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Abstract

Data visualization from a point set by estimating the underlying region is a problem of con-

siderable practical interest and is an associated problem of set estimation. The most important

issue in set estimation is consistency. Only a few existing point pattern shape descriptors that

estimate the underlying region are consistent set estimators (a set estimator is consistent if it

converges—in an appropriate sense—to the original set as the sample size increases). On the

other hand, to be used as a shape descriptor, a set estimator should also satisfy several impor-

tant criteria such as correct identification of number of components, robustness in the presence

of noise and computational efficiency. Here we propose such a class of set estimators called s-

shapes, which remain consistent in finite dimensions when the data are generated from any

continuous distribution. These set estimators can be easily computed and effectively used

for fast data visualization. Detailed studies on their performance such as error rates, robust-

ness in presence of noise, run-time analysis, etc., are also performed.
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1. Introduction

Finding the underlying region of a point set is a theoretical problem with substan-

tial practical relevance. In 3-dimensions (3D), data visualization by reconstructing

the volume from representative points has several applications [1–4]. In biomedical
imaging, 3D reconstruction of jell-like tissue-mass from stained particles is often nec-

essary in diagnosis. Among others, geographical information system (e.g., in case of

synthetic aperture radar images, the underlying region of scattering centers can effec-

tively characterize the target object), space science (estimating shape and size of re-

mote galaxy), atmospheric study (analyzing cloud mass), etc., are some relevant

areas where shape or region estimation from a point set is a very important problem.

This shape description from point set may be viewed as an associated problem of

the more basic question of set estimation from a finite number of sample observa-
tions drawn from the set [5,6]. The boundary of the estimated set can then be used

as the shape descriptor. For the purpose of set estimation itself, no shape-topology

based information is necessary and the whole computation should be unsupervised

and based on set theoretic formalisms. For a set estimator, the most important issue

is its consistency. A set estimator is consistent if it converges (in an appropriate sense

defined in the following subsection) to the original set, as the number of observations

drawn from it becomes large. In the literature, there exist several shape (boundary)

descriptors of point-patterns. Only a few of them have attempted to establish consis-
tency of their proposed descriptors as set estimators. The estimator that might be

used as a shape descriptor should satisfy a few important criteria. The estimator

should (a) automatically detect the number of independent disjoint components in

the true region; (b) be robust in presence of additive noise (observations outside

the region of interest that may be added at the time of data acquisition), and (c)

be computationally efficient. None of the set estimators known to us that may be

used as shape descriptors of point-patterns combine all the above properties.

Ray Chaudhuri et al. [7] introduced a measure called s-shape hull (or simply s-

shape) in the context of perceived border extraction of point sets in 2D. The idea be-

hind the s-shape is as follows: let the pattern plane be partitioned by a lattice of square

cells of �appropriate� length, s. Consider the hull, which is the union of the cells con-

taining points of the dot pattern. If the cell-length s is properly selected, this hull or a

�smooth� version of it approximates the underlying region of the point set or the region

of support. However, that shape descriptor was not consistent as a set estimator. Later

it was demonstrated that the particular choice of cell-size used in [7] led to inconsistent

set estimation and a more judicious selection of the cell-size was required [8].
In this paper, the notion of s-shape is extended to derive a class of consistent set

estimators in the context of high-dimensional data by appropriately modifying the

selection criterion for s. The spirit of the procedure is non-parametric in nature.

Smooth versions of s-shape are derived by binary morphological transformations.

The serial compositional properties [9] of basic morphological operators as well as

conditional erosion [10] are utilized for fast computation. The notion of s-shape spec-

trum, useful for a given set of observations (fixed n) is also presented. The set-con-

sistency of s-shape and its derivatives are established not only when the
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observations are generated by a uniform distribution over the region of support but

for any continuous distribution. The error analysis reveals that the order of error is

independent of the dimensionality of the data. The run-time of s-shape computation

is compared with another competing consistent set estimator.

Another important aspect of the paper is data-visualization via s-shape. A simple
algorithm with linear time complexity for s-shape computation, valid for any finite

dimension is presented. In particular, in 2D data, the robustness of s-shape in the

presence of noise is tested. Volume visualization in 3D via s-shape demonstrates

the ability of the estimator to distinguish multi-components, even when one compo-

nent is completely embedded in another. From the runtime analysis it is apparent

that s-shape based visualizer is considerably fast.

We begin the following section by formally defining consistency of set estimators.

Some important results existing in literature on this topic are also mentioned. It is
followed by the organization of the paper.
1.1. Consistent set estimation and existing results

Let x1; . . . ; xn be the realization of n independent and identically distributed (i.i.d.)

d-dimensional (d-D) observations drawn from a distribution } which is supported
on a set a, a finite union of bounded and connected subregions in the d-dimensional

real space Rd . Let clsðaÞ, intðaÞ, and oðaÞ, respectively, denote the closure, interior

and boundary of a. Let a�n � Rd be a set estimator of a based on the random sample

x1; . . . ; xn.

Definition 1. a�n is a consistent set estimator of a (denoted as a�n ! a) if the expec-

tation of the d-D volume of the symmetric difference between a�n and a tends to zero

as n!/. That is,
lim
n!1

E½kða�nDaÞ� ¼ 0; ð1Þ
where kðAÞ denotes the d-D volume of a set A in Rd . A more generalized definition

and treatment can be found in [5] where Grenander proposed a consistent set esti-

mator for data in real plane via the following theorem.

Theorem 1. Let a � R2 be a bounded set where kðoðaÞÞ ¼ 0 and heni be a sequence of
positive numbers such that n!/, en ! 0 and ne2n !/. Let a�n ¼

Sn
i¼1fX jkxi�

Xk6 eng. Then a�n is a consistent estimator of a under the assumption that } is uniform.

The same problem is considered by Mandal et al. [11] where the circular disk sur-

rounding each xi is replaced by a rectangular neighborhood. Since the choice of en in
Theorem1does not dependon x1; . . . ; xn,Grenander�s class of estimators does not have
the scale equivariance property and thus lacks a very important desirable feature.

