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Genetic Programming for Simultaneous Feature
Selection and Classifier Design

Durga Prasad Mumni, Nikhil R. Pal, Fellow, IEEE, and Jyotirmoy Das

Abstrace—This paper presents an online feature selection
algorithm using genetic programming (GP). The proposed GP
methodology simultaneously selects a good subset of features and
constructs a classifier using the selected features. For a r-class
problem, it provides a classifier having ¢ trees. In this context,
we introduce two new crossover operations to suit the feature
selection process. As a hyproduct, our algorithm produces a
feature ranking scheme. We tested our method on several data
sets having dimensions varyving from 4 to 7129, We compared the
performance of our method with results available in the literature
and found that the proposed method produces consistently good
results. To demonstrate the robustness of the scheme, we studied
its effectiveness on data sets with known (synthetically added)
redundant/had features.

Index Terms—Classification, classifier design, evolutionary algo-
rithm, feature selection, genetic programming.

I. INTRODUCTION

EATURE selection (FS) is a process 1o select useful

features w0 obtain an efficient and improved solution
o a given problem. Ideally, the FS process should select an
optimum subset of features from the set of available features
which is necessary and sufficient for solving the problem. FS
is important because all available features may not be useful.
Some of the features may be redundant while some others
may cause confusion during the leaming phase. These features
unnecessartly increase the complexity of the feature space
which in tum demands more computation time for leaming or
finding a solution to the given problem.

F5 algorithms can be grouped [1] based on chamctensics
of searching: exhaustive, heuristic, and random. Allernatively,
they can also be categorized [ 1] into five groups based on the
evaluation function that is used for evaluating the utility of the
features: distance [2], [3]. information [4], [5]. dependence [6],
consistency [ 7], [8] and classifier ervov rate. The FS echnigues
which use classifier emror rate as the critedon are called wrapper
type algorthms [9]. In a wrapper approach, the classifier for
which features are being selected, itself is used as the evaluation
function. Since the suitability of featres depends upon the con-
cerned learning algonthm or classifier, the wrapper Lype algo-
rithms usually perform better (in terms of accuracy) compared
toother type called filter type technigques. However, wrapper ap-
proaches require more compulation time than filter approaches.
In a filter-type method, the selection is done independent of the

learning algorithms. In this case, the relevant features are fil-
tered out from the rrelevant ones poor o the leaming. Good
surveys on FS include [1], [10]. Analysis and discussion of
various FS techniques are available in [11]-[16], [9]. The se-
quential forward selection (SFS) [17] methods start from an
empty set and graduvally add features selected by some evalu-
ation function while the sequential backward selection (SBS)
[ 17] schemes start with the complete feature set and discard fea-
tures one by one il an optimum feature subsetis retaimed. How-
ever, in SFS once a feature 15 selected, it cannot be rejected later
and reverse is true for SBS. Sequential forward floating selection
(SFFS) [ 18] avoids this drawback. In[14] and [11]. 1t has been
shown that SFFS performs better over many conventional FS
technigues. In [3], the branch and bound method is used to find
an optimal feature subset with an assumption of 8 monolonic
evaluation function. Relief [2] is a feature weight-based statis-
tical approach whereas in [19], tabu search is used to find useful
features. Some neural network based FS schemes are discussed
in [20], [21], and [22]. Support vector machines (SVMs) have
also been used for FS. In [23] 4 FS technigue based on pruning
analysis for SV Ms is proposed. 1L enjoys characteristics of both
filter and wrapper approaches. Filter approach reduces compu-
tational time whereas wrapper approach improves classification
accuracy. Authors in [24] discuss FS and feature ranking vsing
SVMs.

Evolutionary algorithms have also been used for FS
[25127], [29]-[31]. Evolutionary algorithms are random
search technigues. Typically, in a genetic algorithm (GA) based
FS approach [25], [26], each individual (chromosome) of the
population represents a feature subset. For an n-dimensional
feature space, each chromosome is encoded by an n-bit binary
sting {f, e, gk e = 1l the dth feature is present in
the feature subset represented by the chromosome and b, )
otherwise. A classifieris used to evaluate each chromosome (or
feature subset). Typically each chromosome is evaluated based
on the classification accuracy and the dimension of the feature
subset (number of 18). In [11], it has been shown that GA based
F5 performs betier than many conventional FS technigques for
high-dimensional data. In an evolutionary paradigm, a popula-
tion of candidate solutions o the problem is allowed o evolve
to achweve the desired optimal or sub-optimal solution vsing a
set of genetically motivated operations.

Foroutan and Sklansky [25] used branch and bound technmique
for FS using GA. Casillas eral. [27 ] devised a genetic FSscheme
for fuzezy rule based classification systems. In [28], ADHOC
15 4 genetie algorithm based FS scheme with C4.5 induction
learning. Pal et al. [29] proposed a new genetic operator called
self-crossover for FS.

]
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Unhke GA, there have been only a few attempls 1o use ge-
netic programming (GP) [32], [33] for FS. Gray et al. [34] an-
alyzed GP classifiers designed for two-class problems and de-
cided on the features 1o be selected. They have not considered
any special step for FS during the GP evolution. Ahluwalia and
Bull [30] proposed acoevolutionary approach for feature extrac-
ton and selection using automatic defined function (ADFs) of
GF. Each ADF 1s assigned its own independent sub-population
which co-evolves with other ADF sub-populations and a pop-
ulation of main program trees. They used the k-nearest neigh-
borhood (K-NN) algorithm for classification. Sherrah er al. [31]
used GP for feature extraction/selection. They used a general-
tzed linear machine as the classifier. In [35], a GP-based feature
extraction scheme is proposed for the classification of bearing
faulis.

