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Novel Approach to Identify Good Tracer Clouds
From a Sequence of Satellite Images

Achintya K. Mandal, Srimanta Pal, Arun K. De, and Subhasis Mitra

Abstract— A novel hierarchical method for finding tracer clouds
from weather satellite images is proposed. From the sequence of
cloud images, different features such as mean, standard deviation,
busyness, and entropy are extracted. Based on these features,
clouds are segmented using the fz-means clustering algorithm and
considering the coldest cloud segment, potential regions for tracer
clouds are identified. These regions are represented by a set of
features. All such steps are repeated for images taken at three
consecutive time instants. Then, simulated annealing is used to es-
tablish an association between cloud segments of successive image
frames. In this way, several chains of associated cloud regions are
found and are ranked using fuzzy reasoning. The method has been
tested in several image sequences, and its results are validated by
determining cloud motion vector from the associated chains of
tracers.

Index Terms— Association of regions, best tracer cloud, cloud
motion vector (CMY), feature vector, tracer cloud.

L INTRODUCTION

OR AN understanding of the aumospheric circulation,
Funulysis of satellite image sequence is an effective ap-
proach. Weather satellite images are widely used for weather
forecasting and prediction purposes. This is important espe-
cially over the oceans where systematic measurements ane
difficult. Clouds over the ocean, on movement, gather huge
amount of water vapors from the ocean surface and approach
towvard the continental land. Even in some cases, these may
lead o formation of storms. The cloud motion vectors (CMVs)
are used w study the dynamic behavior of clouds [1]. For
estimating the CMV, the first step is o identify one or more
tracer clouds. This 1s a challenging task 1o meteomlogists.

Multispectral single frame satellite images offer limited in-
formation concerning the evolution of dynamic behavior. Vis-
ihle images are available only dunng daylight, but infrared (1K)
and water vapor (WV) imageries are very effective for cloud
motion detection study all through the day. A sequence of im-
ages taken at different time instants is generally used for cloud
molon cstmation.

Estmation of cloud motion has been discussed by different
researchers [2]-{4], but there is no widely accepled satisfactory
method. A popular method for the generation of cloud motion
veclor uses template matching based on cross-correlation co-
efficient [3] or other matching functions [4]. Cloud sequences
are charmewenzed by nonrigid moton, depth discontinuities,
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and ocelusions that degrade the performance of template-based
matching functions by producing false maxima in the correla-
tion surface [5].

Alternatve approaches o overcome these problems include
application of Hopfield neural network [6] and image warping
[7]. Comelation-relaxation labeling [5] uses relaxation labeling
to refine sets of velocity vectors produced by template matching.
This method produces alocally smooth motion field from a mul-
timodal correlation surface, but itis dependent on the quality of
the sets of mitial matches. Ordinal measures are a new class of
matching functions that, by virue of being based on the rel-
ative rank of the intensities within the emplates, are insensi-
tive 1o noise and distortion [ 8], However, ordinal measures have
poor discriminatory power and inerease the likelihood of false
maxima in the correlation surface. Though a somewhat betler
approach s reported in [9], these works are based on either the
whole image or are pixel based. Ofen to estimate CMV, one
finds a stable piece of cloud in an image #} aken at time instant
f. This stable clowd, known as a tracer cloud, 15 then tracked
i the next image A7 tken at ume mstant # 4+ 1. Onee the
tracer is identified in two successive image frames, there are
many methods o estimate CMY [10], [11].

In the present work we give more emphasis to identify some
“stable” cloud patches, which almost preserve ther shapes and
SL2ES 10 successive image fmmes.

This paper is organized into following six sections. Section
11 describes the feature extraction and cloud segmentation tech-
nigue. Section I deseribes the selection and labeling of cloud
clusters. Association computing technigues between bwo image
sequences are discussed o Section IV, The chains of tracer
cloud identification technigues with their ranking are presented
in Section V. Some experimental results with validation of the
proposed method are described in Section VI Finally, Section
WII concludes the outcome of this study.

