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Abstract

The mininmm disparity estimators for discrete models introduced by Lind-
say (1994, Ann. Statist, 22, 1081-1114) are useful and practical data analytic tools.
But for continuous models, further machinery such as kernel density estimation is
necded and general results concerning the efficiency and breakdown results are un-
available. In this paper we establish the asvmptotic normality for a subelass of
minimum disparity estimators which satisfy certain properties, as well as lay ot
general results for breakdown point analysis.
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function.

1. Introduction

Consider the peoeral setting of inference in a parametric class of distributions Fg =
{Fg.0 € @}, © C EP. Let G be the class of all distributions having probahility density
functions (pdf's) with respect to a dominating measure (e.g., Lebespone measure]. We
will assume that the model Fg 1s a subelass of G, which also contams the true data
penerating distribution (.

In parametric estimation one'’s goal is to estimate # efficiently when the model is
correct and robustly in case the true distribution is in the neighborhood of the model
but not necessarily in it. Several authors, Beran (1977), Tamura and Boos (1986), and
Simpson (1987, 1989) have demonstrated that the above poal is achievable by using
the minimum Hellinger distance estimator. Lindsay (1994) peneralized the earlier work
hased on Hellinger distance (HD) to a general class of disparities generating estimators
that are both robust and first order efficient for discrete models. A disparity & a measure
of discrepancy between a nonparametric density estimator obtained from data and the
madel density. In the discrete case one can simply uwse the empirical density function d(-)
as this nonparametric density estimate where d{ z) & defined to be the relative frequency
of the walue z in the sample. For contiomons models one requires a nonparametric density
estimator such as the kernel density estimator from the data, since the model is now
continmous while the data by itself is discrete. Although kernel density estimation is
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just used as an intermediate tool, it brings in all the associated problems of bandwidth
selection and rates of convergence. Unlike the discrete case, there is no general framework
providing the asymptotic results for minimum disparity estimation in the continnous case
althouph certain specific cases have been dealt with such as the Hellinger distance (Beran
1977; Tamura and Boos 1986) or the generalized negative exponential disparity (Basu
et al 1997, Bhandari et al 2000).

Here we provide a general setup which applies to a large subclass of disparities and
under which the appropriate minimum disparity estimators are first order efficient at
the model. We also present general conditions under which the breakdown point results
of the robust minimum disparity estimators may be established and 50% breakdown at
the model & attained.

Basu and Lindsay (1994) proposed a different approach to minimum disparity es-
timation in continunonus models, where they smoothed the model density with the same
kernel as well This approach leads to a peneral framework of asymptotic inference for
minimum disparity estimators but requires the selection of kernels relative to the model
for asymptotic efficiency which may not always be possible.

In this paper, we focus on the mathematical properties of minimum disparity es-
timators such as asymptotic normality and breakdown point results. Numerical studies
involving large scale simulations and real data examples will be undertaken in a future
paper. However the performance of several of the disparities proposed here have already
been studied in some detail. See Bhandari et ol (2000), Markaton et al. (1998), and
Park and Basu {2000).

The rest of the paper is organized as follows. We introduce and describe minimum
disparity estimation in Section 2. The consistency and the asymptotic normality of the
minimum disparity estimators are shown in Section 3. The breakdown point analysis is
given in Section 4. Section 5 presents several disparities in this class.

2. Minimmun disparity estimation

For the parametric setup of Section 1, let Xy, Xo, .., X, be arandom sample from
the distribution (7, and let

Gulz) = ﬁ Z‘H} (I ;ﬂ.’f,) i1

=1

define a nonparametric density estimator of g (the density function of the distribution
5], where w is a smooth family of kernel functions with bandwidth h,. For discrete
models, we will, without loss of generality, let the sample space be {0,1,2,...} and take
g to be the empirical density function, where g,,(x) i the relative frequency of the value
x in the sample. Define the Pearson residual at a point z as

G (z) — falz)
falz) 7

where fp is the density function corresponding to Fy. Lindsay (1994) constructed the
disparity pol-) defined as

(z) =

el FiY = f C(8) fo, (2)
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where C(-) be a real-valued, thrice differentiable, strictly convex function on [—1,20)
and C'(4) = 0 with the equality holding only when § = (). Here the integration is with
respect to the dominating measure. Notice that the above implies C*(d) < 0 for § < 0,
and C*'(#) = 0 for § = 0. Under the assumptions the disparity po(-) is nonnegative and
equaks zero if and only if g, = fa.

