesting computational advantages as well.
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1. Introduction

A wide variety of data acquisition devices are
available at present, and hence image fusion has
become an important subarea of image processing.
There are sensors which cannot generate images of
all objects at various distances (from the sensor)
with equal clarity (e.g. camera with finite depth of
field, light optical microscope, etc.). Thus several
images of a scene are captured, with focus on

different parts of it. The acquired images are
complementary in many ways and a single one of
them is not sufficient in terms of their respective
information content. However, viewing a series of
such images separately and individually is not very
useful and convenient. The advantages of multi-
Jocus data can be fully exploited by integrating the
sharply focused regions seen in the different
images. Before integrating, one must bring the
constituent images to a common coordinate
system. Widely used techniques perform this task
by using some common geometrical references
called ground control points (GCPs). This process
is called registration. After registration the images
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are combined to form a single image through a
judicious selection of regions from different
images. This process is known as mudifocus image
Jusion. Both the reliability of redundant informa-
tion and the quality of complementary informa-
tion present in the constituent images are
improved in a fused image. So it gives a better
view for human and/or machine perception. A
fused data can also render itself more successfully
for any subsequent processing like object recogni-
tion, feature extraction, segmentation, etc.

There are a number of techniques for multifocus
image fusion. Simple techniques in which the
fusion operation is performed directly on the
source images (e.g. weighted average method),
often have serious side effects like reduction in the
contrast of the fused image. Other approaches
include, image fusion using controllable camera
[1]. probabilistic methods [2], image gradient
method with majority filtering [3], multiscale
methods [4] and multiresolution  approaches
[5-8]. Methods described in [1] depend on con-
trolled camera motion and do not work for
arbitrary set of images. Probabilistic techniques
involve huge computation using floating point
arithmetic and thus requires a lot of time and
memory-space. Image gradient method with ma-
jority filtering has the drawback that the defocused
zone of one image is enhanced at the expense of
focused zone of others.

An image often contains physically relevant
features at many different scales or resolutions.
Multiscale and multiresolution approaches pro-
vide a means to exploit this fact. This is one of the
reasons why these techniques have become so
popular. Muliiscale methods involve processing
and storing of scaled data at various levels which
are of the same size as that of the original images.
This results in a huge amount of memory and time
requirement [4]. Multiresolution techniques of
image fusion using pyramid or wavelet transform
produce good result in less computation time using
less memory. The basic idea in these techniques is
to decompose the source images at first by
applying the pyramid or wavelet transform, then
the fusion operation on the transformed images is
performed and finally the fused image is recon-
structed by inverse transform. One major advan-

tage of multiresolution transform is that spatial as
well as frequency domain localization of an image
is obtained simultaneously. Another advantage is
that it can provide information on the sharp
contrast changes, and human visual system is
especially sensitive to these changes. Both pyramid
and wavelet transforms are used as multiresolution
filters. Wavelet transform can be considered as a
special case of pyramid transform but it has more
complete theoretical support [Y9]. Various methods
of image fusion using multiresolution techniques
have been suggested before [5-8]. A survey on
these works may be found in [8]. Burt and
Lolezynski [3] suggested a method in which the
images are first decomposed into a gradient
pyramid. Activity measure of each pixel is
computed then by finding out the variance of a
3 x 3or 5 x 5 window centered around that pixel.
Depending on this measure, either the larger value
or the average wvalue is chosen. Finally the
reconstruction is done. Li et al [6] used similar
method except the fact that wavelet transforms are
used for decomposition and consistency verifica-
tion is done along with area-based activity
measure and maximum selection. Their method
reduces the artifacts such as blocking effects which
are common in image fusion using multiresolution.
Methods described in [5,6] are complex and time-
consuming. Moreover it was not mentioned
whether the method can be applied to more than
two multifocus images. In the method suggesied
by Yang et al. [7]. an impulse function is defined at
first to describe the quality of an object in a
multifocus image. Then sharply focussed regions
are extracted by analyzing the wavelet coefficients
of two primary images and two blurred images. To
fuse two images, this method compares the wavelet
coefficients of four images and thus involves
double computation. Moreover, all its computa-
tions involve floating point arithmetic.