Another consistent set estimator based on the Minimum Spanning Tree (MST) is

due to Murthy [12]. In this case, the radii en�s are made functions of x1; . . . ; xn in the

context of compact regions (see [13] for definitions).
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Theorem 2. Let a�n ¼ [fX jkY � Xk6 hn; Y 2 ung where hn ¼
ffiffiffiffiffiffiffiffiffi
ln=n

p
and ln is the

length of the MST un. Then a�n is a consistent estimator of a.

The result also holds when } is any continuous distribution. However, the result

cannot be extended to the case of union of multiple disjoint compact regions unless
the number of disjoint components is known. This method is sensitive to additive

noise.

The above two theorems, established only on R2, basically take the union of cer-

tain circular neighborhoods centering every sample point (in Theorem 1) or points

over the MST of sample points (in Theorem 2) as an estimate of the original set a.
In the context of shape description, there are a few methods on the boundary

shape computation of a point set by a triangular mesh derived from Voronoi/Dela-

unay tessellations Two classical works on this field are a-shape proposed by Edels-
bruner et al. [14] and for perceptual shape recovery from point set by Ahuja and

Tceryan [15]. Worring and Smeulders [16] considered the set consistency of a-graph,
a variant of the compact region bounded by the a-shape, in 2D. They established

that the a-graph of a connected set converges to itself. This is akin to establishing

the Fisher consistency in the context of parametric statistical estimation [17], rather

than showing strong consistency as a limiting result of the sample size. Recently,

Amenta et al. [18] have given an elegant definition called, crust for surface recon-

struction. It guarantees that for a ‘‘good sample’’ (having an appropriate sampling
density depending on the local surface curvature) from a smooth surface the recon-

structed surface will be topologically correct and convergent to the original surface

as the sampling density increases. However, the method could not be directly ex-

tended to the case where observations came from the interior of the object rather

than from its surface alone. In addition, the result is sensitive to noisy data. Two

other recent papers for 3D surface generation from Voronoi/Delaunay tessellations,

by Attali [19] and by Melkami et al. [20] may be mentioned in this connection.

As mentioned earlier, s-shape as a consistent set estimator was introduced in 2D
by Chaudhuri et al. [8]. Some initial indication about the possible extensions of the

method for high-dimensional data are available in [21].

1.2. Organization of the paper

In Section 2, d-dimensional s-shape based set estimators and their smooth ver-

sions are defined. The basic cell-size estimation criterion is described and the notion

of s-shape spectrum, useful for a given set of observations (fixed n) is presented. Sec-
tion 3 deals with set-consistency of the s-shape. Sections 3.1 and 3.2, establish con-

sistency under uniform and general continuous distributions, respectively. Set

consistency of the smooth version of s-shape, obtained through some morphological

transforms is considered in Section 3.3. The s-shape spectrum and its set consistency

are also presented. In Section 3.4, the error rate in estimation is analyzed.

The details of computer implementation of s-shape and its smooth versions are

presented in Section 4. It begins with the s-shape computation algorithm (Section

4.1). In Section 4.2, smoothing of s-shape via morphological operators is described.
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In Section 5, data visualization by s-shape and other experimental results are dem-

onstrated. It starts with results in 2D data. The rate of convergence and comparison

with MST based estimator as well as performances in presence of noise are demon-

strated. Section 5.1 discusses the role of d, the parameter controlling the structure of

the estimators. In Section 5.2, s-shape as a 3D volume visualizer is presented which
includes the run-time analysis. Section 6 presents a summary and directions for fu-

ture work.
2. Proposed class of set estimators (s-shape) and their geometrical interpretations

Let !n ¼ fx1; . . . ; xng be a random sample of size n drawn from the support set a
where a is a finite union of bounded and connected sub-regions in the d-dimensional

real space Rd . Let Wn be the isothetic (boundary surfaces perpendicular to the

ðd � 1Þ-dimensional coordinate planes of reference) hyper-rectangle with the small-

est d-dimensional volume covering !n, i.e., !n � Wn � Rd . For hyper-cubes (cells)

of side-length s, let us consider a lattice of isothetic cells g on Rd , with surfaces par-
allel to the ðd � 1Þ-dimensional coordinate planes. For any such lattice, define
GðsnÞ ¼ fg jg \ Wn 6¼ /g; GðsnÞ ¼ [fg jg 2 GðsnÞg; ð2Þ

HðsnÞ ¼ fg jg \ !n 6¼ /g; HðsnÞ ¼ [fg jg 2 HðsnÞg: ð3Þ

Here GðsnÞ denotes the union of cells intersecting Wn.

Definition 2. The d-dimensional s-shape HðsnÞ is the subset of GðSnÞ obtained by

joining the cells which contain at least one point from!n. HðsnÞ is called the lattice
representation of the s-shape HðsnÞ.

The d-dimensional volume of HðsnÞ can be given by kðHðsnÞÞ ¼ #HðsnÞ � ðsnÞd
where #HðsnÞ is the number of cells in HðsnÞ.

Starting from the cell nearest to the center of reference of the coordinate axes, let

the cells of GðsnÞ be ordered in a raster fashion in a d-dimensional array. For example,

for 2D case, starting from the cell in first column and first row one has to move along

the row (in the direction of dimension 1) by crossing the columns till the last column

attains. Then along the first column move one step down (in the direction of dimen-

sion 2) and resume moving along the second row and so on. Then GðsnÞ induces a d-
dimensional array (say,)� zt1;...;td � which indicates the number of points in the cell at

position ðt1; . . . ; tdÞ. Consider the binary projection of the array � zt1;...;td �, say
� bt1;...;td �, where bt1;...;td is one or zero as zt1;...;td is positive or otherwise. From the geo-

metric point of view, the set consisting of the positions of non-zero entries (grids) in

that binary projection may be considered as the foreground (object) while the rest is

the background. Because of one-to-one correspondences, one can interchangeably

use GðsnÞ for � bt1;...;td � and HðsnÞ for the foreground, respectively.
By generalizing the definition of neighbors in a 2D digital image, connectivity in

cells of GðsnÞ in Rd can be defined [22]: Any two cells in the foreground are neighbors
if they meet at a point, line, or a hyper-plane of dimension less than d in Rd . In case
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of background, two cells are neighbors only if they meet at a hyper-plane of dimen-

sion d � 1. Two cells g1, gl of same type (both in foreground or both in background)

in GðsnÞ in Rd are connected by a path of cells (in object or background exclusively) in

the form of a sequence, say, g1; . . . ; gi; . . . ; gl so that gi�1 is a neighbor of gi in GðsnÞ.
A component inHðsnÞ is the subset of cells where each cell in it is connected by a path
to any other cell in the same. The notion of hole in this context can be defined as a

connected component in the background with finite volume. Geometrically, it is a

union of empty cells completely surrounded by components of the s-shape.