Examples of disparities include the likelihood disparity (LD) and the twice squared

Hellinger distance, defined by LD(g, fo) = [{glog(g/fe) — (fo —g)} and HD(g, fa) =

[ig*? — f; 2 12 respectively. The LD is a version of the Kullback-Leibler divergence,
and in the discrete case it is minimized by the maximom likelihood estimator (MLE) of
.

Let ¥ represent the pradient with respect to #. For any real valued function a{x)
we will let a'(z) and o”(z) denote its first and second derivatives with respect to .
In peneral terms, the minimization of the disparity po(g.. fo) over 8 € O pives the
minimum disparity estimator (MDE) corresponding to the function €. In particular,
when the disparity peo(-,-) is the Hellinger distance, this minimization produoces the
minimum Hellinger distance estimator (MHDE). Under differentiability of the model,
the minimum disparity estimating equation becomes

= P f,i{&jvfg =0, (3)

where A(8) = (4 + 1)C"(8) — C(d). The function A(4) is increasing on [—1, o), and
without affecting the estimating properties of the disparity po, it can be redefined to
satisfy A(0) = 0 and A'(0) = 1. This standardized function A(f) & called the resid-
ual adjustment function (RAF) of the disparity. Notice that the estimating equations
are otherwise equivalent so that the form of the function A(4§) determines the specific
properties of the estimator such as how strongly the effects of large probabilistic outliers
{which manifest themselves as larpe positive values of 4) are downweighted. The HAF
for the LD and HD are given respectively by A(d) = & and A(d) = 2[(§ +1)"/2 —1]. The
curvature parameter s = A"(0) is a measure of how fast the function curves away from
the line A{4) = 4§ at § = 0 (Lindsay 1994). Large negative values of A, provide greater
downweighting effect for large outliers relative to macdmum likelihood estimation, while
As = ) indicates a form of second order efficiency of the estimator in the sense of Rao
(1061,1062).
The minimum disparity estimator (MDE) is defined as

8, = Mg;él-{gﬂﬂ{yrhfﬂj'
Define the MD estimation functional T : G — O as
T(G) = argéggpc{% fo).

provided such a minimum exists. In case T is multiple-valued the notation T(() will
represent one of the possible walues chosen arbitrarily. Since T{Fy) = 8, T(-) is Fisher
consistent. By the definition above, the MDE & T((,), where (7, is the cumulative
distribution function (CDF) of the kernel density estimator g, based on the data.

For the rest of the paper we assume:

(a) C(-) is strictly comvex and thrice differentiable,
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(b) A(d) satisfies A(0) = 0 and A0 = 1.

Notice that A(-) is an increasing function and A{-) is strictly increasing when O] is
strictly convex. We now establish two mathematical results nseful for our subsequent
theoretical development.

Lemma 2.1, Let Dig.f) = Clg/f — 1) f, so that pclg.f) = [Clg/f —1)f =
[ D(g, f1. Then under the assumptions (a) and (b), we have the results:

(i) D(g, f) = A0, f)I(g = f) + D(g.0) I(f < g) = D(0,f)+ D{g,0),
(i) Dig, f) = C{-1)f + C'(=0)g,

where T(-) is the indicator function.

Proor. First, for g € [0, f] with fixed f, look at D{g, f) as a function of g.

i)
=D(g.f) =C'"(4-1) <0, Vge (0,
g f
gince C'(-) < 0 for & < 0. Hence Dig, f) < D(0, f) for g € [0, f]. Note that D(g, f) <
Cl=1)f for ¥g € [0, f].
Next, for f e (0, g) with fixed g, look at D{g. f) as a function of f.

ﬁ g_y8 8 g

=Dig, fl=—-C'{Z-1)2+C(5-1)=—-A(% —-1) <0, ¥fe(D,

a7 (g f) {f :'f 7 ) {f ) fe(0g)

since A(4) is an increasing function with A(0) = 0. Hence Dig, f1 < D{g.0) for f €
[}, g). This proves part (i). Note that

D(g,0) = lim C(g/t — 1)t = C"(=0)g,
so that part (ii) holds. [m]

Lenmma 2.2, Suppose that C(—1) and C' (o) are finite. Then the disparity po(g, f)
is bounded above by C{—1)+ " (~a).