In [20], Pal and Chintalapudi proposed a novel scheme of se-
lecting the relevant features online while traiming a neural net-
work. In the online approach, selection of features and construc-
tion of the classifier are done simultaneously producing a good
system for a given problem. Chakraborty and Pal also intro-
duced neurn-fuzzy schemes for online FS [36], [37].

This paper presents an onfine FS algonthm using GF, named,
(3P ps (multitree genetic programming based FS). Fora e-class
problem, a population of classifiers, each having ¢ wees 15 con-
structed using a randomly chosen feature subset. The size of
the feature subset 15 determined probabilistically by assigning
higher probabilities 1o smaller sizes. The classifiers which are
more accurate using g small number of features are given higher
probability o pass through the GP evolutionary operations. As
a result, we can achieve a good classifier using a small feature
subsel. We introduce two new crossover operations o suit the
F3 process.

Use of GP for online FS has some advantages. GP provides
a mathematical representation of the classifier. As the classifier
uses only a few selected features, the mathematical representi-
tion of the classifier can be easily analyzed w know more about
the underdying system.

Before explaining how FS and classifier design can be inte-
graled together, we desenbe how GP can be used for only clas-
sifier design.

II. DESIGHNING CLASSIFIERS WITHOUT FEATURE SELECTION

For a two-class problem a classifier can be represented by a
binary tree (T). For a pattern 3, 1f T[xf: =0, x & class 1

else x C class 2.

For multicategory c-class problems, we usually require aclas-

sifier consisting of ¢ such binary trees (47, f4, ..., f.). For a
patlem X,
if T (%) = band T (%) < Morally £ 80,7 [1,2,....c},

then x £ class &

However, if mome than one tee show posiive response
iTiix) = () for a pattern x, then a conflict resolution tech-
nigue, as explained later, will be used o assign a single class o
the pattern. Fig. 1 shows a typical multitree classifier.

Here we provide a bref outline of our multiree classifier de-
sign {031, 3 without FS. A detailed description of a similar
methodology can be found in our earlier publication [38].
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Fig. 1. Typical multitnee classifier.

A, Initialization

A population of N, mulitree classifiers is generated. Each
tree of each individual or classifier is randomly generated
using the function set &' = {4+.—.+. /) and terminal set
T {lsaince variables, Jtb. T contains randomly generated
constants n [0.0, 10.0].

B. Fitness Measure

The population of classifiers is allowed o learn using o sel
of raining samples, X = &) DA U - & U XXM
Aisi =1 | Xi| = ¥eoand | X | = M. Each classifier classifies
all training samples, x; & AW L4 N, and &
1.2, ..c The fitness function measures fow well it performs
the classification task.

We consider the following fitness function to compute the
Sitness of the ith classifier of the population

fi = Z i Z B4

E=li-1 j-1

(1)

The two outer surnmations i (1) are used o consider all data
points in X to compute the fitness of a classifier. &'y, ; ; is the
contribution of jth tree of fth classifier (1"} for the ith data
point (=) of X5, So for a taiming point x; < X we ex-
pect ¥uind = 0 and T e D) 1. Consequently, both
Y] = 0 and 7 I_,?e_r{[xi‘. < [} should increase the fitness
function. To achieve this, we define

hr*:_{,k = Py — 1l Tr*:l__xiel - 1]
DilTixgl <0
Wiijpe =D T ix)) 2 0

=i ¥ ix) 2 0.

Usually, the number of training samples in the &th class, M,
15 smaller than the total number of tmuining samples of classes
other than the Jh class, ¥ — & The tree T4 leams to diserim-
inate between two classes, class & and all other classes taken
together. Smce the sizes of these two classes are highly un-
balanced and the GP attempts to minimize the number of mis-
classifications, we give more importance 1o comrect classifica-
tion to class &. Let us illusrate it with an example. Consider
a 4-class problem in which the number of training samples be-
longing 1o each class is 50. Thus, for the kih class, Ny 30 and
N — A, =130, That means, tree T is trmined to discriminate
between 50 taining samples of fth class and 150 training sam-
ples of the remaining classes. For this two class problem, we
have more samples from the second class. To reduce the effect
of the unbalanced sample size, we assign more weight o the
correct classification of training samples 35 £ class & by the
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tree [y, This s equivalent to copying each point in the training
setof class 1t by 1Y — N0/ Ny times [39]. Thos in the stated
4-class problem, if a data point from class & is comrectly classi-
fied by tree 7y, then the fitness is increased by 3{= { 150/501).

If the identity of the classifier is not important, then for clarity
we will ignore the superscripl. 5o, a sample x C A 18 comectly
classified by the wee fy, if f,{x) = 0 and it 15 comrectly classi-
fied by tree T,y if Tiix) < U A classifier correctly classifies
asample x if and only if all of its constituent trees correctly clas-
sify x.

C. Selection

We select a classifier based on i fitness value [computed
using (1)] for the genetic operations: reproduction, crossover
and mutation. We use fimess-proportion selection scheme
for reproduction operation, touwrnament selection scheme for
crossover operation and random selection scheme for mutation
Operation.

A classifier is good only if all is constituent rees are good.
If some of its trees are not able o classify properly, then those
trees should be given more preference W take parl i Crossover
and mutation operations for their improvement. To accomplish
this, we proceed as descnbed below.

After selecting a classifier for crossover or mulation opera-
tion, we assign a probability p, toeach tree 7 in proportion 1o
its unfimess. p; is compuled as follows:

Outof N training samples, the number of training samples not
correctly classified by the tree ) is counted. Let it be Ji, 4
1.2....,« The p; s defined as

. b
s E;=1 k;
This 3 s used as the probability of 4th tree to be selected by

the Roulette-wheel selection for crossover and mutation opera-
Lions.