1I. FEATURES EXTRACTION AND SEGMENTATION

Since clouwd mmages are highly texturous an intensity-based
segmentation technigue, such as thresholding, cannot provide a
desirable segmentation. The feature-based segmentation tech-
nigues are expected o work well for such cases. Here the well-
known &-means clustenng algonthm for cloud segmentation 1s
considered.

Image featwres are disunguishing primitive characteristics or
attributes of an image. Some features are natural in the sense that
they are easily visible in the images such as luminance of a re-
gion of pixels. On the other hand, aificial feawres are obtained
by specific manipulations of an image like busyness, frequency
spectrum ete. Image features are of major importance in the iso-
lation of regions with common property within an image (image



k14 [EEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 4, APRIL X005

Fig. 1.
() Fopa.

Three images (IR ) taken at a time interval of &0 min. (a1 & (b1 Ty

segmentation) and subsequent identification or labeling of such
regns (image classification).

Suppose three cloud image frames (Fig. 1), cach of size
tre ¥own, are obtaimed at tme instants £ 4+ 1 oand £ 4 2 from
a sequence of images taken over the same place. These im-
ages are aken by Dundee Satelhite Receiving Station (DSRS)
on August 23, 2002 at 0240, 0300, and 0440 GMT, re-
spectively, from the Meteosat-5 satellite, which has been
positioned over the Indian Ocean at 637 east. Resolution of
cach mmage 15 10 km'pixel. We have consdered a pant of
the image of size 261 « 251 pixels from the source image
(see wwwsat.dundee acuk/pdus.himl). Images are denoted as
Fo = [Alreyil]men. Py - = [Frle v en and Fyju =
[Fizula, 3]s, where iz ph, fopaile, g, frpele g are the
intensity values at (a3} of the first, second, and third images
respectively. Here 00 <2 [ le, o), [ lmwd, ficafoy) = 233,
for ] =0 < weand ) =0 3 0 e Unless situation demands,
for clarity the subscript § of Iy is being ignored o denote an
image & = [/, 1 ). . For segmentation, computation of
image featwes from 7 wusing neighborhood information is
done. Here the eight neighborhood 1s considered, but larger
neighborhoods may also be wsed. The eight neighbors of
po 18 shown in Fig. 2.0 The following four features for seg-
mentation have been computed using the usual formula for
the pixel po (Fig. 2): mean M, = (1/9 %7 oy, standard
deviation 7, Tl E?=“[;IJ{ - JH!,,]Q]l";‘Z, busyness
by, = (L7120 py — w2l + lis — pu| + 90 — wal + [ — | +
py = |+ s = s — wel + len = el = e — ol

+|ws -”g| — los — | + | — w2 and entropy
bny = Popogill = 15} where w = pif Y. . Here

busyness takes into account the direction of varation in in-
tensity, while standard deviation does nol. The entropy 15 a
measure of local homogeneily which takes the maximom value
when every pixel over 3 % 3 neighborhood has the same gray
levels.

Thus, corresponding toeach pixels at {1, ) of #', wecompule
a feature vector, x,, = (M gy ols ), e g ela, 10"
Therefore, for the entire image £ there will be a set of men vee-
ors Xr 1%1, Xa, .00 2, b For notational simplicity we
replace the two-dimensional subscrpt, (e, 1), by 8 one-dimen-
sional subscrpt. This data X is now used 1o segment the un-
derlying image I by the k-means clustedng algorithm into &
segments.

The k-means clustering algorithm partiions & 5. Since there
is & one-lo-one correspondence between the points in X g and
the pixels in the image ', a segmentation of the image can be
obtained.

Let the set of final centers obtained by k-means are denoted
a1t =i ,V:":}. When the input image is £y and

2= fix-Ly-1) | pi=fix-1y)
pa=fixy-1J

pa=fx+1ty-f)

pa=flx-Ly+1)
pr=flx,y+1)
p=flx+d 3+ 1)

pr=fin i
pi=fix+1,y}

Fig. 2.