Proor. This follows easily from Lemma 2.1 (ii). o

3. Consistency and asymptotic normality

This section is devoted to discussion of the efficiency of the minimum diparity
estimators under certain peneral conditions which is satisfied by a fairly large class of
disparities. The following set of results provides this framework.

TueoreEM 3.1, Assume that (a) the parameter space B is compact, (b) for 8 # 8a,
fa (z) # fa(z) on a set of positive dominating mensure, (¢) falz) is continuwous in 8
for almost every x, and (d) C{=1) and C'(20) are finite. Then (i) for any G € G, there
exists 8 € O such that TG = 8, and (ii) for any Fg. € Fg, T(Fg-) =87 is unique.



Minimum Disparity Estimation: Asymptotic Normality amd Breskdown point results 23

Proor. (i) Existence. Denote D(g, fo) = Clg/fo — 1)fs. Let {8, : 8, € O} be a
sequence such that 8, — 8 as n — oo, Since Dig, fo.) — D{g, fo) by assumption (c)
and [ D(g, fa.) is finite by Lemma 2.2 with assumption (d), we have

i S f D) f Dig, Fi) <6, Ji)

by a peneralized version of the dominated convergence theorem (Royden 1988, p. 92).
Hence po (g, fi) is continuons in # and achieves an infirum for + € 8 sinee B is compact.

(ii) Uniqueness. This is immediate from the identifiability assumption on the pa-
rameterization and the wigque minimum of €'(-). o

ReEvark., As in Beran (1977), the above result assumes a compact parsmeter
space B, but ako applies when 8 is not compact but can be embedded within a compact
set O, and the disparity pe(g,-) can be extended to a contimious function of # on 8.
For example, in the location-scale family

a

{fg{;r:j = éf (3' —ﬂ-) 0= {p,o) € (—oo,00) x (0,00), f {x:-rrtinm:-lri} ,

where the parameter space is not compact, (. ) can be reparameterized as 3 = (3, Fa),
po=tan{3), o = tan(F), and (5, 3:) € O = (—7/2,7/2) = (0, 7/2). It can be
easily checked that the disparity can be extended as a continnous function on 8 =
[ /2, 7/2] x [0, w/2] which is compact, while the minimum must occur in ©. Hence the
conclusions of Theorem 3.1 remain valid in this case.

TueorEM 3.2, Let ¢ € G be the true distribution with pdf g. Given a random
sample Xy, Xao. ... X, let the kernel density estimate g, (with CDF G, ) be as defined
in (1). Suppose that |C'(-)| is bounded on [—1, 2|, If T(G) is unigue, then under the
assumptions of Theorem 3.1 the functional TG, is continwous at T in the sense
that TG, converges to TG as g, — g in Ly,

Proor. Suppose that g, — g in L. For convenience, denote p(t) = po(g, fi) and
2elt) = polge, fr). It B easily seen that

lon(t) — ol8)] < f C(62) — C(O)| for

where d, = g./fi —1 and § = g/fi — 1. By the mean value theorem, there exists §%
satisfying
C(8,) — C(8) = C'(8*)(8, — 4),

where 8 lies between 8, and 4. Denote K = maxg |C'(8)]. Then we have

|on(t) — o(f)] = I{f|g,, —g| foral t €6.

Henee we have
sup |en(t) — e(f)] — 0, (4)
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a8 gy, — gin Ly, Denote 8, = arpginf, g, (1) and 8 = arginf, p(t). If p(#) = p,.(8,), then
o(f) — pn(8n) < 0(00) — 0u(0, ), and if g, (8,) = (@), then p,.(8,) — o(#) < p. (8) — o(#).

Therefore we have
[on(8) — o(8)] < |on(8e) — 0(8,)] + |2.(8) — 0(8)] =2 3':]-' lealt) — olt)],

which implies g, (8] — p{#) 88 g, — g in L. Using this and (4), we obtain
lim g(6,) = o(f). (5)

TE—00

Then we have only to show that 8, — 8. If 8, & 8, compactness of B ensures existence
of a subsequence {#,,} € {f#,} such that 8,, — 6 # &, implying p(f,,) — p(#*) by
continuity of p(-] (see Theorem 3.1{i)). By (5), p(#*) = p(f), which contradicts the
uniqueness assumption of § = TG, o

CoroLLary 3.3, If the conditions of Theorem 3.2 hold and g = fp, then 8, =
TGy) — 0 and pal fa . fa) — .