2.1. Smoothed s-shape

It is apparent that the original s-shape may be corrupted with inconsistent small

holes and unwanted border-cracks particularly when cell size is quite small. Thus,
some smoothing that can remove such holes and cracks from the s-shape will be use-

ful.

Let HðsnÞ denote a superset of HðsnÞ and is defined as follows:
HðsnÞ ¼ fJ 2 Id j t 2 Id ; J 2 sdt ) HðsnÞ \ sdt 6¼ /g; ð4Þ

where, sd is a 3� 3� � � � � 3 (d-tuple) array with the center of reference located at

the middle position and sdt denotes the translation of sd to t.
It can be shown that HðsnÞ is the binary morphological closing of HðsnÞ with sd as

the structuring element in d-D integer space Id . The binary closing is a well-known

morphological filter that is defined as dilation followed by erosion with the same

structuring element [23,24]. Note that binary dilation and erosion of a discrete set

X by a (symmetric) structuring element Y is, respectively, defined by X 	 Y ¼S
y2Y Xy and XHY ¼

T
y2Y Xy , where Xy denotes the translation of X to y. Closing

�smoothes� the set from outside. Holes and outside narrow cleavages of �negligible-
size� (less than size of sd) are filled up and become part of the object. For example
in 2D, a background grid (pixel) g in I2 having 5 foreground grids in its 8-neighbors

with any configuration becomes a foreground pixel in the closed version.

However, it is often the case that some noise is added at the time of data (sample)

acquisition. To take care of such additive noisy data, the dual of closing namely open-
ing, i.e., the erosion followed by the dilationwith same structuring elementmay be con-

sidered. If one applies opening directly on HðsnÞ then the resultant set

H
s

ðsnÞ ¼ f[sdt j t 2 Id ; sdt � HðsnÞg preserves only those parts where the structuring el-
ement sd can be placed completely insideHðsnÞ and rest will be removed from the set.
Due to presence of possibly several small holes and cracks inHðsnÞ, any opening is only
effective when such small holes and cracks are already taken care. Thus, in presence of

additive noise,H
s

ðsnÞ, the morphologically clopen transform (closing followed by open-

ing with the same structuring element) of HðsnÞ is taken as the smooth version.

Let HðsnÞ and H
s

ðsnÞ denote the unions of all cells in Rd whose corresponding ref-

erence positions belong to HðsnÞ and H
s

ðsnÞ, respectively.

Definition 3. The induced hull HðsnÞðH
s

ðsnÞÞ is the (default) smooth version of the s-
shape HðsnÞ when all observations are (not necessarily) from the support set a.
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2.2. Choice of cell-size and the s-shape spectrum

The most crucial factor in computation of the s-shape is the estimation of the side-

length sn of the cells. Let us assume that for a set of n observations, the d-dimen-

sional volume of isothetic optimal covering rectangle Wn be Vn. Then the side-length
sn is chosen (as a function of a single parameter d) as
sn ¼ n�d
ffiffiffiffiffi
Vn

d
p� �

; 0 < d < 1: ð5Þ
To make the class of s-shape based set estimators more robust for a given sample

(fixed nÞ, we introduce the notion of s-shape spectrum in d-dimensions. It consists of

successive finer (with smaller cell size) approximations of the s-shape from the previous

one.When two adjacent s-shapes become close enough under certain relative measure,

the finer one is selected as the eventual candidate. This way the abrupt increase of the

cell size of s-shape due to few observations on a large support set or due to presence of
additive noise can be adjusted. In case of noisy data, as discussed above, cells covering

scattered noisy points in the s-shape are removed by the morphological clopening.

The shape spectrum is formally defined as follows:

Consider the sequence hHðstnÞi, t 2 I, where
stn ¼ n�d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðHðst�1n ÞÞ

d
q

; and Hðs0nÞ ¼ Wn: ð6Þ
Thus, kðHðs0nÞÞ ¼ Vn and s1n ¼ sn.
If one takes d ¼ 1=d then it can be shown that hHðstnÞi is a sequence where cell-size

is gradually decreasing and it converges after finite steps. In that situation, the se-
quence converges to a hull with a maximal volume where each non-empty cell con-

tains only one observation. However, when d < 1=d the strict monotonicity may not

be preserved. More discussion on the choice of d is available in Section 5.1.

Definition 4. The (finite) sub-sequence of hHðstnÞi starting from the first element

satisfying monotonic decreasing criterion is the s-shape spectrum of the given data.
3. Consistency of s-shape based set estimators

In this section, the consistency of the s-shape HðsnÞ is first analyzed under a uni-

form distribution. A data driven procedure is proposed regarding the choice of the

cell-size for which HðsnÞ remains consistent is established. Later it is generalized to

the case where the sample is generated randomly from any continuous distribution.

3.1. Points from a uniform distribution

We assume here that }, the distribution from which n i.i.d. observations

!n ¼ fx1; . . . ; xng are drawn, is uniform. Recall that } is supported a, a finite union

of bounded and connected subregions in the d-dimensional real space Rd . Without

loss of generality, let the (d-D) volume of a be p ð06 p6 1Þ and that of W , the op-
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timal isothetic hyper-rectangle covering a be 1. As mentioned earlier, let the (d-D)

volume of the optimal hyper-rectangle Wn covering !n be Vn ð6 1Þ i.e., kðWnÞ ¼ Vn
and sn ¼ n�dð

ffiffiffiffiffi
Vnd
p
Þ; 0 < d < 1.