Eight neighbors of jy at (e, 1, where 0 < a0 s and 0 <7 <2 0.
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Fig. 3. Extraction of candidate tracems for & — 1. 1) Segmemnted image.

(b} Coldest segments. (¢} Candidate regions with smallest bounding box.

the set of feature veclor 15 X o the Ii_mll sel of centroids will be
denoted by l'f = {"'ET:'l: "'f,-z: o

Fig. 3(a) depict the segmentation of the image £, for & = 6.
Here a segment (cluster) 1s represented by the average gray
values of the pixels belonging o that cluster. For that reason,
segmentation results closely resemble the imput mmage. We
have expenmented with various combinations (subsets) of
these features, and it is found that use of all four features can
produce more desrable (visually) segmentation [12]. So all the
subsequent discossion 15 based on segmentation produced by
the g-means algonthm wsing all four features. Some cluster
validity index may help vs w choose a suitable & for the best
segmentation of the mmage [13]. For this problem, it 15 not
necessary because here the objective 16 o find the cloud paches
in the coldest part of the cloud. Our experiment suggests f: = 5
or k6 is sufficient for this purpose [12].

III. SELECTION AND LABELING OF CLOUD CLUSTERS

Every segment (or a cluster) in the image usually consists of
a number of regions. In our discussion the word “segment”™ will
be vsed o represent all pixels belonging o a cluster, while a
“region” will correspond 1o a set of connected pixels belonging
Lo a segmenl

Let vf._i = 1.2 . __ % be the final set of centroids obtained
by the f-means clustering algorithm. Since our objective is to
find some “stable”™ cloud patches, we consider the “coldest™
cloud segment. In an IR image, colder areas of the cloud are usu-
ally represented by higher gray values. So from the set of final
cluster centronds, we select one whose average gray value com-
ponent has the highest value. Let this cluster be the [th cluster.
S0 all our subsequent analysis will be on the image segment
15 Fig. 3(b) shows the coldest cloud segment. After deciding
on the segment, we find the regions H;.8 = 1,2, ... i1y Lhat
can be obtaned by connected component analysis.

Algorithm: Finding Connected Components in IS
Step I [Binarization] Every pixel of F & I'5 is
assigned a value 1, otherwise (.
Step 2: |Initialization] Le el No— 2.
where, LabelNo is a variable for assigning
a label to each pixels of a region.
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Step 30 Pick up any pixel from the binary image
with 1 and assign a label, Labe (No.
Step 40 [Region growing| Check 8-neighbors
whose label =LabelNo.
If any one of them has value 1,
then assign the same label number to that pisel.
Step 50 Repeat Step 4 until no pixel with 1 in the
#-neighbors and label =LabelNo.
Stepe i Check for unlabeled pixel with value 1.
If not exist then stop.
Otherwise increase Labe!Ne by 1 and repeat Steps 3 to 6.

Al this pomt we make three reasonable assumplions:
1y very small regions (cloud patches) cannot be good candi-
dates for tracer clouds; 2) regions which share the boundary of
the image frame are not good candidates as they may disappear
from the next image frame; 3) regions with large holes are not
zood candidates for tracer clouds, as they may split up into
two or more pieces in the subsequent image frames. So, if
It = Mreshold — sive (T30, then we ignore it from further
consideration, wherne denotes the cardinality. In our expen-
ment we use Tp, = 30 pixels (heuristically chosen). Also, if the
region shares points of the boundary of the image frame, we
ignore it. Let the number of regions that are left be ;. Now,
we apply a hole finding algorithm in each of the remaining
regions. 1f the size of any single hole is greater than 10% of the
stze of region, we consider such a hole large enough and we
ignome such cloud patches. The size 10% 15 heanstically chosen
and there is a scope of finding a more desirable threshold. Let
the number of regions that are finally left out be w;, where
TR A TPT