Proor. It & easily seen from Theorem 3.2 that 8, = TG, — # since T Fy) = 8.
Since #,, — 6, we have fa, — fg and hence [ |fs, — fa| — 0 by Glick’s theorem (Devroye
and Gydrfi 1985, p. 10). Since pcl fa.. fa) = [C(8.)fs with 8, = fa,/fo — 1 and
C{0) = 0, there exists §* such that C(4,) = €7({§*)4,. by the mean value theorem and it
follows that

o (i, ) S K f =i,

where K = masx; [(C'(#)]. This completes the proof. o

ReEmark., Suppose the parameter space 8 is not compact, and it & difficult to find
a compact embedding © such that the disparity extends contiomously to all the points
of B, In such a situation, a result of Simpson (19587, Theorem 1) may be applicable to
show that the existence and contimity results above still remain valid for the class G*
of distributions, where any G € G* satisfies

inf  pelg. i) = pely, fo-
reaaﬁ'm—'{y f) = pelg, fo-)

for some compact 8* C O and §* € 8*. Formally, suppose that fp(z) is continnons in §
for each . Then, for each G € G*, (i) TG exists, and (ii) if T(G) is unique, then the
condition g, — g in Ly implies that T{G,) — TG as n — oo.

In particular, suppose that conditions (b) and (¢) of Theorem 3.1 hold and the
parametric family satisfies

It po(fo.f) >0

for some compact 8" C 8. Then g, — fp in L; implies that T(G,,) — # as n — oo,

Next we introduce some notation. Let wp(z) = Vlog fa(z) be the p-dimensional
vector of likelibood score function, and let 92 fz(x) denote the p x p matrix of second
partial derivatives of fy. We will denote by uj(z) and ¥ fg(z) the i-th element of ug(z)
and (i, 7)-th element of V2 f3(z) respectively. Then

I8 = f uguy fo
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s the Fisher mformation matric, where the superscript T denotes transpose. For deriv-
ing asymptotic normality of the MDE we will assume that fy{z) & twice continuously
differentiable with respect to 8, and po(-, fo) can be twice differentiated with respect to
# under the integral sign. For the latter one, sufficient conditions are: for any # € 8,
there exists € > ), and functions Kj(x), LH (z) and U”{ ), 4, =1, ...,p, such that for
& satisfying ||# — 81| <€ (|| - || being the Euclidean norm),

mmwmﬂ{ﬂm1fﬂimdﬂinw:
(II) |FY far(z ]l|r.:L” fL”:::::u Li=1....m
(D) ey (2 udy (2) for ()] < M (), [ME <o0,ij=1,....p.

THEOREM 3.4, Suppose G = Fy,, g = fa,, Gn and g, are as defined in Theo-
rem 3.2, Let {0} denote any sequence of estimators such that ¢, = 8y + 0,(1), {a,}
any sequence of posittive real numbers gotng to oo, and Ty the indicator function for
the set B of real numbers. In addition to the conditions (1) — (111} above, assume the

following:

a) [V f4.— V9 fa| = 0p(1) and [ |w,:ﬁ" ui" j —w,;',“uj;“ Yool =well) &3 =1;..5p,;
for all {¢, } defined above.

{b) The matriz I{Hﬂ:l = is finite (element wise), and [ uy (z +4'3.:I*.*r,£ﬂl (z+a)fs,(z)de—
J ug, (= uﬂ z)fo (z)dz = D asfa| =0, 4,i=1,...,.p

(¢) The kernel w(-) is a density which is symmetric about {1, square integrable, and

twice continuouwsly differentiable with compact support 5. The bandwidth b, satis-
fies by, — 0, n'2h, — 0o, and n'/2hl — 0.

(d) limsup sup [ |V fa (z + y)ue, (z)ldz < 00 fori,j = 1,....p, where A, = {y:
n—sc yedn
y = hnz, z€ S5}
e] napyeg P X1 — hot| > a,) =0 as n — o0, for all {o,} defined above.

