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A Soft Computing Approach for Rainfall Retrieval
From the TRMM Microwave Imager

Diganta Kumar Sarma, Mahen Konwar, Jyotirmoy Das, Srimanta Pal, and Sanjay Sharma

Abstraci—A neural network model for rainfall retrieval over
ocean from remotely sensed microwave (MW) brightness temper-
ature (BT) i proposed. BT data are obtained from the Tropical
Rainfall Measuring Mission (TRMM) Microwave Imager (TMI).
The BT values from different channels of TMI over the Pacific
Ocean (1637 tto 177°W and 18° to 34°S) are the input features.
The near-surface rainfall rate from the Precipitation Radar (PFR)
are considered as a target. The proposed model consists of a
neural network with online feature selection (FS) and clustering
techniques. A K-means clustering algorithm is applied to cluster
the selected features. Different networks have been trained to
give an instantaneous rainfall rate with all input features as well
as with selected features obtained by applying the FS algorithm.
It is found that the hybrid network utilizing FS and clustering
techniques performs better. The developed network is also vali-
dated with two independent datasets on March 14, 2000 over the
Atlantic Ocean having stratiform rain and on March 21, 2000
over the Pacific Ocean having hoth stratiform and convective rain.
In hoth cases, the hybrid network performs well with correlation
coefficient improving to 0.78 and (L81, respectively, in contrast to
0.70 and 0.75 for the network with all features. The rainfall rate
retrieved from the hybrid network is also compared with the TMI
surface rain rate, and a correlation of 0.84 and 0.75 is found for
the two events. The proposed hybrid model is validated with a
Doppler Weather Radar, and correlation of 0.52 is ohserved.

Index Terms—Backpropagation, clustering, feature selection,
microwave brightness temperature, modeling, neural networks,
satellite rainfall estimation.

L INTRODUCTION

AINFALL 15 a highly discontmuous process both in
Rspw_'u and ame. An accurate and reliable measurement of
elobal rainfall is still a formidable challenge 1o meteorologists.
Though from all the in site measurements rainfall mte can be
reteved over a comparatively large area, stull they cover only
a small fraction [<10%) of the globe. The remote sensing
technigues from space have the potential of providing global
rainfall information. 1t can be classified broadly into empirical
and physical basis approaches with a range of wavelengths
from visual (VIS) and mfrared (IR) to the microwave {MW)
regime. The Tropical Ramfall Measuring Mission (TRMDM)
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Microwave Imager (TMI) and Precipitation Radar (PR) on the
same platform of TRMM covering a common swath, provides
an excellent opportunity o study the global precipitation and
also the instantaneous minfall rate. At passive MW frequencies,
precipitation particles are the main sources of atlenuation of
upwelling radiation. Therefore, MW technigues are physically
more direct than those based on VISAR radiation. The observed
brightness temperature (BT) of upwelling radiation at different
frequencies depends upon the type and size of the detected
hydrometeors. Upwelling radiations at high MW requencies
(50100 GHz) are scattered by the raning system, leading 1o
reduction in the observed BT of the Earth’s surface. Al lower
frequencies (= 50 GHz) the absorptionfemission property is the
primary mechanism affecting the transfer of MW radiation,
where the ice particles above the rain layer are virtually trans-
parent. The sea surface has a low emissivity {~111, whereas
raindrops are much more effective emitier, thus providing a
good contrast against the sea surface.

Many authors have demonstrated the combined vse of MW
and IR data for rainfall estimation using different methods, e.g.,
see [ 1] and [2]. Artificial neural network (ANN) wechmgues are
also widely used for rainfall retrieval. More recently, use of
ANN for real-time rainfall estimation using Meteosat satellite
data 15 manifested by Grimes ef al. [3]. They also showed the
use of the principal component analysis (PCA) to reduce the
data volume and of a pruning technique to identify the redun-
dant input data. Hsu et al. [4] showed the use of an adaptive
ANN model that estimates mmfall rates using 1R satellite im-
agery and ground-surdface information. Better performance of
the ANN approach over linear regression for rainfall estimation
over ocean is demonstrated by Tsinukidis et al [5] from Special
Sensor Microwave/Tmager (S5M/1) MW data, whereas Bellerby
et al. [6] manifested the consistently better performance of an
ANN over locally calibrated Geostatonary Operational Envi-
ronment Satellite (GOES) Precipitation Index (GPL) techngue.
They vtlized the database of the brightness temperature and
their spatial derivatives for three IR and one VIS sensor on the
GOES geostationary satellite.