(2}

0. Crossover and Mutation Operations

As we give more preference to unfit trees 1o take pan in
crossover and mutation operations, the chance of evolution of
weak trees of potential classifiers is increased and the chance of
unwanted disruption of already fit trees is reduced. The detailed
steps of our crossover operation, Crossover_mt and mutation op-
eration, mutation_mt are given in [38]. Since the same mutation
algonthm will be used here, we desenbe mutation_mt in Algo-
rithm 1.

E. Termination of GP

The GP s terminated when all N training samples are classi-
fied correctly by aclassifier (an individual of the GP population)
or a predefined number, M, of generations are completed. The
best classifier of the population is the required classifier, CF.

F. Interpretation of Cutputs and Conflict Resolution

If only one tree of CT{x) shows a positive response then x
is assigned the class associated with that tree. I all trees exhibit
negalive responses, Le., foreachtree f (2] < 0, then no class is
assigned to x. This may be considered a distinet advantage over

assigning a wrong class 1o the pattern. The classifier is able 1o
say—I don’t know—when it faces a very unfamiliar pattem .
Moreover, if there are too many such don’t know cases then it
can be treated as an indicator of the fact that the raining set is not
a proper representative of the population or the designed classi-
fier is a poor one. In this situation, we may redesign the classifier.
1f more than one tree of OT7 %) show positive responses, then we
resolve the conflict by the following weight based scheme.

1) Weight Based Scheme: For each tree 'F; of the best classi-
fier CF, we compute the total number {g; ) of correctly classified
samples. The ratio s, = /7% is assigned as the weight of the
tree ;.

1f more than one tree show positive responses for a pattern X,
then & = argmasg fw, ] is assigned to pattern . That means,
the class comesponding Lo the tree with the largest weight value
is assigned. For example, if 1,75, and T3 show positive re-
sponses for g pattern x and wy = - =y then class 3 will be
assigned w pattem X However, if all N trmuning samples are cor-
rectly classified by CF (i.e., by all trees of CF), then all rees have
equal weights and hence there 15 no need o use the weighting
scheme.

Cr. Validation

We validate CF using a set of test data. For a test data point
%, if a conflicting situation arses then we use a weight based
scheme as mentioned above o assign a single class o the pat-
tern x. If i, is the number of comrectly classified test data by
the classifier CF and %y 1s the tolal number of west data then
accuracy (A) is defined as 4 (o), /L0 w0 LOOSE. Note that,
iy counts only the test data points that are correctly classified.
The misclassified and unclassified cases together are treated as
not classified correctly by the classifier. We shall use 45 and
Aq todenote accuracy using all features and vsing only selected
features respectively.

1. DESIGNING CLASSIFIERS WITH ONLINE
FEATURE SELECTION
For simultaneous FS and classifier design, we use the fol-
lowing additional steps in the proposed C1 oy, scheme.

A. Selection of a Feature Subset for Each Chromosome

Let P be the population size. Before initializing each indi-
vidual(classifier) O, ¢ C {1.2...., £}, a feawre subset S5 is
randomly chosen from the set of all » available features. The
size of the feature subset 5; Tor cach classifier <5 1 determined
probabilistically. The probability 1o select a feature subset of
size vl <l 0 is laken as

T . ar

Pr. == : e 3)
Tiow—d n 1 aln 1)

- decreases inearly withincreasein v Note that > 77 _ g 1.
We use Roulette wheel selection to determine the size of the
feature subset, s, with probability p, .

Afer deciding the number of feares r, we randomly select v
features o construct the feature subset &;. The classifier 15 now
initialized as discussed cadier with the chosen feature subset S,
instead of all w features. The chosen feature subset 5; may be
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represented by a vector v, whose jth element »;; = 1, if the
jth feature is present in the selected feature subset, otherwise
1 = 1. For example, if the wtal number of features is five and
out of these five features [ o, g g, wa boil e = 2 features,

dp . wg. are selected o construct a classifier, then vy will be (1,
0, 1,0, 0.

B. Fitness Function

The fitness function is required to assign higher fitness value
to the classifier which can classify comrectly more samples using
Sfewer features. Thus, the fitness function is a multiobjective one,
which needs to consider both correct classification and number
of features used. We use the following fimess function:

Fom R aemw s (4)

In (4}, [ is the fitness value obtained by (1), + is the cardinality
of the feature subset used, » 18 the wial number of features and
i 15 a parameter which determines the relabve importance that
we wanl o assign for corect classification and the size of the
feature subset.

The factor =91 decreases exponentially with increase in +
and so is the fitness function. Thus, if two classifiers make cor-
rect decision on the same number of training points, then the one
using fewer features is assigned a higher fitness. We decrease
the penalty for using larger feature subset with generations to
improve the classification accuracy. So initially we use fewer
features, but as leaming progresses we give more importance Lo
better classification performance. To achieve this, we decrease
i a8

«cn
2y (150 5
il Y ( o (3)

where wp is a constant. M is the number of generations GP is
evolved, gen s the current generation number. We have Laken
iy 1.

" After each genertion, Lo select the best chromosome, we use
the fitness function f,

foo = £ (1 +ape T}, ©

It is similar to f, in (4), except that here iy does not change
with generation. [t is because the best chromosome of each gen-
eration should be compared with the best chromosome of the
previous generation Lo get the best chromosome of the run.

Fig. 2 displays the fitness function (6) with ' = 118, 0 = 10,
and = (L1 It shows the effect of r, the size of the feature
subsel, on the fitness value.

After initialization, the population evolves using genetic op-
erations ileratively.