Henceforth, unless noted otherwise, GðsnÞ, HðsnÞ, GðsnÞ, HðsnÞ will be simply de-

noted by Gn, Hn, Gn, and Hn, respectively. Let Tn, In, Bn denote, respectively, the un-
ion of cells in the lattice in Rd intersecting a (some of them may not contain points of

!n), completely in the interior of a, intersecting the boundary of a. Let nI and nB rep-

resent the number of points of !n in In and in Bn, respectively. Clearly, Tn ¼ In [ Bn

and n ¼ nI þ nB.
By the Strong law of large numbers (SLLN) any sub-region of a eventually has a

point chosen from it with probability 1 as n!1. Thus Wn ! W in the sense of (1)

as n!1 and Vn ! 1 with probability 1. Note, #Gn is approximately ndd, and

limn!1ðndd=#GnÞ ¼ 1. Since the boundary has (d-D) volume zero, it follows that
lim
n!1

#In
#Gn

¼ lim
n!1

#In
ndd
¼ p; ð7Þ
while
lim
n!1

#Bn

#Tn
¼ 0 andn!1

#nI
#n
¼ 1:
Thus, one can use the representation nI ffi nan where an 6 1 and limn!1 an ¼ 1. By

a simple probability argument, under the assumption that the observations are i.i.d.,

the expected proportion of empty cells (cells not containing points of !n) among the
#In cells in the interior of a is
1

�
� 1

#In

�nan

¼ 1

�
� ndd

#In

1

ndd

�nan

: ð8Þ
By (7), the limit of the expression as n!1 on the right-hand side of the above

equals to e�1=p if d ¼ 1=d; equals zero if d < 1=d; and equals one if 1=d < d < 1.

Thus, the expected proportion of empty cells in the interior of the region a goes to
zero whenever d < 1=d. Since the proportion of empty cells in the interior of a is a

non-negative random variable, this proportion itself goes to zero in probability as

n!1 by Markov�s inequality. Also, since limn!1ð#Bn=#TnÞ ¼ 0 (where

kðBnÞ ! 0 as n!1) it follows that proportion of empty cells among Tn goes to zero

in probability. Since Hn is the union of non-empty cells, kðHc
n \ aÞ ! 0 in probability.

On the other hand, ðHn \ acÞ � ðIn [ BnÞ \ ac ¼ ðIn \ acÞ [ ðBn \ acÞ ¼ ðBn \ acÞ
� Bn. Thus, kðHn \ acÞ6 kðBnÞ. Since, kðBnÞ ! 0 as n!1; kðHn \ acÞ ! 0 as

n!1.
Combining the above two results, kðHnDaÞ ! 0 in probability. In addition, since

kðHnDaÞ is a bounded random variable, EðkðHnDaÞÞ ! 0 as n!1.

Theorem 3. Let !n ¼ fx1; ::; xng be i.i.d. observations from a uniform distribution
supported on a, a finite union of bounded connected subregions in Rd . Let Wn be the
optimal hyper-rectangle with volume Vn covering !n in d-dimensions. If sn ¼ n�d

ffiffiffiffiffi
Vnd
p� �

,
0 < d < 1=d, then the s-shape HðsnÞ is a consistent estimator of a in d-dimensions.
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The positive fraction d, the only parameter used in the s-shape description, acts

like a resolution parameter. A value of d closer to zero means larger-sized cell

and the resulting s-shape is a much cruder representation compared to the case

where d is close to 1=d. More discussion on choice d in different situations is

in Section 5.1.

3.2. Points from arbitrary continuous distributions

Let a be as defined in Section 3.1 where kðaÞ ¼ p, ð0 < p6 1Þ and f ð> 0Þ be a con-
tinuous density function supported on a. Let !n be a set of points drawn at random

from a according to f . W and Wn are defined as in Section 3.1. with kðW Þ ¼ 1 and

kðWnÞ ¼ Vn.
Let }ðQÞ be the probability of Q � a under f . Given any e > 0, one can choose a

m sufficiently large so that the region am ¼ fx jx 2 a; 1m < f ðxÞ < mg satisfies

kðamÞ > p � ðe=2Þ. Let }ðamÞ ¼ p0. Also assume that kð@ðamÞÞ ¼ 0. Let Tm;n, Im;n,
Hm;n, denote, respectively, the union of cells in the lattice intersecting am, completely

in the interior of am, and the cells in am containing points of !n. Rest of the notations

are identical to the previous section. As in the previous case, Wn ! W and Vn ! 1 in

probability.

Notice that the definition of am implies, for any cell g in Im;n and a point z in !n,
1
mkðgÞ < }ðz 2 gÞ < mkðgÞ and }ðz 2 Im;nÞ < m#Im;nkðgÞ.

Thus,
}ðz 2 gjz 2 Im;nÞ ¼
}ðz 2 gÞ
}ðz 2 Im;nÞ

>
1
m kðgÞ

m#Im;nkðgÞ
¼ 1

m2#Im;n
: ð9Þ
Let mI denote the number of points in the interior of am. We use the representa-

tion mI ¼ nan. Since }ðamÞ ¼ p0, and kðoðamÞÞ ¼ 0, limn!1 an ¼ p0. For the mI points

that lie in Im;n, let p00 be the probability that a cell g in Im;n remains empty. Then from
(9),
p006 1

�
� 1

m2#Im;n

�mI

¼ 1

�
� 1

m2

ndd

#Im;n

1

ndd

�nan

: ð10Þ
As in the previous section, the limit of the expression on the right hand side of
the above equals zero only when d < 1=d. As a result, the expected proportion of

empty cells in the interior of am goes to zero. As the proportion is a non-negative

bounded random variable, it itself goes to zero in probability. Since kð@ðamÞÞ ¼ 0,

this implies kðHc
m;n \ amÞ ! 0 as n!/. Therefore, kðHc

n \ amÞ ! 0 in probability.

For any given e > 0 and 0 < t < 1, we can choose M and N such that whenever

mPM , nPN and d < 1=d, the probability
P k Hc
n \ a

� ��� ���
< e
�
P P k Hc

n \ am
� ��� ���

< e=2
�

P P k Hc
m;n \ am

� ���� ����
< e=2

�
P 1� t: ð11Þ
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As (11) is true for arbitrary e and t, kðHc
n \ aÞ ! 0, in probability. Also,

kðHn \ acÞ6 kðBnÞ ! 0 as n!/. Combining these results we have, kðHnDaÞ ! 0

in probability.