Wavelet transform is a linear tool in its original
form [9]. But nonlinear extensions of discrete
wavelet transform are possible by various methods
like fifting scheme [10] or morphological operators
[11,12]. The problem with linear wavelets like Haar
wavelet is that during signal decomposition or
analysis the range of the original data is not
preserved [12]. Secondly, linear wavelets act as
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low-pass filters and thus smooth-out the edges.
This results in reduction in the contrast in fused
images. The nonlinear wawvelet introduced by
Heijmans et al. [12] overcomes this drawback by
using morphological operators. But it involves
division operation and thus either requires floating
point arithmetic or introduces truncation error by
using integer arithmetic.

We introduce in this paper a nonlinear morpho-
logical wavelet transform which preserves the range
in the scaled images and involves integer arith-
metic only. We use this transform to present a
fusion algorithm to fuse a set of two-dimensional
eray-scale multifocus images of some scene. The
method is simple, computationally efficient and
produces good results. Integrated-chip implemen-
tations of image processing algorithms are going
to become more common in near future. Our
method will be useful in this respect. The results
obtained by it has been compared with those
obtained by using Haar wavelet and the morpho-
logical wavelet suggested by Heijmans and Gout-
sias [12] using several sets of data. The paper is
organized as follows. Section 2 gives the basic
theory (without proof) of multiresolution analysis
using wavelets and a brief discussion on morpho-
logical operators. This section also introduces the
proposed  wavelet transform  based on these
operators. Section 3 describes the image-fusion
algorithm using the new morphological wavelet.
Experimental results and discussion are given in
Section 4 and the concluding remarks are pre-
sented in Section 5.

2. Basic theory and a new morphological wavelet

A brief overview of multiresolution signal
decomposition theory using wavelets is given first,
followed by the discussion on morphological
operators, and finally a new wavelet transform
based on morphological operators is presented.

2.1 Multiresolution analysis
The theory of multiresolution signal decom posi-

tion scheme using wavelets can be applied to a
wide variety of signals. We are restricted here to

two-dimensional gray-scale image signals only. A
two-dimensional gray-scale image signal X is a
function which map (a subset of) discrete two-
dimensional space Z° to a finite set of non-
negative integers & = {g|.4a,....4,} called the set
of gray values. Let us consider a set Fy of such
image signals. A multiresolution signal decom-
position scheme on Fy uses two types of operators,
namely, signal analysisv and signal synthesiv opera-
tors. Signal analysis operators tjl_'r; (V= Vi,
map the signal space F; at level j, to a coarser
signal space V) and the detail analysis operators
w; : ¥V, — Wy, map F; to a coarser detail space
Wy i All Vis and Wis have the same structure as
Fy. The operators i; and w; are called the scaling
Junction and the wavelet function, respectively.
Signal analysis operation proceeds by mapping a
signal to a level higher in the pyramid structure,
thereby reducing information. Details are stored at
each level to restore this information loss. So, for
X e V; we have,

plxhy =X, ¥ evp, (1)

wf(Xy =Y, ¥ew,,. 2)
Signal synthesis or reconstruction is done by
synthesis operator Wi 1 Vi, x Wi — VJ,-,_Which
map a signal to a level lower in the pyramid. To
ensure loss-less  or  perfect  reconstruction, the
following condition must be satisfied.