C. Crossover Operation
We use two crossover operatons o suit FS. These are the
following.
1y Homogeneous crossover called Crossover_hg.
2y Heterogeneous crossover called Crossover fit. The het-
erogeneous crossover depends on the degree of similarity
between two parents.

10#r
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Fig. 2. Decrease of fitness ¢ f,, & value with incresse in # for o, — (1.7 and
n = Lilin {f).

The probability of using homoge neous crossover 15 computed
a8
non

-Fh,z F' ﬁ}

Thus, the probability of uwsing homogencous crossover
increases lineardy with generations (gen) from O w 1. The
Crossover_ it 15 used with probability Fye = | Fag - So, My
decreases lineady from 1 to 0 with an increase in gen.

Crossover_hg restnicts the crossover operation between clas-
sifiers which use the same feature subset. This crossover oper-
ation completely avoids gradual use of more and more features
by the classifiers. Crossover_fir allows crossover between classi-
fiers using different feature subsets. However, we shall see later
it is biased woward crossover between classifiers which use more
common features. Consequently, this will check the gradual use
of more and more features with generations. As a result of this,
with generations the classifiers are not expected to use all fea-
Lures.

1) Homogeneous Crossover, Cmossover_fig: This crossover
operation restricts the crossover between classifiers which use
the same feature subset. Afer selecting a chromosome as the
first parent ¢, we select the second parent €% from the group
of chromosome that uses the same feature subsel as used by
£ If there is no such chromosome, then we use heteroge-
neous crossover. The algorithm, Crossover_hg, 15 given in Al-
gorithm 2.

2) Hetewgeneous Crossover, Crossover fit; This 15 a buased
crossover between two classifiers which use more common fea-
tures. At first, we randomly select a set of = classifiers. The
classifier which has the highest fitness value f, among this set
of classifiers is taken as the first parent ) for crossover. After
that, we randomly select another setof + classifiers o select the
second parent €. The degree of similarity s, of the j1. 7 =

1.2, ... o, classifier of this second setwith €7 s caleulated as

2 g Zi_'c_?__; Hout i _ "'ﬁ-‘*"j
YT Man {3 von Dpe te) Mand||woll [lv]
(%)
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In (8), vy = 1,007 uses the Sth feature; otherwise vy, = L

Similarly, v1,p L. if jth chromosome of the second set uses
the &th feature; otherwise ¢, = 0.

Clearly, s; lies in [0, 1] '.a'_., = {) means jth classifier uses a
completely different feature subset than that by € and »; 1
implies that the jth classifier uses the same subset of features as
that by €. The jth classifier of the second set is selected as &y
with probability proportional o o

Wy .'I‘.'sj — ,3.'*3: ; (4

Here, f., = fitness of the jth classifier, 7 = a constant that
controls the effect of similarity. We have taken & = 112, In (9),
the factor 7s; is responsible for crossover operation between
classifiers using more commaon features,

To start with, since we randomly generate classifiers using
differentirandomly taken) feature subsets, the population uses
a number of different feature subsets. If we st with homo-
geneous crossover, then for large dimensional data, the compu-
tation cost o search homogeneous group of classifiers will be
more. Also, as discussed carlier, there 15 a chance that after se-
lecting a classifier [ ] for homogeneous crossover, we may not
zel another classifier [ () which uses the same feature subset as
used by €. Moreover, since there are (2% 1) possible feature
subsets, for large v it is not possible 1o take all feature subsets
to construct classifiers. So during the mitial perod of learning,
we use Crossover it which may change some feature subsels
and there by allowing GP o examine some new feature sub-
sels. As the learning progresses, we decrease the probability of
using Crossover_fit (and hence increase the probability of using
Crossover_hg). As a result, with generations the good feature
subsets should dominate and the population 1s expected o use
a small number of feature subsets. In our scheme, usually FS
is accomplished in the first few generations, so we do not use
step-wise learning as done in [38]. Because siep-wise learning
uses a small subset of training samples at the beginning of the
evolution and with a small subset of taining samples the FS
process may not be very fruitful.

Mutation, Tenmination enteria, conflict resolution, validation
of classifier CF remain the same as discussed earlier. The com-
plete algonthm, Classifier, 15 given in Algorithm 3 for a better
understanding.

IV, EXPERIMENTAL RESULTS

We have used seven data sets for validating our methodology.
These data sets, named, Inis [41 ], WBC [42], Wine [42], Vehicle
[42], WDBC [43]. Sonar [44]. [42], and GENE [45], [46] cover
examples of small, medium and large dimensional data. Table 1
summertzes these data sets.

A. Data Setw

1) Irix: This s the well-known Anderson’s Iris data set [41].
It is a set of measurements in four dimension taken on 150 Ins
flowers, 30 each from three different species or classes. The
four features are sepal length, sepal width, petal length and petal
width.

2) WBC: This Wisconsin breast cancer [42] data set consisis
of 699 samples in 9-dimension distributed in two classes (malig-

TABLE 1
Drara SETS
Mang ot | Maof Mo at Sizeaf
Lrala Sel | vlozses  Peialures Lraa sel
Tris i 4 1300050 500 5y
W 2 3 GHE [a+2T0
Wine K It 175 (39-T1—4)
ezl 4 15 e (212 AT 2R [0
WhEC 2 a0 SRS AFTI2L2)
Ronar 2 1l 20 (4T
il 2 T1zU T2 i4T+313)

nant and benign). We removed 16 instances with missing values
and considered the remaining 683 data points for classification.