)
£) (n'/2h, )~ f|uﬂ“I| 1<an| — 0, for all {rt, } defined above.
)
)

g) SUP|y| <., SUPe 51 fao(x + hat)/ fa,(2)} = O(1), for all {a,} defined above.
h) A(8), A(8), A'(8)(F + 1) and A"(8)(d + 1) are bounded on [—1, od.

Then, (TG, )—T(G)) converges in distribution to N(0, I7'(8,)), where 8, = T(G).

Proor. By condition (¢), we have §,(x) == fg,(x) for every = and
[ 190(@) = fa () 0.

and hence TG, . 8. For conmvenience, denote on () = polgn. fo) and 8 = T(G,,).
Since § minimizes g, (-) over O, the Taylor series expansion of Vg, (#) at 8, vields

0= ﬁ?g,. \f"rhv!?ﬂ #fj + \f"'*?a!?ﬂ 'H 'Hﬂj
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where 81 is a point on the line segment L(f,#). The line segment is defined as the curve
joining a and b, that is, the contimous function f(f) = th+(1—flaon t £ [0,1]. It
follows that

Vil —80) = =V ga (81) "' VRV galbo).
Now it suffices to prove that
V2eu(0") T 1(00) (6)

amnd

—V o (By) == N(0, I(8)). (7)

First we prove (G). For convenience, denote 8,(8) = g,/ fo — 1. Differentiating with
respect to §, we have

V20, (6) = — f AB)V2 s + f A(8,) (B + Vgl fo

Let us denote By = supg [A(d)] and Bs = supg |A'(8)(§+ 1)|. By and By are finite from
condition (h). It follows that by condition (a)

| [ 46,7101 = ¥ 5o)| < By [ 1920 = V21l -0, ®)

amndd

|f A!{ﬁ,,{ﬂfjj{&,{HTj+l}{uﬂ1u§] fa —11,.3“11.§:If3“:|| < B-gfhr,mu;", fm—ﬂaﬂ'u.g:lfg“l Ll
(9)

Since A(0) = 0 and 4,(#") — 0 as n — 20, using the dominated convergence theorem
we have

[ 46,0771, -0,
and hence by (8)

[ 46,0 220,
Using condition (h), A'{0) =1 and 8,(#7) — 0 as n — 20, we have
[ AN (5,00 + Vo, fo, B [ o fo

by the dominated comvergence theorem and hence by (%)

f A (Bu(01){8.(0") + L}ugrued for —— f g, 15, fo,-

Therefore we have (6).
(7). Note that

Next we prove

_ngrl 'ql'.l \r"le 'RIJ vfﬂ:n
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and from the equations (3.12) and (3.13) of Beran (1977),

e f 5u(00)5 fa, = /7 f (9me — fo, Jugy 2> N(0, 1(60)).

Therefore, it is enough to prove that

v f 50(00)) — 9 (00)} ¥ fu| 2> 0. (10)

From condition (h) A{4) and A"{8)(§ + 1) are bounded. Thus using Lemma 25 of
Lindsay (1994), we have a finite B such that |.»-fl{1|"2 -1 —(r - 1:|| < B x(r—1) for
all v = (1. Evidently we have

|48 (80)) — du(80)| = |A({(on/fa)'"}* = 1) = [{{gn/f0a)'*F = 1]|
< B{(gn/fa)"* ~ 1},

Using this and (10), we have

|v"_ﬂf { A(d..(80)) —&.{Hfﬂ}?fah| < Bﬁf{y}lﬂ Y2 g, .

Newwr we consider
2
Vi [{ahf? = ] lua, |

From the inequality (@ — b)® < (a — ) + (b — ¢)? for real numbers a, b, e, we get Thus
using this, we have

v”_f{ym LY o) < Ty + T,

where Ty = /1 [{gn'” — (Egu( X))} ug, | and Ty = [ {£!" — (Ega(X))"/?}? |ua,|.