Thus, the following theorem is established.

Theorem 4. Let !n ¼ fx1; . . . ; xng be i.i.d. observations from any continuous distri-
bution } having support a on which its density f is positive. Then the s-shape HðsnÞ is a
consistent estimator of a in d-dimensions under the conditions of Theorem 3.

Hereafter, we assume that the distribution of the sample points is uniform. The

minor difficulties that arise for other distributions can be covered by a more elabo-

rate treatment.
3.3. Set consistency of the s-shape derivatives

3.3.1. Set consistency of HðsnÞ
The smoothed induced hull HðsnÞ in general, is a better representation of the

shape of a dot pattern than s-shape. The consistency of Hn (which is an abbreviation

of HðsnÞ) is analyzed. It can be easily verified that
kðHnÞ6 kðHnÞ6 3dkðHnÞ: ð12Þ

As Hn is a superset of HðsnÞ; kðHc
n \ aÞ ! 0 in probability: ð13Þ
The boundary error may increase in case of HðsnÞ. But as

kðHn \ acÞ < 3dkðHn \ acÞ,

kðHn \ acÞ ! 0 in probability: ð14Þ
The above two equations result in the following theorem.

Theorem 5. The smooth induced hull HðsnÞ is a consistent estimator of a under the
same condition imposed on Theorem 3.

3.3.2. Set consistency of elements of the s-shape spectrum

Here we analyse the consistency of HðstnÞ for finite t�s. It is sufficient to establish

that the expected proportion of empty cells completely in the interior of a goes to

zero for sufficiently large n. The rest of the proof is similar to that of Theorem 3.

Let HðstnÞ be denoted by Ht
n and #I tn be the number of cells completely in the in-

terior of a with cell size stn. Similar notations are also used for other related terms.

Now,
stþ1n ¼ n�d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k H 0

n

� �
d
q Yt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k Hi

n

� �
k Hi�1

n

� �d

s
; tP 1; where k H 0

n

� �
¼ Vn: ð15Þ
We want to show that Htþ1
n is a consistent estimator of a for any finite positive

integer t.
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With the initial cell length s1n, let the optimal window Wn covering !n be parti-

tioned into #G1
nð� nddÞ cells and the consistency of H 1

n , i.e., HðsnÞ has already been

established. For successive t, #Gt
n and #Ht

n will be similarly defined. Now consider,

the case for t ¼ 1
s2n ¼ n�d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k H 1

n

� �
d
q

¼ n�d
ffiffiffiffiffi
Vn

d
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

k H 1
n

� �
Vn

d

s
:

By the consistency of the s-shape generated with cell length s1n,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k H 1

n

� �
Vn

d

s
! ffiffiffi

pd
p

: ð16Þ
And
#G2
n �

Vn
n�ddk H 1

n

� � � ndd

p
for large n: ð17Þ
Also
lim
n!1

#I2n
#G2

n

¼ p impliesn!1
#I2n
ndd
¼ 1: ð18Þ
Thus, the expected proportion of empty cells among the #I2n in the interior of a is
1

�
� 1

#I2n

�nan

¼ 1

�
� ndd

#I2n

1

ndd

�nan

where limn!1an ¼ 1: ð19Þ
For arbitrary large n, the above relation tends to e�1 if d ¼ 1=d; equals to 0 if

d < 1=d; and equals to 1 if 1=d < d < 1.

Thus, for t ¼ 1, Htþ1
n is a consistent set estimator under the conditions of Theorem

3. Note that for t ¼ 2,
#G3
n � ndd

Vn
k H 1

n

� �
" #

�
k H 1

n

� �
k H 2

n

� �
" #

: ð20Þ
Now, Vn=kðH 1
n Þ and kðH 1

n Þ=kðH 2
n Þ tend to 1=p and 1, respectively, for large n.

Thus, for large n
#G3
n � #G2

n �
ndd

p
: ð21Þ
Subsequently, for t ¼ 2, Htþ1
n is also a consistent set estimator under the same con-

ditions. Thus, by induction, the following theorem is established.

Theorem 6. For any finite sequence in t, each element of the s-shape spectrum hHðstnÞi
is a consistent estimator of a under the same conditions imposed on Theorem 3.

3.3.3. Consistency of the clopen version of the s-shape �HHðsnÞ
Let A denote the event that any non-zero position in the smooth binary projection

HðsnÞ � Id , whose corresponding cell lies in the interior of a, remains non-zero after
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opening. Now, to show the consistency of H
s

ðsnÞ, it is sufficient to establish that the

probability of A, P ðAÞ ! 1.

Consider a window, w of size 5� 5� . . .� 5 (d-tuple). Let b be a non-zero (fore-

ground) grid of HðsnÞ. It can be verified that to convert the value of b to zero (back-

ground) by opening with the structuring element sd , at least two zero valued
positions should exist in the w centered at b. (The number of required grids in back-

ground of w increases with the dimensionality). Let g ¼ number of grids in the back-

ground lying within w and adjacent to the foreground position, b in HðsnÞ. For
i ¼ 1; 2; . . . ; 5d , let vi be the characteristic function defined by
vi ¼
1 if ith grid is empty;
0 otherwise:

	
ð22Þ
represent the status of the ith cell in the 5� 5� � � � � 5 (d-tuple) surrounding b.
By Markov�s inequality,
P ðAÞ6 P ðgP 2Þ6 EðgÞ
2
¼ 5d

EðviÞ
2
! 0: ð23Þ
Thus, we get the following theorem.

Theorem 7. The clopen version of the s-shape, H
s

ðsnÞ is also a consistent estimator of a
under the same condition imposed on Theorem 3.

One interesting observation from (21) is that for large n there is no significant

change of the s-shapes in the spectrum for tP 2. Thus, whenever there is no apriori

information on the support a (such as shape number, volume etc.), Hðs2nÞ, which is
the element of the s-shape spectrum after the second iteration is taken. For smoother

rendering Hðs2nÞ may be taken as the final output. However, if it is suspected that the

data is noise-prone, then the clopen version H
s

ðs2nÞ should be adopted.