3) Wine: Wine data set [42] consists of 178 points in 13-di-
mension distributed in three classes. These data are the results
of chemical analysis of wines grown in a particular region of
ltaly but derived from three different cultivators. The analysis
determined the guantities of 13 constituents found in each of
the three types of wine.

4) Vehicle: This data set [42] has 846 data points distributed
in four classes. Each data point 1s represented by 18 attributes.
We have normalized the attribute values.

5) WDEBC: This Wisconsin Diagnostic Breast  Cancer
(WDBC) [43] data set contains observations on 569 patients
with either Malignant or Benign breast tumor. Each data point
consists of 30 featres, which are computed from a digitized
image of a fine needle aspirate (FNA) of a breast mass. These
features describe characteristics of the cell nuclei present in the
digitized image. Out of 569 samples, 357 belong to Mahlignant
and remaming 212 samples belong to Benign classes.

a) Senar: This data set [42], [44] contains 208 patterns ob-
tained by bouncing sonar signals off a metal cvlinder and rocks
at vanous angles and under various conditions. Each pattern is
represented by 60 attributes. Each attribute represents the en-
ergy within a particular frequency band.

7) GENE: GENE [45], [46] 15 a set of DNA microarray
gene expression levels of 72 persons having either acute lym-
phoblastic leukerma (ALL) or acute myelod leukemia (AML).
Each sample is mepresented by 7129 gene expressions. 38
samples are used for the training and the remaining 34 samples
are used for the testing. Out of 38 training samples, 27 belong
o ALL (class 1) and remainmg 11 samples belong o AML
iclass 2). The test setconsists of 20 ALL and 14 AML samples.

B. P FParameters

The GP parameters which are common for all data sets are
given in Table 11 and the GP population size(P) which differs
with data sets are listed in Table 1L

MNote that, the parameters in Tables [land 11 are not specific o
our algorithm. These parameters are required for any GP based
classifier design.

We consider larger populations for higher dimensional data
because the number of possible feature subsets increases with
the number of feares (dimension). Use of a large population
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TABLE NI
Common PARAMETERS FOR ALL DaTA SETS

Harclnclen z FHYN

Frodwvblty of croesover eaeranen, g, 1y

Probability of reproducticn ozsration, g i

|';\.I|'Ii_l.'r."||1'}'.\.||; |'|I.|I:;|-:-:-:.."-;'r;|.l_':'-||._ T . ?‘._
Pralaxiine of seleeting o funetion node dudng crossover corntion. o;. 0.
Prubds e of soloctiog 3 emwomal e during crssieer ape atiae, i - .z
Frobubilice of scloctioe o Swetlon pode duce manirion ap2isian, oo, nz:
Fronalai Ly ool sz Tesinug o levowirad mande s g meatatian woe alioen, e I}
Tourmimzur size. ¢ H
Tl wuehee ol geocrationg the O is cenlved, W Al
Inrigl bgoche eF 3 bae -5

Flasincem allowed nodes Toar & e, 350
Wheawr e alhval heshl nl g irez, 1=

TABLE I
POPULATION SI17E

WAk
2000

R SHTIEE] | ikl

I | 00

ehivls

1500

Lrata oL 1EIS S WHL O Wine

F 1ok

Likin

L 30}

helps GP to explore more possibilities and hence one can expect
GF toevolve toa good solution withoul using many generalions.
If we allow large number of generations and large size of the
classifiers then the classifiers may overfitl memorize) on training
samples. Consequently, the classifiers may give better pedor-
mance on the tmnming data but poor pedformance on the test
data. Choosing the optimal population size for a given problem
is a difficult task and we do not study this problem here. The
optimal number of generations can be determined using a vali-
dation set. To achieve a better genermlization one should choose
small valoes of M, vy, and v, . Here we allow GP o evolve
only upto 30 generations for all data sets.

C. Results

We pedormed our expenments using lilgp [47] on Alpha
server DS10. During classification by the classifier CE, we have
used weight scheme for conflict resolution. We run GP ten times
for cach data set. Except for the GENE data set, we use the fol-
lowving computational protocol:

Each GP run involves a tenfold cross-validation (Thus, each
GFP mun consists ten runs, each with one of the ten folds, so total
100 runs). We compare the average performance of the classi-
fiers obtained by the proposed method {(GP .2 ) using a set of
selected features with the classifiers designed using all features
(using 1% ) as desceribed in Section 1. To do this, we also run
GP ten times using (3P, method on each data set. Here also
we do a tenfold cross-vahdation.

In case of GENE data, we do not use tenfold validation to
keep the results consistent with other results reported in the lit-
erature on this data set. For this data set as used by other au-
thors, we use a specific training and test partition as mentioned
in Section IV-AT. We use the following notations in the subse-
quent secuons.

A, isthe average percentage of correctly classified test sam-
ples by the best classifiers (CF of each run) using the selected

TABLE IV
AVERAGE PERFORMANCE

Maothods | Wilh all Seawores | Wilk selected Tectlures
fi A 0 iy Ay (H

Liis 3 W L& LA

W 0 @i 4z 223 n&.84
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TABLE WV
MEAN RUN TIME
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feature subset over ten GP runs, A, is the average percentage
of comrectly classified test samples by the best classifiers using
all features (without any FS) over ten GP runs, o is the total
number of features, 1, 15 the average number of selected fea-
Lures.

The average classification (lest) accuracy A,y with all fea-
tures and A, with the selected features, and the average number
of selected features . over ten GP runs for six data sets are
given in Table I'V. The mean mun time for each data set is shown
in Table V. The mean run tme mcludes time taken for parti-
toning the data set, evolving GP for simultaneous classifier de-
sign and FS, input/output file handling, post processing, and val-
idation. Table ¥V shows that mm time does nol necessanly m-
crease with merease in dimension of data sets. Because, the run
time also depends on factors like size of population P, number
of generations M, size of classifiers, number of training sam-
ples N and the distribution of the training samples in the feature
space. If all training samples are correctly classified by the best
classifier during the GP run, then the GP run terminates before
completion of M generations and hence it reduces the run time.