P (X el (X)) =X, XeV, 3)
There are two more conditions, namely,

THFE 0 LA Casy | ER ca o)

ol (EHEH, YY) = P, s)

where X'*' € ¥, and ¥/*' € W .. They ensure
that the decomposition is non-redundani in the
sense that repeated applications of these schemes
produce the same result. A special case called
wncoupled  wavelet decomposition occurs when
there exists a binary operation + on V; and
operators Yy : Vi — V; and wf t Wy — F;
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such that
EF;{XJ.+|1 }zj-l—l J= Ijl:f;{X-'“'-I]'i"’ﬂ;{ }’_.l""l 1,
Y¥tle vy, ¥ ewy,. (6)

Then perfect reconstruction and non-redundancy
conditions become

:,!r}.':,l.'r‘l.‘{X-"]—'i-wj'u_r;{X-"} =X, XeV, (7)

tjl:’;{ljl:’;{Xj"-l ]'i‘wf": }n‘+ln — yHt! i
Xle Vi, ¥ e Wi, (8)

;3‘].. {tﬁ;{ XJ.-H ]'i‘wJ-'{ },J-+I )= }0-1- I .
Xl e Vj+l= yi+l e Wj+l- o)

If an one-dimensional wavelet decomposition
scheme can be applied to two and higher dimen-
sions, by applying it to other dimensions sequen-
tially, then this decomposition is called separable.

2.2, Morphological operators

A brief overview of the morphological operators
is given now. Let us consider a signal X € Fy (see
Section 2.1). So X is a function from domain D to
G where D is a subset of Z* and G is the set of
gray-values. Let 4 © Z° be a structuring element.
Then the morphological operators, dilation 8 ,X)
and erosion 4(X) of X by A4 are defined as

dalX)rc) = max Xir—rie—o)
(e ded, (r—r,e—e JED
e4(X)r,c)= min X(r+r.e+e)

(rre)ed, frr, oo gD

So dilation (erosion) simply replace the value at
each point of X by the maximum (minimum) value
in a neighborhood defined by the structuring
element A. Other morphological operators can be
constructed by combining & and £ For example
opening 40 X) and closing b (X) of X by A4 are
defined as

s (XN Mr e) = daled X Dr el

b (X)r,e) = ea(@4(X)Nr, ).

2.3, A new morphological wavelet

Heijmans and Goutsias introduced a morpholo-
gical variant of the linear Haar wavelet by using
the morphological operation difation (erosion) [12].
It is an one-dimensional scheme and the multi-
dimensional implementation can be obtained by
applying it to other dimensions sequentially.
However, a non-separable two-dimensional ver-
sion of the morphological Haar wavelet transform
has also been defined in [12], which will be used in
our experiments. We, now propose a non-separable
iwo-dimensional uncoupled morphological wavelet
decomposition scheme, which will be used for our
image-fusion algorithm. Unique analysis operators
(4", eo") are used at all levels of the multiresolution
scheme. Similarly, unique synthesis operators
(=, e0*) are used at all levels. These operators
are explained for the lowermost levels () and 1.

Let us consider the signal space Vy of Section
2.1. 1t is our original signal space. Then V| and
W are the signal and detail spaces at level 1
having the same structure as Fy. Consider an
image signal X € VFy Then X is a mapping of (a
subset of) Z* to the set of gray-values G and it can
be represented by an M x N matrix, where
M, N e Z. Let us assume that M and N both are
even. Then X can be divided into consecutive and
disjoint 2 x 2 submatrices or blocks, which are
total MN/4 in number. Four positions of such a
block B may be denoted by (r.c) (r.e+ 1) (r+
l,ehand (r+ 1,4 1) (see Fig. 1). Using quadratic
downsampling, the analysis operators " : Vy —
¥ and ! @ Fy— W are defined as

W (XWB)= M = max{X(r,e), X(r.e + 1),
XYir+ Le), Xir+ 1,4 1),
(10)

@' (XNB) = (¥s ¥ V) (11)

xhee) ¥ irceD

Xirel MXirc+ll Wavelel =M =y
[ <y

- =
Transform

Yireler [¥hrsles)

=¥ =¥

Xig+lo) | Xir+le+l)

Fig. . Wavelet transform ona 2 = 2 block of X,
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where y,.»,.¥, represent the vertical, horizontal

and diagonal detail signals, respectively, defined as
M-—Xre+1) if M—X(re+1)=0,

L ooy Xir,e +1)— M otherwise,

(12)

M-Xr+1lLe) iff M—X(r+1e)=0,
Mh = XY(r+1,0)— M otherwise,

(13)

M=-Xr+l,e+1) ifM=Xr+lc+1)=0,
YMEYXir+ Le+ 1) = M otherwise.