3.4. Error rate

It is crucial to have an idea of the order of error (in terms of the symmetric dif-

ference of volumes between a and a�nÞ when the procedure is terminated at a partic-
ular value of n and the corresponding estimate a�n has been determined. We provide

an upper bound to this error when the points are drawn under a uniform distribu-

tion. We consider the hyper-cubes in the interior and the boundary of a separately.

The error in the interior EI , related to the proportion of empty grids, is equal to
EI ¼ kðInÞ � 1

�
� c1

1

ndd

�c2n

ð24Þ
where c1 and c2 are positive constants.

The logarithm of the RHS of (24) is taken. Expanding logð1� c1ð1=nddÞÞc2 n and

then exponentiating back, the leading term of EI is found to be
expf�ðc1 � c2Þnð1�ddÞg.

Let fð@ðaÞÞ denotes the d-dimensional surface area of a (in d � 1 dimensions).

Then the error EB in the boundary satisfies
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EB 6#Bn � n�dd

6
fð@ðaÞÞ
n�ðd�1Þd

� �
� n�dd

6 c3n�d; where; c3 is a positive constant:
Note that the error in the boundary dominates that in the interior. Thus, the error

in estimation is at most of order Oðn�dÞ. One important point to note is that the error

is independent of the dimensionality.
4. Implementation

In the following, a simple algorithm of linear order time complexity is presented

on s-shape, which can be applied for data in any finite dimensions. The method is

somewhat similar to the clustering analysis method by binary morphology proposed

by Postaire et al. [9], which may be consulted for detail computational analysis. The

smooth versions of s-shapes are derived by basic morphological operators whose se-
rial compositional properties are exploited, i.e., unit-dimensional arrays of size three

are used as the structuring element for 2D as well as 3D data.
4.1. Computation of the s-shape

Input: Consider a set of n d-dimensional (random) observations !n ¼ fx1; x2; . . . ;
xi; . . . ; xng where xi ¼ ½xi;1; xi;2; . . . ; xi;j; . . . ; xi;d �T, xi;j 2 R1 for i ¼ 1; 2; . . . ; n;
j ¼ 1; 2; . . . ; d. The input is provided by a 2D array x½n�½d�. The resolution parameter

d is also given.

Step 1. Find
O0  min
i

xi;1;min
i

xi;2; . . . ;min
i

xi;j; . . . ;min
i

xi;d
j kT

;

O00  max
i

xi;1;max
i

xi;2; . . . ;max
i

xi;j; . . . ;max
i

xi;d


 �T
;

l ½l1; l2; . . . ; lj; . . . ; ld �T where lj ¼ max
i

xi;j �min
i

xi;j and kðWnÞ  
Yd
j¼1

lj:
Note that Wn is the optimal isothetic hyper-rectangle covering !n and its two op-

posite-diagonal corners are O0 and O00.
Step 2. Set t 1, s0  kðHðs0ÞÞ  kðWnÞ;#Ht  0.

Step 3. Find the initial side-length of cells of the s-shape Hðs1Þ: s1  n�dð
ffiffiffiffiffiffiffiffiffiffiffiffi
kðWnÞd

p
Þ.

Step 4. Find L ½dl1ste; d
l2
st
e; . . . ; dljste; . . . ; d

ld
st
e�T; #L 

Qd
j¼1 Lj where Lj ¼ dljste.

Step 5. Initialize one 2D integer array b½n�½d�, one single-dimensional integer array

tag½n� and one single-dimensional binary array z½#L� with zeros.

Step 6. For each k ¼ 1; 2; . . . ; n, find
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bk ¼
xk;1
st


 �
;

xk;2
st


 �
; . . . ;

xk;j
st


 �
; . . . ;

xk;d
st


 �� 
T

and  !
index 
Xd
j¼1

bk;j �
Yj�1
m¼1

lm þ 1; where bk;l ¼
xk;l
st


 �
; xk;j  xk;j �min

i
xi;j:

tagk  index;

If ðzindex is zeroÞfzindex  1; #Ht  #Ht þ 1:g

Step 7. Find the volume of the s-shape HðstÞ : kðHðstÞÞ  #Ht � ðstÞd
Step 8. If
jkðHðst�1ÞÞ � kðHðstÞÞj
kðHðst�1ÞÞ

�
> e

�
^ ðt6MaxitÞ

stþ1  n�d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðHðstÞÞd

p� �
t t þ 1 and go to Step 4:
Output: b, tag, st;O0 and LðL1; L2; . . . ; Lj; . . . ; LdÞ.
The constant Maxit is two in the case of unsupervised learning. For details, see

Section 3.3.3.

The information stored in b, tag, st;O0 and L are sufficient for the s-shape HðstÞ
generation. The components of vector L represent the discrete span of cells along ax-
ial directions. Rows in b represents the location of non-empty grids ofHðstÞ, which is

the lattice representation of HðstÞ. If d-dimensional unit hyper-cubes are placed at

such locations and stretched by a scale factor of st, followed by a translation with

OO0 (O is the center of origin) then the result is the s-shape of the point set !n.

The tag is used to find the mapping between cells of s-shape and the observations

!n by storing the serial index of each non-zero grid of HðstÞ.

4.2. Smoothing via morphological transforms

Here we briefly describe the implementation of morphological transforms. As de-

scribed in Section 2.1, only discrete basic morphological transforms (dilation and

erosion) are applied and only sd , the 3� 3� � � � � 3 (d-tuple) array having all entries

equal to 1 is required as the d-dimensional structuring element. However, sd is not

directly applied. The serial composition properties of erosion and dilation are ex-

ploited for easy implementation of higher dimensional morphological transforms.