Since different feature subsets are selected in different runs,
to give an idea sbout the imporance of the features, we count
the frequency of the selected features. The normalized values of
those frequencies are given in Table X for Iris, WBC and Wine
data sets and in Table X1 for Vehicle data. These values may be
iroughly) used for ranking the features, although, thatis notour
objective.

In [40], resuls of three FS algorithms, Forward Sequential
Selection (F55), Backward Sequential Selection (BSS), and rel-
evance in context (ROC), are available. RC uses a clustenng like
approach to select sets of locally relevant features in the feature
space. In [4], resulis of another three FS algorithms called Infor-
mation theoretic algorithm (IFN), Relief and ABB are available.
Relief 15 a feature weight based statistical approach. ABB s a
breadth first search, backward selection algorithm, with some
simple prumng abilities. For comparison, we imcluded results
of these six methods on Ins, WBC and Wine data. We use re-
sults of ADHOC [28] for comparison of perfformance on Vehicle
data. In addition, we use results of twoneural network based FS
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schemes NNFS1 and NNFS2 given in [2] ] and [22] respectively
and a Signal-o-Noise ratio based FS algorithm, SNRFS [48] 1o
compare our results on WBC data. NNFS1 uses cross-valida-
tion classification emrors o select features. NNFS2 uses a net-
work pruning algonthm to emove redundant and irrelevant at-
tributes one by one. We compare the performance of our scheme
on Sonar data with results of four mutual information {MIF)
based schemes [5], NNFS2 [22] and ADHOC [28].

Many methods have been used to analyze the data set GENE.
Golub et all [46] proposed a neighborhood analysis method 1o
analyee it Furey et al. [49] applied signal-to-noise ratio (SNE)
critera for FS and used support vector machine (SVM) for clas-
sification. Ben-Dor et al. [30] used 8 nearest neighbor method,
support vector machine with quadratic kernel, and AdaBoost
for classification. Principal component analysis was used by
Neuyen ef al. [51] o extract features. Then they used linear and
quadratic discriminant analysis for classification. Cho and Ryu
[45] considered various criteda for FS and applied multilayer
perceptron (MLP) network, k-NN, SVM, self-organizing map
(S0M) and decision tree to classify the samples. Cho and Ryu
[45] also used ensembles of these techniques for classification.

Rowland [52] used Genetic Programming o classify this gene
expression data. Rowland partitioned the tmining data into frain
and vafidation sets. GF was run 15 times on the train set and
the best classifier of each run was wsed o classify the validation
data. The three best classifiers which produced the minimum
absolute difference between the emors on the train and valida-
tion sels, were combined by a voling scheme 1o classify the test
samples.

1) friz: From Table 1V, we find that for Irs data, on av-
erage over ten GP runs, the best elassifiers could correctly clas-
sify 98.69% test data using on average only 1.56 features. This
clearly indicates that the selected features have very good dis-
criminating power. Table VI shows that our method performs
better compared w several other methods.

In most cases (GP runs), we observed that our methodology
selected feature subsets {84, T41, and {3, 1}, Note that, {3, 1}
means third and fourth featres. From these observations, ilcan
be concluded that the third feature (i.e., Petal length) and fourth
feature (i.e., Petal width) have good discriminating power for
classification. This finding is consistent with feature analysis
results represented by other researchers [36], [20]. The weights
of the features are given in Table X.

As an illustration, we show the expressions corresponding 1o
the three trees of the best classifier of a typical run:

TREEL: x1; — 4.5
TREE2: [ira — 2% LY — )
TEEE3: 2.2 — =y

where @q 18 the third feature.
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Aler analyzing the above expressions, for a pattem x, we find

the followmg decision rules for the three classes.
If iy = 1% then x & Class 1.
If s e [2.4.9 then x £ Cliss 2,
If g < 42 then x & Class 3.

These rules suggest that we need technigues like weight based
method w make decisions in the overlapping regions [2.0, 2.2]
and [4.8, 4.9]. Note that, the best GP classifier may not always
produce such simple rules.

2) WBC: For this data set, on average our method con-
structed classifiers, selecting only 223 featres. Our method
selected features 6, 2, and 3 in most of the uns. With these
selected features we could achieve 96.84% test accuracy.
Table I'V shows the average performance.

Table VII compares our method with six other methods. In
this case oo, the proposed method outperforms other methods.
The weight (the nomalized frequency with which each fea-
ture is selected) computed for each feature is given in Table X.
Table X reveals that features 2, 3, and 6 are very important.

To demonstrate the decision rules for WBC, we show one
of the best outputs (best in terms of simplicily of expressions)
corresponding o a GP run.

TREEIL: 351 ..

TREEZ: & — 3.47.
where wa i the second feature. We know that for the WBC data
sel po is an integer valued feature. So, after analyzing the above
expressions, we can write the following simple decision rule:

If . < 3 then
xS Claas |
else

x £ Class 2.
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TABLE X
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This 1 probably one of the simplest rule that can do the clas- TABLE XII

sification task with a reasonably good accuracy of 92 39%.

F) Wine: For wine data set also the average number of se-
lected features and the classifier pedformmance over all muns are
given in Table IV, It shows that on average with only 4.08 se-
lected features, GP is able 1o construet classifiers with 94.82%
accuracy. The computed importance (weights) of the features
are mcluded mn Table X1 Table VI compares our method with
three other methods [4]. In this case Gl g outperforms [IFN
and ABB but Relief is marginally better than CiF .