(14)

The second condition in the last three equations is
required to maintain the information on position
of the maximum value M as evidenced in the
successive example. Scaled signal and detail values
obtained above belong to X! and ¥!, respectively,
and they can be stored conveniently in similar
positions of another matrix.

The original signal at level 0 is reconstructed by
the synthesis operation. Using quadratic down-
sampling, synthesized signals X are given by

Yroo=Xre+D=Xr+1,0
=Xr+le+li=M (15)

and synthesized details Y are given by

¥(r, ¢) = min(y,. v, ¥5.0), (16)
¥(r,c+ 1) = min(—y,,0), (17)
¥(r+ 1, ¢) = min(—yy, 0). (18)
Y(r+ 1, ¢+ 1) = min(—y,,0), (19)

where M = X'(r, ¢) is the scaled signal at (r, ¢) and
Fya Vs Vg are vertical, horizontal and diagonal
details, respectively. This is an uncoupled decom-
position scheme and the binary operation + is the
ordinary addition of numbers. Hence the recon-
structed signal X' at any point (w,0) € {{r,c) (r,c+
Lhir+ Lehir+ 1, e+ 1)} is given by

X v)= X, o)+ ¥lu o). (20)

Example. Let us consider the 2 = 2 hlock 8 of X
with X{r,e)= T, Xir,ce+ 1)=T1,X{r+ Lo} =
Ty oand X{r+ 1,4+ )= Ty Let T\, = max{Ty,
T\.T>,T;}. Then ' (X)B) =T, and the details
are given by w (X)W B) =(T,, Ty, T4) where

Tw—T1 if Ty —T =0,
T

Ty— T, otherwise,

Tw—T2 iFTy—Ta=0,
Th =

Ty — T, otherwise,

) Tw—Ty ifT,,—Ti=0,

Fa s { Ty — T, otherwise.

MNow T, may occur at any of the four positions of
the block 2 = 2 submatrix. The situations of T,
occurring at (r,c) and (r + 1,¢) are illustrated in
the Fig. 2. In the first case T, occurs at position
{r,c) and all the detail values are positive. In the
second case T, occurs at position (r+ 1, ¢) and the
information is preserved by placing the negative
value Ty — T, as the horizontal detail.

The analysis operamr-pair{gb‘;,w;] can be used
recursively to decompose a signal upto a desired
level £=1. Similarly the synthesis operator-pair
{;&J.',wj'] can be used recursively to reconstruct a
signal from any level to the lowest level (0. It is easy
to see that the analysis and synthesis operators

Wavelet -
L~

Transform

Case |: Transform when Ty is maxi mum

Wivelet F
Transfarm

T, T, 1

Case 2 Transform when Ty is maximum

Fig. 2. Example for proposed wavelet transform.



L De, B Chanda | Signal Processing 86 ( 2006 ) 924-036 929

o il il
XI 'II" ||ie|kk|""
Image X 0K [IRA f-n.mlir-k B LEA
anoa o o ; H
Range [0, K] b i ¥ 1 k' ¥ dl
[R.R] |[-R.R] | |FR.R] |IFR.R]
[N (hi el

Fig. 3. {a) Original signal X {b) scaled :iigl'l_‘.il.l X' and details
¥'= b, vk vk at level L {e) scaled signal X * and details ¥* =

ﬂ_1=11. Vi v atlevel 2,

satisfy the perfect reconstruction and non-redun-
dancy conditions 79 pgiven in Section 2.1. The
operators ¢ and @' involve simple arithmetic
operations and one interesting point to note is that
the integer values are mapped to integer values
only. Another point to note is that, if all values of
X belong to the range [0, R)]. then analyzed signal-
values will belong to the range [0, R] and analyzed
detail-values will belong to the range [—R,R],
irrespective of the number of times the operators
are applied (see Fig. 3).