The term T} represents the Hellinper deviation of the {-"itlnu-l.f{}l' 7, from m mean and
its convergence to zero in probability has been established by Tamura and Boos (1986)
wsing conditions (e), (f) and (g). The term T, represents the bias in the Hellinger metric
and its convergence to zero in probability follows from conditions (¢) and (d). This
completes the proof. o

Remark. (Comments on the conditions in Theorem 3.4): Condition (a) is a sim-
ple continuity condition at the model. The second derivative of fy with respective to
@ is Ly-contimons and Eg[u“;uﬁ] is continuous in #. This condition Is satisfied by the
distributions of the exponential family. Condition (b) is satisfied if up (r) is uniformly
continnous in 7 on compact sets. Condition (¢) represent the key restriction on band-
width which may be chosen at the optimal rate h, ~ n =%, Conditions (e) — (g) have
been used and discussed by Tamura and Boos (1986, Theorem 4.1). The condition (h)
provides us convenient boundedness conditions lkeading to easy manipulation of the terms
in the normality proof. Notice that in (¢) we require n'2h! — 0 (not n'2h2 — 0).
This is compatible with the optimal rate h,, ~ n~ 5. Beran’s (1977) proof of Theorem 4
actually uses (in the notation of Beran) n'/2¢! — 0, although his condition (v) men-
tions n' 22 — 0. Similarly the correct condition (¢) of Theorem 1 in Basu, et al. (1997)
should be n'/2ht — 0 .8 n — oo,
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4. Breakdown point analysis

The breakdown point of a statistical functional is roughly the smallest fraction of
contamination in the data that may cause an arbitrarily extreme value in the estimate.
Here we establish the breakdown point of the minimum disparity functional T{G) under
peneral conditions. Consider the contamination model,

H;.:rl = {1 Lo f:'G + 'E.lr{"\

where {K,} is a sequence of contaminating distributions. Let h, ,,, g and &, be the
corresponding densities. Following Simpson {1987), we say there i3 breabdoun in T for
€ level contamination if there exists a sequence K, such that [T H, ) — TG — 0o as
n — oo. We write below 8, = T{H, ). We assume the following assumptions for the
breakdown point analysis. The assumptions reflect the intuitively worst possible choice
of the contamination, and the expected behavior or the functional when breakdown does
and does not oceur respectively. Assumption Ad denotes the specific assumption on the
disparity.

AssumpTioN. The contaminating sequence {k,}, the truth g(z) and the model fa(x)
satisfy the following:

Al [min{g(z), k.,(z)} — 0 as n — oco. That i, the contamination distribution be-
comes asymptotically singular to the true distribution.

A2 [min{fy(z), k.(z)} — 0as n — oo uniformly for |6] < ¢, for any fixed c. That is
the contamination distribution & asymptotically sinpular to the specified models.

A3 [min{g(z), fo.(z)} — 0 asn — oo if |#,| — 20 as n — oo. That is, large values of
the parameter § give distributions which become singular to the troe distribution.

Ad CO(—1) and "(20) are finite.

TueoreEm 4.1, Under the assumptions A1 — Ad above, the asymptotic breakdouwn
point =* of the MDE is at least 5 at the model.

FProor. Let 8, be the minimizer of po(h, ., fo). Given a level of contamination
e, let, if possible, breakdown occurs, that is there exists a sequence {K,,} such that

] — oo where 8, = T(H, ,,). Then

pothens fo.) = [ Dlhen@), fo@) + [ Dlbeat@), f0.)),

1.l.hc*r£- n = 17 : glz) > max(k.(z), fo_(z))} and D{g, f) = Clg/f — 1) f. Fram A1,
fA — (), and fr{:-m A3, fA fg :I — 0 as n — oo, so wnder &, () and fa_ (),

the wt A,, comverges to a set of zero probability. Thus on A, Dk, (2], fa.(z)) —
D1 —elg(z).0) as n — 20, 50

| fA D(hen(a). o, () - f D((1 - g(z), )] — 0 (11)

T

by dominated convergence theorem, and by Al and A3 we have

| L D1~ gl 0) - f D=l 10)] = 0. (12)
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Using (11} and {12), we have

|f (henl2), fo(z)) — fy}ﬂﬂul—a)y{m),m -0

Notice that for g > 0
D((1 - €)g(=),0) = lim D((1 —e)g(=), f) = (1 — €)C"(oc) glx)

amnd

f D((1 — e)g(x),0) = f D((1 - e)g(z),0) = (1 — €)C’(c0).
gzl

Thus we have
| fA D(hn(2). fo.()) ~ [D(1 = €)g(),0)] 0.

andd hence

fA Dilhain (), . (2)) = (1= 90 (o0);

From Al and A3, [, g(x) — 0 as n — oo, so under g(-), the set A{ converges to

a set of zero probability. By similar argpuments, we get

|f, @), fo.(@) = [ Dieka (@), fo ()] 0.