Fig. 3(¢) show the candidate megions corresponding o
Fig. 3(b) and also mclude the smallest rectangular bounding
box (SEBB) for each region (cloud patch). The next step
mvolves  quantitative  characterization  of  these  megions.
Suppose a region 15 characterized by e attributes. For the
potential candidates we calculate a set of feature vectors
Vo= (3%, ..¥e ) T % is the dimension of the
vector ¥;. In this study, the following nine features have been
compuled from each region:

1) coordinates of top-left and bottom-right comer of the

SRBE;

20 averageX:average of all » coomdinates of the object pixel;

3) average): average of all y coordinates of the object pixel;

4) centroidX: centrond ¢ coordinate of the SEBB;

5) centroid¥: centroid y coordinate of the SRBB;

6) mass: wotal number of pixels;

71 averageGray Value: average of all gray values;

8) majorByMinor: ratio of major axis (length) and the minor

axis (breadih) of the SREBB;

9} areaByPeri: ratio of area (or mass) and perimeter (number

of boundary pixels) of the region.

Soforan image taken attime ¢ we get ¥ = {30, .. ¥ea b <
i where vy is the number of regions that are finally selected
from £,. Similarly, we cluster A4y and X, 4. and get finally
selected regions w,, and v, from the images 71— and 7\ _y re-
spectively. During clustering of X4, and X,_,, we initialize
the cluster centers by the centroids of Iy, Note that, these LT,
and v, could all be different. Table | shows the summary for the
coldest regions in three images.

#15
TABLE 1
SUMMARY FOR COLDEST REGIONS 1IN THREE IMAGES
Muinber of regions

Trnagmes | Totul | Sl Shering With | Tracuers

(v | {mass bonndary Ll

< T | Taal | Sraall | {mf

F a4 40 1] 5 b A lngs
Fii 46 a7 A A R Bl
Ty H AL i 4 % @ (1.}

IV, ASSOCIATION USING SIMULATED ANNEALING

From the image ! we have obtained wy candidate cloud
patches and from &% we got 3, candidate regions. For the
purpose of establishing correspondence between the regions,
only seven (oul of nine) features are used: averageX, average¥,
centroidX, centroidY, averageGrayValue, majorByMinor and
areaByvPeri. The mass may not be very rehable becauseits value
differ drastically between regions of the same images. Suppose,
in Iy we have two regions of size 100 pixels and 5000 pixels.
These two cloud patches in Iy is increased by say, 2%. So the
first region will take a size of 102 pixels while the bigger one
will be enhanced by 100 pixels. So if mass is used as a feature
the distance between megions will be strongly influenced by
mass. However we shall use the mass when we look at regions
more closely after establishing the correspondence. During
identification of best tracer using fuzzy reasoning we shall use
mass abomg with majorByMinor and areaBy Peri features.

A. Establishing Association Between Regions

Now we like o establish a one-to-one correspondence be-
tween regions in two successive images, here Iy and Iy . For
the tme being, let us assume that both images have the same
number, [x! of regions or potential candidates. A natural repre-
sentation of the correspondence can be done by a matnix 5 =
iileen. where g;; = 1 indicates that the ith cloud patch in
image F} is mapped o jth cloud patch of £, . Natrally for
a valid mapping every row and every column of & should have
exactly one 1 and all other entries are (1

For an example, if v = 7, then a valid mapping represented
by w,, = U%E j excepl s, #un. Sy, 500, and x5 are 1 4. Let
iky, be the cost of mapping region ¥ of F; toregion j of Fiq.0d,,
should be such that for a desirable correspondence cost should
be low while for an inappropriate match the cost should be
high. So the total cost for a comespondence is 3~ ;= Given
a useful iy, our objective is to minimize the total cost subject
to the constraints that every row and every column of & has ex-
actly one 1.