4) Vehicle: For Vehicle data, on average, 5337 features are
selected (used) by the classifier. With about five featres T845%
test points are classified correctly as given in Table IV, The
ADHOC [28] method reported a test accuracy of 69.6% using
seven features while our method could achieve 78.45% test ac-
curacy using a lesser number of features as shown in Table VIIL
The classifier designed with all features classifies 78.37% of test
data.

The weights of some of the features are listed in the Table X1,
the rest are not meluded as they have neghgible weights.

3) WDBC: The average perdformance of the best classifiers
over all ten runs shows that with only s1x 1o seven features,
96.31% test data can be classified correctly (Table IV). We do
not include the feature weights for WDBC in Table X because
the number of features is too large 1o accommodate in Table X.
Howvever, the most important seven features are 28, 8, 21, 10,
13,15, and 23.

&) Sonar: On average, we achieved 86.26% accuracy with
aboul nine to ten featres (Table I'V). While using all 60 features,
the average perfommance 15 84.74%. This again emphasizes that
more features are not necessarly good. Table IX shows that
(3P .1z performs much better than ADHOC and the four mu-
tual information based selection schemes [5]. For this data set,
NNF51 outpedonms our method both in terms of accuracy and
number of features used.

7)) GENE: Forthis data set, the average accuracy on the test
data achieved by our method is 92.55% vsing on average 10,45
features out of 7129 features. Inone of the GP runs, the best clas-
sifier could classify correctly 33 of the 34 1est samples (97.1%
accuracy ) using 13 features. Note that, during the generation of
the imitial population, the algorithm may select a large number of
features for some classifiers, but since the depth of initial trees
are restricted 1o 2-6, most of the selected features will not be
used. Consequently, GP will evolve using only a small number

AVERAGE PERFORMANCE FOR NOISY Diata

Methods  Wuh all leatures Wl selected atucss
A . Ay T A M2
W LA 1. 04,54 i RER
Wains 17 L, 11 92T RO
Yihicle 22 AL [ P EER T

of features, which is further moderated by our crossover oper-
ations. In [46], Golub et al. repored correct classification of
20 test samples with high confidence. Nguyen er al. [31], [45]
achieved 97.1% (best test) accuracy using the logistie discrimi-
nant classifier. On the other hand, the test accuracy of the classi-
fiers studied by Cho and Ryu [45] varied from 58 8% to 100%.
Rowland [52] obtained 91.1% test accuracy using Genetie Pro-
gramming.

Owr experniments on Sonar and GENE suggest that the pro-
posed method can easily do a good job for moderately, large
and very large dimensional data sets also.

D, Effect of Noise Features

Here we study the sensitivity of our method on bad (noise)
features that are synthetically injected 1o a few real data sets.
To produce noisy data, we add four randomly generated values,
Trls e Pn, a0d 2y, to each data point of WBC, Wine and
Wehicle data. We generate the values of ) and . in [0, 1]
and —1.,1] respectively. To decide on the domains of 1,3 and
¥4, we randomly select two features of the data set and use
their domains. Once the domains are decided we randomly gen-
erate values of 2,5 and 1, from their respective domains. For
example, if the domain of a selected feare is [13.5, 30.0], then
for each data point we vse a random number generator 1o ob-
tain 4 value in [15.5, 3000] and add it as a noisy feature value.
To see the effect of the noise features we run our scheme with
FS (617 g ) and without FS (G112, ) on the augmented noisy
data sets. We run GP 5 times with twofold cross-validation using
both the schemes. The average accuracies for WBC, Wine and
Vehicle data are given in Table XI1L The pedomance of our
scheme on data sets with noise features almost remains the same
as that on data sets withoul noise.

We have observed that the proposed FS scheme GT' ., only
occasionally chooses any noise feature, bul on average there s
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i TABLE XII
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a marginal increase i the number of features vsed. Addition of
noise features causes confusion in feature space. This may lead
the classifier to select more nonnoise features o counter balance
the complexity in feature space caused by noise features. More-
over, if a noise feature gets selected, the system may need a few
eood features to balance its influence. Hence, there is a marginal
increase in the number of selected features. An interesting ob-
servation 15 that even without FS, our scheme can find reason-
ably good classifiers from the nosy data. This s a very good
attnbute of the proposed GP-based classifier design scheme.

In addition to this comparison of average pedformances, we
also compare the performance of these two methods over nosy
data vsing 5 = 2 cross-vahidation paired | test [53]. Let 2 and
g be the means of the test errors using G- and G g,
respectively. Let the null hypothesis be TTy: 1 jle and the
alternative hypothesis be H): pe) = pea. The computed L values,
# for WBC, Wine, and Vehicle data are given in Table X111 The
cut-off value for rejecting the null hypothesis at 95% confidence
level for ¢ with five degrees of freedom [53] is 2.015. Table X111
shows that the # value for each of these 3 data sets is greater than
this eritical value of L. So the null hypothesis s rejected at 95%
confidence level

V. CONCLUSION

We proposed a methodology for online FS and classifier de-
sign using GP. In a single mun of GP our method automatically
selects the required features while designing classifiers for a
multicategory classification problem.

We genermted the mital population in such a manner that
the classifiers use different feature subsets. The initialization
process generates classifiers using smaller feature subsets with
higher probability. The fitness function assigns higher fitness
values to classifiers which classify more samples using fewer
features. The multiobjective fitness function helps 1o accom-
plish both FS and classifier design simultaneously. In this re-
gard, we proposed two modified crossover operations suitable
for F5. As a byproduct, we obtained a feature ranking method.