Notice that [ D(ek,(z), fa,(x)) = Cle — 1) by Jensen’s inequality. It follows that

lim inf (e s fo,) = Cle = 1)+ (1—€)C'(o0) = a (e),

say. We will have a contradiction to our assumption that {k,} is a sequence for which
breakdown occurs if we can show that there exists a constant value 8% in the parameter
space such that for the same sequence {k,},

lin sup peol fe s for ) < ag(e) (13

Te—+ 00

# then the {8, } sequence above could not minimize po(h, .. fo-) for every n.

We will now show that equation (13) & true for all € < 1/2 under the model when
we choose 8 to be the minimizer of [ D{(1 — e)g(z), fo(z)). For any fixed 8, let B, =
{z : ku(z) > max(g({z), fo(z))}. From Al, -»rB,, glz) — 0 and from A2, -»rB,, folz) — 0
as n — oo, Similarly from A1 and A2, fB,'j b (z) — 0 as n — oo, Thus under &, (-],

the set B} converges to a set of zero probability, while under g{-) and fa(-), the set B,
converges to a set of zero probability. Thus on B,,, D{h, .(z), folz)) — Diek,(z),0) as

n — oo and
|L D(h,n(2), folz)) - L}ﬂ (chn),0)| =0

T

by dominated convergence theorem. Notice that for &, = 0

D(ckn(x),0) = lim Dicku(z),f) = eC'(o0) kn(x)
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f D{E;;,,{::j,uj=fD{E;r,.{m:|,m=Ec’{m).
k=0

Similarly we have

| [ Dlent@). ofa)) ~ [ D= o). fo(z)] 0.

L

Henee we have

lim po(hen fo) = EC’{C?DII+_[D{{l—ﬁlly{$]hfa{$ﬂ

Te—0o0

> eC'(o0) +inf f D((1 — e)gl), folx))- (14)

with equality for 8 = 8*. Let az(e) = eC"(0a) + [ D((1 — €)g(z), fo- (z)). Notice from
(14) that among all fixed # the disparity po (ke ». fo) is minimized in the limit by §*.

If g(-) = fa(-). that is the true distribution belongs to the model, [ D{(1 —
2.(x)) = C(—¢) which is also the lower bound (over 8 € @) for [ D{{1 —
[:]

€l fo.(x). fa,
€) fa,(z), folz)). Thus in this case 8* = &, and from (14),
dim_pc(he.n, fo) = C(—€) + €C'(c0). (15)

As a result asymptotically there is no breakdown for € level contamination when
agle) < ap(e), where agle) is the right hand sides of equation (15). Note that a(e) and
agle) are strictly decressing and increasing respectively in e, and a3 (1/2) = ag(1/2), so
that asymptotically there is no breakdown and limsup, __ [T(H, )| < oo for e < 1/2.

o

5. Disparities in this class
The different conditions on the disparities that we have wsed in the different steps
of the efficiency proof may now be consolidated topether as follows:

(a) C(-) is strictly comvex and thrice differentiable,

(b) €{d) = 0, with equality only at § = 0 and C”{0) = 1,
(notice that the above implies A(0) = C'(0) = 0 and A'(0) = C"(0) = 1).

(e) C'(8), A(d), A'(8) , A'(6)(6 +1) and A”(§)(d+ 1) are bounded on § € [—1, 20|.

While these conditions may appear quite restrictive, there is a rich class of disparities
satisfying the above. We list some of them below. Each family below is indexed by a
single parameter o.

gy
mlg. f) = %I%, ae (0,1)

_ 2
plg. f) = lg—J) a € (0,1)

veg+afi+ag+af
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pslg, f)

palg, f)

ps(g, f)

pelg, f)

prlg, f)

where e =1 — o,

n

i/‘ [\a’rtgﬁ +rif2—a:g—r'1_f].,
1 [=7)*

2 Vag+art

(L {expla—ag/f)

—_

LT

a e (0,1)

-1} +

Thble 1: The C'{-) and the A(-) functions corresponding to p; disparity. Here o = 1 — .