B. Association Energy Formulation

This association problem, a nondetermimstic polynomial
(NPycomplete [14], can be solved using a Hopfield network
[15] or by simulated annealing (SA) [16]. There are N n?
entries in 5. Associate a neuron with each s04. Le, consider
a Hopfield network with & neuron. The association network
with & neurons computes an optimal solution to this problem.
Here the network is described by an energy function in which
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the lowest energy state (the most stable state of the network)
corresponds o the best association.

The energy function [ £ should be formulated such that it
strongly favors stable states of the form of a permutation matrix
rather than more general states. Second, the global mimmum
of the energy should corresponds to the solution. So 7 may be
defined as

EEP D DITEED D) 3
[ ik o2k

= ;
";’ g o3l 4 pR NN sl W
= oo korsk

where A, M4, (7, and 12 are large posilive constants.

The sum of the first {second) term, will be zero if and only if
cach row (column) contams no more than one activated neuron,
the memaining entries in the row (column) are zermo. The third
term will be zero if and only if there are « entries, each of value
1, in the entire matrix. For a valid solution the first three terms
of (1) should be zero (any deviation from this should increase
energy significantly). So we take A, B, and €7 as large posi-
tive values. The fourth term is the actual cost of correspondence
when each of the first three terms has a zero value. & can be
casily mapped to a Hopfield network [15], and we can get a so-
lution to the problem. But using a Hopfield network, the solution
may be at a local minima depending on the imibal condition of
the network. S0, SA which goarantees the global minimais used
here.

C. Algorithm

The 5A [16] algorithm takes random walks through the
problem space, looking for points with low energies. If a
random step redvces the energy, it 1s accepted; otherwise, 1t
15 accepted with a probabality. Let /7 and £y be the energy
before and after a random step s made. Then the probability
with which the step is accepted is given by

Prabi k. B0 = {"" SN ”c Foy = E:" (2)
L 1By =

So steps resulting lower energy states are always accepted, and
if the new energy is higher, the transition can stll occur, and its
likelihood 15 proportional to the temperature ' oand inversely
proportional to the energy difference By — . Here v is a
constant. The temperature T is initially set to a high value,
and a random walk s camied out at that temperature. Then,
the temperature 15 lowered very slowly according 1o a cooling
schedule, for example: T — (T/ATY where AT is slightly
greater than 1. 50 far we assumed that both images have the
same number of regions n. However, the formulation can be ex-
tended for cases when two images have different number of re-
zions. Let the first image has » regions and the second image
has ' regions and # > »'. Now we add {n — »') number of
dummy objects in the second image. Define the cost of asso-
ciating ith region of image £\ w the jth region of image Fy 4
by o |¥e: — ¥i+1, o0 R Ty L2,
For the dummy objects the cost of association is defined as
ihi s Lz i o T i’ = 1,..., 1. where D is
a constant such that 2y > wmax{d;} where 7 = 1.2, 0
and 7 = 1,2, ... .n'. With this definition of the cost matrix, we

vl

are m a position o describe the detuled computation steps as
follows.

Algorithm SA: Association of Tracers
Step 1 Randomly generate a binary state matrix,
B Y o~ LA N T B O
and set suitable values for T, e, i, AT, V4,
Step 20 Assign N, = Dand V.., = 0, where
Nego is the number of transition ignored
at a emperature and V.. is the mumber
of accepted state change.
Repeat Step 3 through Step 8, while T = &
Step 30 Compute Toral Energy, £ using (1).

Srep 5: Change the state of the neuron, =, « 1 =,

Srep & Compute Toral Energy, B using (1)

Step 7o 1T ( E: < Ev ) accept the state change, V... — M., + L.
Else draw a random number 5.0 = ¢ = L.
Calculate Prold By, B using (2).

If {g = Prebi L, 100 ignore the state change,
pe, reset sip — 1 — s Mgy — Niga — 1.
Else accept the state change, Yac. — Yoo + 1

Step 8: If ¥, = V4 00 ¥ = ¥ thenset
T UEEA vand N, =00 N, =0

Step 9 End.