In this paper, a soft computing approach for rainfall rate esti-
mation over ocean is studied using online feature selection, clus-
tering, and hybrid neural network. The inputs in terms of BTs
are provided from the different channels of TMI, ranging from
10.67-85.5 GHz. The collocated PR rainfall rate 15 considered
as the target values. The present study can be organized as fol-
lovws, Section 11 describes the satellie systems and the prepara-
tion of the dataset. The methodology and a general background
of the ANN, the feature selection technigue, and the clustienng
algorithm are discussed in Section 111 The overall traming and
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validation results are presented in Section IV, Secuoon Vs com-
prised of case studies on two rain events. Discossion and con-
clusions of the results are presented in Section VI

II. SATELLITE SYSTEM AND DaTA PREPARATION

The TRMM satellite, carrying five sensors, was orginally put
ina 350-km circular orbit with an inclimation angle of 357, and it
wis boosted to 402.5-km orbat after August 14, 2001, The TMI
and PR sensors are of interest in the present study.

The scanning geometries of TMI and PR are different. PR is a
nadir-looking active sensor, and it performs a cross-track scan-
ning, whereas TMI has a conical scan with a viewing angle of
497 off nadir (i.e., 328" incident angle). As the TMI is rotating
while its receiver is integrating, the concept of effective field of
view (EFOV) has been introduced. It is the effective area swept
by the antenna beam dunng the integraton tme. The EFOVY
along the cross-track direction has sizes of 9.1 km for all the
lower channels and 4.5 km for the 85-GHz channel. This artifi-
cially narrow EFOV-CT gives the value of BTs. Detail descrip-
tions of the configuration of the TRMM instrument package can
be found in Kummerow er al. [7].

The rw data from the different sensors are treated through
different algorithms to obtain useful TRMM products desig-
nated as “TRMM standard data products.” Three of these prod-
ucts are utilized for the present study. These are referred as
2A25; PR rain rate/PR-corrected reflectivity, 1B11; TMI Bright-
ness Temperature (1B11), and 2A12; TMI surface min rate and
the vertical profiles of hydrometeors. These standard products
are of version 3. We have considered in our case the near-surface
rainfall rate, which is defined as the munfall mte at the lowest
height free from ground clutter. The vertical profile in 2A12
data product consists of 14 layers up to 18 kmin heights, which
are caleulated by standard algorithms developed by Kummeow
et al. [8]. As the sea surdace has emmissivily ~04 and land has
high emissivity ~(L¥, the TML-2A12 algorithm uses different
algonthms over ocean and land.

Being on the same platform, TML and PR covers a common
swath of scanning of ~20 km. Within this common swath there
are pixels of PR which are nearer or overlapped with TMI pixels.
The platform allows quantitative collocated comparisons of rain
estmates from the tao sensors. These collocated measurements
from these two sensors have provided the most comprehensive
datasel. As TMI and PR take samples at neardy the same bme
(where the time difference is approximately 1 min), this can be
ignomed as the observed precipitation system remains nearly sta-
tionary for this period [9]. In order to find the collocated pixels
of both TMI and PR, we have chosen latitude and longitude dif-
ference of L0.01% between all the nine channels of TMI and
PR. For lower frequency channels, as the EFOV-CT is of size
9.1 km, two PR pixels are averaged. For the 85-GHz channel, the
footprints are approximately of same size of PR, Therefore, two
consccutive pixels of TMI and PR are averaged. In the present
study, BT data are collected over the Pacific Ocean covering an
ared between 1637 1o 177°W and 18% 1o 3445, BT values cor-
responding to both stratiform and convective type of rain are
mcorporated in the traimng dataset.
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Fig. 1. Schematic dingram of the methodalogy.

1I. METHODOLOGY

In the present study, we have applied an online feature se-
lection (FS) algorithm w the BT dataset obtained from TMIL
The nine-channel BT data are the input feature to this feature
selection algonthm. It selects the most relevant channels both
vertical as well as horizontal. A k-means clustering algorithm
15 then apphied w the dataset of selected featwres. Separate mul-
tlayer perceptron (MLP) neural networks are traimned for each
of the clustered data. These trained MLPs are then combined 1o
form a hybrid network. The schematic diagram of the method-
ology 15 shown in Fig. 1.

A. MLP Neural Network

The MLP network consists of several layers of neurons of
which the first one 1s the imnput layver and the last one s the
output faver, and the in-between layers are called hidden lavers
[10]. Every node, except the iput layer nodes, computes the
weighted sum of its inputs and applies an activation function,
a sigmoid function to compute its output. This output is then
transmitted o the nodes of the next layer The objective of the
MLP learning 15 1o set the comection weights in such a manner
s0as o minimize the error between the network output and the
targel. For the present study, the backpropagation gradient de-
cent method of learning is utilized.