3. Image fusion

We now present the image fusion algorithm
proposed by us using the morphological wavelet
transform given in Section 2.3. Consider n two-
dimensional multifocus images X, X ... X,
These images must be registered and of same size.
The proposed analysis operators " and @', are
applied on the n individual images & times
recursively. If X, i=1,2.. ..k are Mx N
images, the analysis operators can be applied at
most kyay tmes where kpyo = min{|log, M],
[log, N ). After completion of the analysis opera-
tion, a set of n scaled image signals at the topmost
level & are obtained. They are denoted by
Xf,i = 1,2, ..,n A set of dewail signals }"‘: i=
1,2,...,n are also obtained at each level j, j = 1-k.
As mentioned in the last section, if the range of
image X' is [, B], then the range of scaled image
X% is [0,R] and the range of details Y/, j=
1,2,....k are [-R, R]. While comparing X*,i=
1,2,...,n positionwise, greater absolute value
corresponds to a brighter pixel and while compar-
ing ¥, j=1,2,... . k.i=12,....n positionwise,

ereater absolute wvalue corresponds to sharp
contrast changes such as edge, line and region
boundaries. Based on this observation, scaled
images Xf‘,e': 1,2,...,n are combined by com-
paring the wvalues at each position (r,c) and
choosing the one with greatest absolute value.
Similar operation is applied on corresponding
details at each level. Thus a single fused image at
level & and a detail at each level f, f=1,...,k are
obtained. Then the reconstruction phase begins.
The image at level k—1 is reconstructed by
applying the synthesis operators * and w* (as
proposed by us in the previous section) followed
by addition. Synthesis operators are applied &
times recursively to obtain the image at level (.
The algorithm can be summarized as below.

34, The algorithm

1. Analysis step: Apply the analysis operators
W' and ',k times recursively, on image X,.i=
1,...,n and get X; = { X%, ¥!, ¥2,.. ., ¥}, where
X% is the scaled image at level k and Y/, j=
l,...,k are the details at levels 1,2, ..k, respec-
tively.

2. Fusion step: Compare {X,i= 12, .., n}
and combine them into X = {X*, ¥' ¥?, .. Y&},
where XY* and ¥ are siven by Y o) =
max{|X5(r, o), |X4Cr, ). .., | X%(r, )]} and ¥X(r, )
= max{| ¥ (r, )| ¥a(r,e)l,.. .| ¥i(r, O]},  respec-
tively.

3. Synthesis step: Reconstruct the fused image
X at level j, j=k—1,...,0, by applying the
synthesis operators ¢ and o, respectively, on
X+ and ¥/ following by addition, i.e.

X r, o) = (X e, e)) + ot P (5 ).

3.2, Example

The algorithm is illustrated by using 2 x 2
sample data 4 and 8 taken from the multifocus
images X' and X, respectively.

Let
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where a; and b, i=10,1,2,3 are non-negative
integers. Applying the analysis operators ' and
' once, A becomes,

| |
ay a
0 I
A = I B
a; oy
where
.:;,:I, = fipay = max{a;, i =0,1,2 3} and
| Omax — & if trmax > ay,
al = ;
: —{tpay — tig)  otherwise.

Here a) is the scaled signal-data and a},i=1,2,3
are the detail-data at level 1.