Disparity o) BTN
42 5 al_a it
M Hadel] sipr T 3| e
R i I B
e Tty S+ 11240 o) oy f+1)2 40
P 5 & +3 &
——————y
—wb _ 11— 11 4dadle—=6
P e = 14 cuf [at+1) I[fx:ﬂ]ﬂ: i
2
4 F; A+l 2 F;
g 3 2EE+1 § 2 80
—dsin %m:j _[_'Ilr_a-.-z] ccﬁ(ﬁm) + - sin (ﬂ “—.zJ
2 I BE(A+L) 2 F; 2 F;
;Etan(%m) T5r2) S0 {Em)+;tﬂn(ﬂmJ

The family p; is the blended weight chi-square {BWCS) family (Lindsay 1994).
The member of this family for o = 1/2 & the symmetric chi-square (SCS) utilized by
Markatou et al. {1998) for robust inference. The families pa and pg are two other variants
of p; with similar properties. The family p; is the generalized negative exponential
disparity (Bhandari et al 2000) which inclides the negative exponential disparity of
Lindsay (1994) for o
functions and also satisfy the properties. Note that each of these three families contain
the SCS family as limiting cases of o — 0. The families p; and pg have been proposed

= 1.

The families p, pg and py are based on trigonometric
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by Park and Basu (2000). In case of both pg and ps, although these disparities satisfy
conditions (a), (b) and (¢), more theoretical and empirical investigations are necessary
to pet a better idea about the performance of the corresponding estimators. Notice
that condition (¢) above also implies €' (o0) and C'{—1) are finite, the conditions on the
disparity that are necessary for establishing the breakdown results.

It would of course be of great interest if one were able to pick out a method as
the optimal one from the multitude of methods discussed in this paper. That, however,
seems to be an extremely challenging task. Any idea of optimality in choosing a method
from any of the classes presented here will have to balance the two conflicting ideas of
robustness and small sample efficiency. It may be that the methods on one end of the
scale (say, larper values of o) will perform well in terms of efficiency, while those in the
other end of the scale (say, smaller values of o) will perform better in terms of robustness
{or vice versa), so that selecting a single optimum will be practically impossible. But
it may be possible to provide a band of values of « for which the resulting methods
will represent reasonable combinations of efficiency and robustness. This, however, will
require extensive numerical studies, and may be quite specific to the chosen parametric
maodel. At any rate, a selection scheme — data adaptive or otherwise — of choosing a
single method as the most snitable one from the the totality of methods deseribed here
will certainly require further research.

Another point worth mentioning is that at the current state of knowledge it ap-
pears to be very difficult to avoid the nonparametric density estimation nherent in the
minimum disparity approach presented here. The only way this may be avoided is if
the unknown true density g shows up as a linear term in the integrand of the disparity,
in which case dG may be approximated with the empirical distribution function. Any
other component of the disparity which involves g through something other than the
linear term must be independent of the unknown parameter 8. Unfortunately this & the
case only for the likelihood disparity which may be written as (ignoring the part of the
integrand which integrates identically to zero)

LD(g. fo) = f glog(a/fo) = f (log g — log fa)dG.

Here the right hand side is the difference of the term [ loggdG (which does not involve
6 and hence does not figure in the minimization) and the term [glog fo = [log fadG
(which involves g only linearly and hence may be approximated by [log fpdG, =
+ 3 i bog fa(X;)), and thus the minimization procedure can be carried out without
any nonparametric density estimation (here G, is the empirical distribution function).

This, however, is not the case for the Hellinger distance HD(g, fo) = [(g"/? — f;ﬂ]?‘ or
any other robust disparity.

Some related density-based minimnm divergence estimators have been discussed
in Basu et al. (1998) where the proposed estimators have bounded influence functions
and the construction of the estimating equations does not require any nonparametric
density estimation. However, these divergences are not in the general class of disparities,
and they do sacrifice full asymptotic efficiency to achieve their robustness. Thus, as of
now, nonparametric density estimation seems to be a necessary part of robust and fully
efficient parametric estimation.
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