Same conventional erosion and dilation results are achieved by applying directional
respective transforms using only 1D structuring elements. For example, in case of

2D, dilation of a discrete set by s2 is achieved by successive dilation with s1x1 along

the x1 direction and s1x2 along the x2 direction. In Fig. 2, the directional dilation

and the directional erosion are illustrated. When some observations are from outside

a (noisy data) we apply clopen transform as the filter. Otherwise, closing is only ap-
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plied on the s-shape for smoothing. It can be easily shown that A�B ¼ A [ A0 where
A0 ¼ fy 2 ðA 	 BÞ=A such that By � A	 Bg is a type of conditional erosion of

A	 B by B [10]. Thus, we can get the closed version of A by B just by adding

those y to A which are exclusively in A	 B but not in original A such that

By � A	 B.
Two single-dimensional binary arrays z0 and z00 of size #L are used for morpholog-

ical transforms. After computation of the s-shape, z0 is derived directly from tag that

stores the serial indices of all non-zero grids of HðstÞ. z0i equals one(zero) means the

ith grid in HðstÞ is one (zero). In general, for any grid (b1; . . . ; bd) in HðstÞ, its serial
index i is 1þ

Pd
j¼1 bj

Qj�1
k¼1 Lk (Lk is the kth component of L). On the other hand, z0i

corresponds to a grid in HðstÞ at the location ½bf1c; . . . ; bfjc; . . . ; bfdc�T where

fd ¼ ði� 1Þ=ud�1, fj ¼ ð. . . ðði� 1%Þud�1Þ%ud�2 . . .Þ%ud�ðjþ1Þ=uj�1, uk ¼
Qk

j¼1 Lj for

j ¼ 1; . . . ; d � 1, and u0 ¼ 1.
During first directional dilation of the original s-shape with s1x1 , only first coordi-

nates of non-zero grids have to be considered. z00 is initialized by zeros. Without loss

of generality, suppose z0i identifies a positive grid ðb1; . . . ; bdÞ. Also, let i0 and i00 be the
indices of (b1 � 1; . . . ; bd) and (b1 þ 1; . . . ; bd) respectively. If z0i0 equals zero then z00i0 is
set to one. Same criterion is applied for i00. z0  z0 _ z00 gives the result of this direc-

tional dilation by s1x1 .
Only second coordinates of non-zero grids have to be considered for dilation

by s1x2 . It is found similarly as in case of s1x1 . Thereafter, successive dilation by
s1x3 , . . ., and finally by s1xd completes the process of dilation. The result is stored

in z0.
Note that at this stage, z00 identifies the exclusive locations of dilated version of

HðstÞ and corresponding grids are considered for conditional erosion to get the

closed version. Suppose ðb1; . . . ; bdÞ with index i is such a grid. Under (conditional)

directional erosion along first dimension, if for the indices of ðb1 � 1; . . . ; bdÞ and
ðb1 þ 1; . . . ; bdÞ say i0 and i00, z0i0 ^ z0i00 is zero then both z0i and z00i are set to zeros.

Like-wise, next (conditional) directional erosion along second direction (dimension)
and rests of the (conditional) directional erosion along other dimensions are per-

formed successively. Finally, the closed version is stored in z0.
Likewise, clopen transform is also performed with these two arrays.

Note that the serial compositions of erosion or dilation require less Boolean op-

erations and are considerably faster than direct transforms. In 3D case, 27 Boolean

operations are required on the whole data space, which can be accomplished by only

a sequence of nine 1D erosions [9]. More generally, due to serial decomposition

property, a d-dimensional morphological erosion or dilation is reduced to a cascade
of 3� d 1D elementary filters.
5. Experimental results: data visualization

To demonstrate the effectiveness of our proposed techniques both as consistent set

estimators and as shape descriptors, we experiment s-shape for several data exam-

ples. 2D digital images are studied to compare the true and estimated sets in the con-



Fig. 1. A �fish shaped� region.

Fig. 2. Serial morphological compositional transformations used for smooth s-shape computations. Clos-

ing is the default smooth version of the object unless the data is noisy. Otherwise, clopen transform is used.
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text of computational efficiency and to investigate the effect of additive noise. Exam-

ples with 3D images demonstrate the volume visualization from sample data. In the

first set of experiments, the foreground in a (binary) digital image is considered as a
and the area kðaÞ is measured by its total number of object pixels. On the other hand,

in 3D, models are generated from basic parametric shapes such as parallelepiped,
sphere and cylinder. These models are treated as a. Volume of a, kðaÞ is calculated
from basic constituent parametric shapes.

In Fig. 1, kðaÞ is 63,903. Random sample points are taken as shown in Figs. 3A–C

with n ¼ 100 (�0.15% data), 1500 (�2.34% data) and 3000 (�4.69% data), respec-

tively. For d ¼ 0:45, the estimators HðsnÞ and HðsnÞ are presented in Figs. 4A–C

and 4D–F, respectively. Results for d ¼ 0:49 are shown in Fig. 5. The ratio of

kða�nDaÞ to kðaÞ are plotted against the sample size for d ¼ 0:45 and 0.49 in Figs.

6A and B, respectively. The asymptotic convergence of a�n is readily understood de-
spite the limitation due to finite quantization. In terms of number of pixels, less than

7% of the total data is sufficient for the convergence. As far as set estimation is con-

cerned, the smoothing leads to a substantial improvement for the case d ¼ 0:49, but
not for d ¼ 0:45.
Fig. 3. Random samples from a of Fig. 1.
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A major competitor of our set estimator is based on the MST. It is the only other

set estimator which satisfies scale equivariance property and remains consistent when

observations are drawn under any continuous distribution and might be used as a

shape descriptor subject to number of components in the region of support being

known and the data being noise-free. For s-shape based set estimator no such con-
Fig. 4. The asymptotic convergence for d ¼ 0:45.
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straints are necessary. In Fig. 7, a run-time comparison is performed on basic mod-

ules (without considering the display module) of both the estimators where the re-

gion of support a is as in Fig. 1. In this example, as expected, s-shape

computation is considerably faster than MST.

Fig. 8 presents two more examples where s-shape is applied as shape descriptor.
The hole (Fig. 8A) and disconnected components (Fig. 8D) are correctly recovered.
Fig. 5. The asymptotic convergence for d ¼ 0:49.
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Sample sizes of 300 and 1500 are taken in both sets which, in terms of number of

pixels, only about 0.6 and 3% for the first set and 1.12 and 5.60% for the other

set, respectively. All output figures represent smoothed s-shapes due to closing with

d fixed at 0.49. All these results also indicate that s-shape might be utilized for data

compression.
The robustness of the s-shape based class of set estimators is demonstrated in

Fig. 9. The input patterns are noisy [25]. In all these cases signal (a) to random

noise ratio, SNR, are fixed to 10 db and the used estimator is H
s

ðs2nÞ (with d fixed

at 0.49).
Fig. 6. Plots showing asymptotic convergence of proposed estimator in 2D.