Similarly, after the analysis operation, B be-
COMes,

by b
Al 70 M
[”5 ”5]
A" and B' are fused in C', by the fusion step,

where

C

e el

i ] and

10

| al if Iu]! |= ib,!l,
£y =
' b otherwise,

The fused data C at level 0 is obtained by applying
the synthesis operators = and w~ followed by
addition. Therefore

fori=0,1,2.3

R B | L

where

cp = r:',;l, + mind(l, r:'l ,r:'é, r:'_:l,] and

{ e if e <0,
o=

ch — el otherwise,

fori=1,213.

We now, claim that, ¢; is always less or equal to R,
where R is the greatest value of g and
by, i =0,1,2,3 This happens because ¢; is obtained
by subtracting a non-negative value from
¢y = max(a}, b)). However the lower bound of ¢

may not remain within the lower bounds of 4 and

B. The method can be applied to the complete
images X and X, by taking as many 2 x 2
samples as required.

4. Experimental resulis and discussion

The proposed method for image fusion has been
implemented in C language on Unix environment
and has been tested on a number of multifocus
images. We have compared our method with
similar methods using Haar wavelet and the two-
dimensional morphological Haar wavelet intro-
duced by Heijmans and Goutsias [12]. The
experimental resulis are shown in Figs. 4-7. In
each figure, the original muliifocus images are
given first, followed by the fused images obtained
by the proposed method and two other methods
mentioned above. The fusion is done by decom-
posing the constituent images up to the third level,
in all the cases. Time taken by these algorithms are
more or less same and not significant.

d 1. Performance analysis

Careful manual inspection of Figs. 4-7 reveals
that the results obtained by the proposed wavelet
are better than that of Haar wavelet and are
comparable to that of Heijmans and Goutsias’
method [12]. However this is a subjective measure
of quality and may not be universally acceptable.
Hence a quantitative measure is also given.

Gradient or derivative operators are useful tools
to measure the variation of intensity with respect
to immediate neighboring points or pixels of an
image [13]. It is observed that a pixel possesses
high gradient value when it is sharply focused. An
objective criterion based on this knowledge is
suggested to measure the quality of the resulis. The
eradient operator suggested by Roberts [14] is used
here. Thus magnitude of gradient Gir, ¢) at a point
{r,e) of image X is obtained by

Gir, o) = :HIX{:‘, cl)—Xir+ e+ 1)
+X(r e+ 1) = Xir+ 1,0}

It may be noted that Gir,c) is obtained from X
through a non-linear transformation. So, we
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{c) d)

{e) {f)

Fig. 4. Original multifocus images and the Mused images by dilferent algorithms: (a) Mear Focused image: (b midd le Tocused image; (<)
[ar Tocused image:; (d) Tused image with proposed algorithm; {e) Tused image by Haar wavelet; () Tused image by Heijmans and
Goulsias’ method.
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Fig. 5 Original multifocus images and the Tused images by dilTerent algorithms: {a) Lefl Focused image; (b) center Tocused image; (<)
right focused image; (d) Tused image with proposed algorithm: (e) Tused image by Haar wavelet; (1) Qused image by Heljmans and
Goutsias’ method.

cannot restore X'(r.c) from Gilr.e). However, focused images as follows. For a set of # multi-
Gir,c) for the image with all paris properly focus images X, i=1,..., s, the gradient images
focused may be obtained from various partially Gt =100 n are obtained first. Then, G, i=
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{a) Focus on backgroand {hl Focus on fosegroand

{c) Fused image with proposed algosithm {d) Fused image by Haar wavelel

{e) Fused image by Heijmans and Gosizas method

Fig. 6. Original multifocus images and the Nused images by dilferent algorithms: {a) Focus on background; (b) fecus on foreground; (<)
Tused image with proposed algorithm; (d) Tused image by Haar waveler (@) fused image by Hetjmans and Goutsias' method.

l,...,n are comhined into & by taking the Thus only the sharply focused regions from the
maximum gradient value at each position, ie. constituent images have their contribution in

Gir.e) = max{G(r, o) Galr, el Gulr o)l

for all (r, ¢).