121

In our expedment T is initialized to 8000 K, A7
Lol,e 0l,s L5 Sl and Niy 300 Here X4isa
threshold on the number of accepted changes al a lemperature,
and N7 is the maximum number of transitions ignored al a
temperature. When the algorithm terminates, we gel a state
matrix where cach row has only one 1, and each column has
only one 111 5:; = 1, then the <th region of the first image is
associated with jth region of the second image.

V. IDENTIFICATION OF BEST TRACERS
USING FUZZY REASONING

The above procedure of finding the association is applied
between regions obtained from #; and #, - and the regions
obtained from Fyq and Fpoo0 This gives us two association
matrices giving possible association between potential tracer
clouds. For notabonal convenience, we denote these matrices
by ' rigilwsen and €2 faglien. where I is the association
matrix between the regions of Iy and the regions of I and
€3 for Iy and IFy_a. Note that, these matrices, in our carlier
discussion, were denoted by 5 = -.5',-._.;].‘“. Here a;; = 1, 1im-
plies that the ith region of I} is associated with the jth region
of 5. Similarly, if byr = 1 then the &th region of £5_) is as-
soctated with the ith region of the £} 2.

For a pair [y, fap ), if e = 1 and by, = 1, this defines a
complete chain of association. It implies that the fthregionofl £,
15 movied tothe sth regionin Fy 5 and thenitis moved as the kth
region in Ay . Soa pair like (e, by such that o, = 4 = 1
defines a chain of association giving the possible movement of a
cloud patch. If Fy, ¥y and Fy_, respectively have ne, n,, and
e potential candidates, then total number of such association
chains that may be obtained is A < mindng e, e b

The next task is to rank these 17 chains based on preserva-
tion of some shape and size attributes. Suppose the three regions
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mvolved inoa chain be Ky, Ay and Ay and each regilon s nepre-
sented by say » attnbutes. These attributes could be completely
different from the attributes used for establishing association
and may have some common attributes too. S0 ecach ol By A,
and fy can be represented by a vector in AL Let these three
vectors be aq. dy, and ag, where s, (a0 8000, a7
12,5

We first make a finguistic descaptionof If_as: &) is CLOSE
TO &y _ and A» is CLOSE TO &2 and A, is CLOSE TO ay,.
A is an attribute and CLOSE TO ay; is a fuzey set.

For example, suppose + = 2 and the two attnbutes are &) =
mazs and A. = compacrnegs{=arcaporimeter). Also let
Ay = (15, 2.3), then the cloud patch Ky is deseribed as patch
with “masy 15 CLOSE TO 15 and compactness 158 CLOSE TO
237 The fuzzy set (hnguistic value) CLOSE TO can be mod-
eled by a Gaussian or triangular membership function.

Given the linguistic description of Jiy, we now try to find to
what extent Rz and I match with Ity Let “A; is CLOSE TO
aj," be defined by a Gaussian membership function

pilal =cap i f-a;_.-ﬁ:“cr? (3
where standard deviation oy > {l. Then K. matches with
the description of £ to the extent v = wmin{ e, (ag ), J =

e, vt In place of the min operator, any other T-norm
[1?[ can also be uu,d Similady, i, matches with J¢; 10 extent
i wrind g g, J 1,2 ....r}. Therefore, the strength

of association of the chain Rhl?z, and [ty can be taken as
rravret e, (11 In this manner for cach of the M association chains
we can get M strengths, v f = 1,2, ..., M. The chains can
now be omdered in terms of ;. The chain with the largest »;
will be the most desirable tracer

MNote that, use of Euclidean distance between ::.']1 Laer ) and
o, oy may nol be useful, as different atributes have widely
different range of values. The fuzzy reasoning approach auto-
matically takes care of this aspect. The concept of the linguistic
descnption s also very natural, because a stable cloud patch
15 expected o mamtain its Imguistic desceription; this 1s how a
human expert will find a stable cloud patch.