Fig. 7. A run-time comparison between basic modules of MST based consistent set estimation and that of

s-shape. Random samples are drawn from the data of Fig. 1.
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5.1. Role of d

It is clear that the choice of d has considerable impact on the resulting s-shape.

Here we try to analyze its impact in 2D data. For smaller values of d, the boundaries
of a�n ¼ HðsnÞ are cruder—so much so that the s-shapes for d in the range ð0; 0:45Þ
appear to be of little practical utility. For larger values of d, on the other hand,

the figure exhibits larger number of inconsistent holes (compare Figs. 4 and 5). In

the particular case d ¼ 0:5, the proportion of the area formed by the union of these
holes with respect to the area of the region under estimation converges to a fixed

non-zero constant so that consistency fails to hold. This suggests that �smoothing�
may be more useful for s-shapes obtained with values of d close to 1=d i.e., 0.5.

For a given n, larger values of d lead to small values of kða�n \ acÞ and smaller values

of d lead to small values of kðða�nÞ
c \ aÞ, i.e., values of d near opposite ends of the

allowable range are more efficient in reducing complementary components of the

symmetric difference.

Note that larger values of d reduce the dominant boundary error. On the whole, in
general dimensional case, it appears that when single values of d have to be recom-

mended, it should be always close to 1=d. We take it as ð1� rÞ1=d where r is suffi-

ciently small and unless otherwise mentioned, in all our experiments r � 0:1. When

coupled with smoothing, including the case of noisy data, the value of d is further

increased by taking the value to ð1� r2Þ1=d.

5.2. 3D volume visualization by s-shape

Here we demonstrate how volume visualization can be achieved with s-shape.

Each a is generated from some basic 3D shapes such as sphere, cylinder, parallelepi-

ped, cone, etc. In each case, n randomly selected points with real coordinates are



Fig. 8. Two more examples where smooth s-shape based set estimators extract pattern shapes.
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sampled and their s-shapes are computed. The simulations are performed in a SUN
workstation. Standard shading techniques available in MatLab6 are applied for

depth perception. Fig. 10 shows three 3D models from where representative points

are randomly drawn. In the left figure a is a torus, in the middle, it is a collection

of models of some simple industrial tools and the model in the right one represents

an extreme case where an inner sphere is completely hidden within a bigger hollow

sphere. Representative points from these models, their original s-shapes, smooth ver-

sions and randomly taken slices are shown in Fig. 11. In Fig. 11C, though the density



Fig. 9. Robustness of the class of proposed set estimators. (SNR¼ 10 db).
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of points are equal for both the objects in the sample but inner part seems more den-

ser due to overlapping of points from inner sphere and outer one.

It is apparent that finer rendering is achieved for larger n. However, at any stage,

the shape is only a rough approximation, good enough to estimate the underlying

zone and thus may be used as primitive solid modeling. The decisive advantage of

s-shape based volume rendering is that the process is considerably fast due to linear



Fig. 10. Three models that demonstrate s-shape based volume visualization.

Fig. 11. (A–C) The above three figures show how s-shape can be used to visualize volume from finite

observations. (In all these three sets n ¼ 100, n ¼ 1000, n ¼ 5000). Note that slicing of the s-shape enables

to see the �inside� of the object. Particularly, in the last figure density of points are equal for both the

objects but inner part seems more denser due to overlapping of points from inner sphere and outer one.
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order computation. In Fig. 12, the run-time analysis for 3D point sets is performed.

Here a is a unit cube. From the graph, it is apparent the s-shape based volume

visualization is considerably fast. One important advantage of s-shape based volume

visualization is that it allows looking inside the volume by taking horizontal and



Fig. 11. (continued)
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Fig. 12. Run-time plot for (smooth) s-shape generation (a is a unit cube).
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vertical slices as shown in Fig. 11. This is not possible by most of the existing surface

and volume reconstruction methods such as based on Voronoi/Delaunay tessella-
tions.
6. Summary and discussion

A new set estimator called s-shape is presented for high dimensional data, which is

applied for data visualization. It is a compact representation of equal cells of appro-

priate sizes that surround the sample. It is consistent under any continuous distribu-
tion in finite dimensions. The set consistency holds good even when there is no

apriori information on whether the support set is single or multi-connected or the

sample is corrupted by noise. These cannot be achieved by other exiting set estima-

tors known to us including the one based on the MST.

Data exploration for finding the object of interest and their visualization from

sample is an important area in various applications. For minute reconstruction, of-

ten million of data (points) are required and there exist methods that can minutely

reconstruct the surface from sample but are computationally intensive [18–20]. How-
ever, if the object of interest is closely surrounded by other objects in the region of

support (the area of exploration), it is very difficult to identify the object of interest

despite sufficient amount of sampling. Also, looking inside of a single object is not

possible by these methods. The s-shape based estimator can be used to complement

these descriptors. Particularly, as demonstrated, it is useful as a basic volume visu-

alizer. As it renders very fast and supports slicing, localization of the area of the ob-

ject of interest within the region of support, even with a moderate-sized sample, can

be efficiently managed. In that localized area, if additional representative points are
accumulated and data scattered elsewhere are removed then this type of �guided sam-

pling� prevails overall data reduction. Finally, restored points in the border cells of
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the s-shape may be interpolated by a surface rendering method for reconstruction of

the object in high resolution, such as [19].

In future, we will extend the present work in two directions. First, we will inves-

tigate the applicability of similar techniques for set estimation as well as shape recon-

struction when the points are not in crisp states but have intensity within a certain
finite range. Next, a complete graphical user interface will be also developed. It will

support volume visualization, slicing to look within the data to identify the object of

interest, guided sampling as discussed above for final smooth and detailed surface

rendering.
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