the maximum gradient image G. Let & denote
the gradient dmage obtained from the recon-
structed image X', It is referred to as the gradient
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Fig. 7. Original multifocus images and the fused images by difTerent algorithms: (a) Focus on back ground; (b) focus on foreground: (c)
fused image with proposed algorithm: (d) fused image by Haar wavelet: (e) Mused image by Heijmans and Goutsias" method.

of fused image. Then, more similar & and @ are,
better is the fusion algorithm. The simiarity §
between two images is calculated as

\,-“:Z{ Gir,e) — G'(r,e))

! ol

S R

Hence, for an ideal fused image § approaches the
value 1. Similarity between maximum gradient and
fused gradient images are listed in Table 1. This
table alko conforms with the quality measured
through manual inspection.

The results obtained by our method are quite
good besides the fact that artifact such as block-

SG,6h=1-—

Tahble L
Similarity betaeen maximum  gradient and  Tused  gradient
images

Figure Proposad Haar Hetjmans and
Aleo wavelet Goutsius" method

Fig. 4 086l 0824 (1853

Fig. 5 0823 (835 0823

Fig. & 092 0926 0,930

Fig. 7 (1.840 0.744 01835

ing effects are noticed in the fused images in
some cases (see Fig. 4). But this is a common
phenomena in pixel-based image fusion using
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multiresolution approach and happens due to the
fact that error introduced at the topmost level is
amplified during reconstruction [6]. In our case,
these effects are obvious at the regions where the
data is out of focus in all the source images. They
are present in the fused images obtained by the
other two methods as well.

Apart from the quality of the results, the
proposed algorithm has some computational ad-
vantages as well Unlike two other wavelets
experimented with, our method ensures that integer
pixel values are mapped to integer values only
during both analysis and synthesis. This is an useful
property for lossless data compression [13]. Sec-
ondly, irrespective of the number of times the
analysis operators are applied, the range of the
values in the scaled images will be same as that of
the original multifocus images, say [0, R], and the
range of the detail values will be [— &, R]. Hence
memory-space required during decomposition is
fixed. Thirdly, simple arithmetic operations like
addition, subtraction and comparison are the only
operations used in the method. Other two methods
involve division operation and thus they either
requires floating point arithmetic or introduces
truncation error by using integer arithmetic.
Fourthly, due to the non-linear nature of the
proposed method, important geometric information
je.z. edges) is well-preserved at lower resolutions.
Finally, the method is very fast due to its simplicity.
For a set of n, M x N images, it takes only Oin x
M = N) computational time. The simplicity of the
method and the use of integer arithmetic makes it
suitable for chip-level implementation.

Besides this, the non-linear wavelet proposed by
us possesses the following invariance properties.
Both analysis and synthesis operators are transla-
tion invariant in the spatial domain. In the
frequency domain, they are grey shift (multiplica-
tion) invariant. That means adding (multiplying) a
certain value to all pixel values in the original data
will result in adding (multiplying) that value to the
scaled signal data during analysis [12]. Also, details
will not change in case of addition and will get
multiplied by that value in case of multiplication.
The wavelets possessing these invariance properties,
offer better option for image fusion than those
which do not possess them [8].

5. Conclusion

In this paper, we have presented a non-linear
wavelet constructed by morphological operators
and alo presented a multifocus image fusion
algorithm based on that wavelet. The results are
quite impressive considering the fact that the
computational cost is very low. The use of simple
arithmetic operations makes the method suitable
for hardware implementation. However the meth-
od suffers from the problem that sometimes
artifacts are formed in the fused image. But this
is & common problem for all other methods
experimented with in this paper. Our method is
definitely better than the Haar wavelet method and
is at par with Heijmans and Goutsias wavelet
method in this respect. These effects are obvious at
the regions where the data is out of focus in all the
source images. So if the intersection of the
defocused regions from all the source images are
reduced, then this effect will be minimized.
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