V1. EXPERIMENTAL RESULTS

Fig. 1 shows three mpul images taken at a ume interval of
60 min. Table I shows the summary of different types of regons
in the coldest segment for three images. Fig. 4 displays the po-
tential tracer candidates (for & = &) left in each image and the
correspondence between the regions. Note that Fig. 40a) and (b)
have the same number of regions but Fig. 4(c¢) has more regions.
Our algorithm keeps the appropnate region unassigned. These
associations of tracers can now be used 1o estimate CMV, V¥ =
o, 85, where g (measured in meters per second) and # (mea-
sured in degrees) are the magnitude and direction, respectively,
based on relative displacement of (anerage X | averaged’) for
three cloud patches residing on three successive image frames
[11]. Mow for each chain of association out of A7 chains de-
scribed in Section V, we obtain two CMVs one from £, — Fii
and another from Moy — Fipq and ke the average of these
two CMVs.

MNext we calculate CMY usmg the cross-comelation tech-
migue. For ecach cloud patch of an association we select five
points as source points in &) and we find comesponding five

17

Fig. 4. Trmcers after association {a), {(b], and {c).

TABLE 11
RANKING OF DNFFERENT CHAIN OF POTENTIAL REGIONS oF FIG. 4
Keaion of | Rank CMY From CMY from Llittorenos
g [ Crows- in
— P Wethex Clorrelalion Chivs
oo es Vo— (.t — (| V= e
7T o7 5 I I5.34, 545, A0 . (.0, 1.1
3213 2 aBR, 2T GO0, 2ETA [ LI, 16
B—H =7 3 ¥.67, 2025 T.o0, 1825 [ DT, 2000
LU VR 4 T.78, 1078 AL 175 [ 0Ed @
4 4 5 3 127 2n0 [ LLGa, 1930 | 114 315
2 § — - fi PAs, M7.5 | 1260, 2125 [ 117, 350
b—3—B ! 4,45, 22510 T4, 28T.2 | 239, 422
l1—1—2 H 25, 23 Wb AVED | ALd, S

Largel points in Fy g, similady from Ky and F; e and then
we Lake the average. For each chain of association, we calcu-
late the difference of CMVYs obtuned by these methods. We
found that these difference increases as the rank increases,
except the last two associations. It signifies that the Rank-1
chain produces more accurate resulls than the other chains.
Table 11 presents the chains of potential tracer clouds and their
associated ranking along with their validity. The third column
represents the calculated CMY by our method, and the fourth
column by the cross-comrelation technique. The fifth column
shows the differences of the two technigues.

In the method proposed here, we have been able to circumvent
some of the shortcomings related to the well-known cross-corme-
lation technique (CCT) for studying the cloud motion. The basic
limitanon of the CCT s that there 15 a probability (whatever
small it may be) of selecting the source point within the non-
cloudy region; in that case, the estimation of CMVY 18 not an easy
task, erroncous as well, The novelty of the proposed method re-
sides in the fact that it does not leave any scope of estimating
the CMVY from noncloudy region. As through segmentation we
obtain the stable cloud patches, then the noncloudy regions are
automatically avowded. Imporantly by virtue of the method the
obtained matches among the cloud segments are unigue but such
camnol always be the case in CCT, where there 15 a chance of
multiple matches due o varous available matching valoe = pre-
defined threshold (say 0.8) for the cross-correlation coefficient.
Moreover, CCT fails for drastic as well as motational motion of
cloud. The linear moton for which it works faidy is not ex-
pected in cloud moton. The present method can cope with such
situations.
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VIL CoNCLUSION

A unigue hierarchical method for finding automatically good
tracer cloud is proposed and discussed. The method uses sim-
ulated annealing and fuzey reasoning. The method has been
tested in several image sequences and in each case it performs
very well. Meteorologists can use this method effectively to
overcome their challenging tasks of selecting best tracer cloud
from a given sequence of satellite images. With the help of
such a method, accurate estmation of ¢cloud moton vector and
vis-g-vis, faithful prediction on movement of a storm will be
possible.
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