The effectivencess of our scheme is demonstrated on seven
data sets having dimensionality varying between 4 and 7129,
O expernimental results established that the proposed scheme
15 very effective in selecting a small set of features and finding
useful classifiers. The obtained results (Table IV) reveal that
the proposed method can achieve almost the same pedormance
using a small set of features as that with all features. We have
also demonstrated the effectiveness of our scheme on data sets
with known redundant or bad features added synthetically. We
have compared the perdommance of our methodology with re-
sults available in the literare with both filter and wrapper type
approaches. Wrapper (and onling) FS algorithms perform better

Alporithm 1 Muration m!‘['FrrpuIafmn}
|- Randomly pick a classifier(C) < Popularion
2 Compute p; of CFj=1,2,---,¢
3. repeat ¢ fimes
4; Select u tree (T of C with Roulette wheel selection using
Fi
Dy = 3hg ¢ wtal number of nodes of T, { m% of the
lial nodes, let m = 2}
& for k =0 to m, do
7 {hoose a node type anpelwith probability g 1o
select function node Lype and g, to select rermrinad
node tvpe |
% Randomly select an arepe node of the tee T;
. BReplace it with a randemly chosen srype node
1 end for
1 &y, =00 Ky = 00N = number of teaining samples of &
class}
12: for § =11 N, do
1= if F™ix,) = 0then

h

14: k= km + 1 { 43 = mutated T3}

15:  end if

e il Tiix,) = 0 then

7 ko = ko + 1 {x,, i fpp waining sample of 4, class}
1%  end if

1% end far

20 it by, = K, then

21:  Accept Ti™

22; else

23:  Retain T; with probability 0.5
24: end if

25: end repeat

than filter approaches, at the cost of computational tme. Our
proposed algonthm perdommed better for both two class and
multiclass problems.

Some of the important charactenistics of the proposed algo-
rithm are as follows.

+ It provides a mathematical description of the classifier
which 15 easy o analyee and mlerpret

+  The FS process is integrated into classifier design in such
a mannér that the algonthm can pick up the required fea-
tures and obtam the classifier using them.

*  The fitness function prevents the use of more features and
hence helps to achieve more readability of the trees ex-
tracted by the system.

+  Since the number of features 1o be used is not predefined,
the algorithm has more fexibility.

*  Using the output of the algorithm, we can oblam a manking
of the features,

* It can deal with a c-class (¢ > 2] problem in a single run
of GP.

We have used anthmetic functions to design classifiers. So, our
methodology 15 applicable to numerical attnbutes only. For data
with nominal attnbutes, the logical functions like AND, OR, NOT
may be considered instead of anthmetic functions.
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Algorithm 2 Crossover_hy { Popaliation) Alporithm 3 Clasvifier

1 — oy — 1, Max; =0 Macs — 0 1ogen =0, fit, — 0. fit. =0 { fit, = highest fitness
e l—1to 71 do valuef . b of Lhat generation and fif, =highest fithess( Feul
3 Nandomly wake a classifier & & Papelation till that generation}
4 if f.(C5) = Maz then 2. Initialize population of classifiers {C5}.97 =1,2,.-- P
5 Maz, — L(C), k=37 [max. possible fitness frer = | + a5 % exp(—1/n)}
e end il 3: while gen < M and fit. < f.. do
7: end for 4 fory=110 Pdo
% Py = ' {first parent for crossover} 5: Cualuate fitness f, and f,, of each classifier ¢
9: O —= Cypyy | now for sccond parent 4} 6 fity = maz fugiCy)
1 while {[my < P and (mi- << 7)) de s k = arp mar; (0]
1: i (05 = v then & end for
12: if fa(€7) = Maz; then 9 il fity, > fit, then
13 Muars — fol ), e — C, {if both use same Fite= ity
feature subser 11 Cr =0y
14: end if 122 endif
15: me=m;+1 13 Perlormm Hreeding {all penetic operations]
14;  el=e I+ gen = gen+ | {go to the next generalion |
17: =0k fili=PFtheni4+1=1} 15: end while
%  end if t6: Compute weights {u;} {of the best classifier CF}

1% oy =g + |
200 end while
21: if m, = 0 then
2 Compute p',i=1,2,---,eof I}
23 Seleel a tree T3F of [, by the Roulete-wheel selection :
using p;’ P, =1
24 Select a node type nivpe {with probability gy, to select 2 while £, # F' do
function nods type and g, 1o select fermingl node iype}l % Select coe of the operatars from reproduclion, crossover
25;  Randomly sclect a node of the nnvpe lype from 7! and and mutation with a probability p,, p. and p, respec-

Algurit]m_l_ 4 Breedingl Population)

1% (of Fo) independently Lively
26 Swap the subirees rooted at the selecied nodes of 7 R T ; uperator = reproduction then
and T)? 5 Select a classifier using fitness-proportion selection
2T Swap 1’3-1 with '1:,2, Vi—141..,¢ method
2 else & perform the reprodduction operation
2o: D helerogeneous crossover {as mentionsd in the see- 7 Fo=F +1
oon OLC)H } g end if
30: end if @ if operator = crossover then
[V Select two classifiers wsing fourmament  sclectiva
method
ACKNOWLEDGMENT i perform crossover
12 Fo=H,+2

The authors express their thanks to the associate editor and

13 end if{Nowe that, if I3, becomes £ + |, then ejecet the

anonymous referees whose valuable suggestions helped o im- second otfspring after crossover operation}

prove this work significantly and also o their colleague Dr. Al 14:  if operawr = mutation then
Sharmma for his help in bioinformatics-related work. 15 Select a classifier randomly
16: perform mutelon
17: Po=F 11
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