B. Online Feature Selection Technigue

The main objective of the online feature selection network 15
to select the good features for learning the estimation task. In a
standard MLP, the effect of some features (inputs) can be elim-
mated by not allowing them to enter into the network [11]. This
can be mealized by associating an adaptive gate o each mput
node of the MLE This feature selection network 1s known as
FSMLP. Mathematically, the gate 1s modeled by a function F
with a tunable parameter (). The degree to which the gate is
opened determines the goodness of the feature. The gate should
be modeled in such a way that it is completely opened for a
zood feature, with the value of the function must be nearer to 1.
While for a bad feature, the gate should be closed, which means
the value of the function is near about (0. On the other hand, fora
partially important feature, the gate could be partially open, with
the value of the function between 0 and 1. We multiply an input
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TABLE 1

ATTENUATION WEIGHT YV ALUES FOR NINE—INPUT FEATURES

FEATURES ATTENUDATTORY REYARKS
WEIHTS

Chennel 1 WA Acceplad
Chennel 2 09451 Aceped
Clienoel 3 [1.929% Awoeple]
Chennel 4 (AT Accepisd
Chennel 5 00025 Rejected
Clienoe] 6 09973 Avcepl=]
Chennel 7 00020 Eejevted
Chennel & (.52 Anecprad
Channgl 4 10,9577 Accopred

feature value ; by its attenuation value #(+0 and the mod-
ulated feature value «, F'[~,) for the ith input entered inlo the
network. The gate function attenuates the features before they
propagate through the net so we may call these gate functions
as attenuator functions. A simple way of identifying useful gate
funcuons 15 o use sigmoidal functions with a tunable parameter,
and these parameters can be learned vsing taming data.

1) Training Method: Parameters ~; are imbalized  with
values that make w3 = 1/ —«a %5 close o O for all &
Consequently, ;{1 is small at the beginning of the training,
so the FSMLF allows only a very small “fraction” of each input
SJeatwre value to pass inte the standard part of the MLP. As the
network is trained, it selectively allows only important features
Lo be active by mcreasing their attenvator weights (and hence,
mcreasing the mulupliers of 1, assocuited with these weights)
as dictated by the gradient descent. The traiming can be stopped
when the network has mimmum mean squared error. Beatures
with fow attenuator weights are eliminated from the feature set.

C. K-Means Clustering

The task of k-means clustenng algorithm s 1o group the
given data into A number of different homogeneous groups.
The homogeneity 15 measured by similanty. Normally the
k-means clustenng algorithm measures similarity by the Eu-
clidian distance. The prototype of each cluster is denoted by
the cluster center. Initial cluster center may be chosen as &
different data points from the given set of data. Each data point
15 assigned o ats nearest cluster and recomputed the cluster
center. The process of assignment continues until each cluster
center unchanged.

2111

TABLE 11
ErroRr INDEXES FOR TRAINING AND VALIDATION SET FOR
THE NETWORES ANN, ANN_FS, anp ANN_Hyhb

WL crrzlanice FIFls
Leurning coeificicnt | imuethy
AR 020 LR
AKN F5 TS EE.
TRAINING
aANN_Hyh G057 T
R Kl 221
MaRTATION: AR, | couse T 2lR
ARM_eh M5 [WiRES

IV, TRAINING OF THE NETWORKS AND THEIR RESULTS

A. FSMLP Training for Feature Selection

We have trained the FSMLP network five times with different
mitialization using the nine-feature BT data. We only consider
those features whose attenoation valoe at the end of the run are
=LA A “voung scheme™ 18 then applied o see which fea-
tures are selected most of the ume and thus choose those fea-
tures. This scheme selects seven features outl of nine ( Table 1),
Tablke L reveals that FSMLP rejects the 21.3-GHz channel, which
15 mainly responsible for the water vapor and 37.0-GHz hon-
zontal channel. The network does not reject the 37-GHe vertical
channel, which is affected by moderate types of rain. The net-
work also gives preference o all the lower frequency channels
(both vertical and horizontal polarization). This fact agrees with
what 15 in the literature, e, lower frequencies are more sensi-
tive 1o rain as for example the 10-GHz channel is sensitive for
the strong precipitation. Furher, for the 85.5-GHz frequency,
where scattering effect dominates, the network has selected both
the vertical and honzontal channels,

B. MLP Training for Rain Rate Estimation

Three different networks are trained for the instantaneous rain
rate retrieval utilizing the BTs from TMI and PR near-surface
rainfall rate.

1) MLP Without Feamnre Selection (ANN): First, the neural
network is trained using the entire nine-channel BTs from
TMI as input and the collocated PR near-surface rain mtle as
target. The whole dataset is divided into two parts: 80% is
used for tmining and the rest for vabhdation. Varnoos network
architectures are trained with different hidden layers and nodes.
Network with two hidden layers having nodes 25 and 10
come oul 1o be good enough o trace the nonlinear relations of
the BTs and PR rainfall rate. Thus, the network architecture
15 9-25-10-1. We have considered more hidden nodes so as
to ensure that the network can adopt the nonlingarity of the
input features. The above network architecture is realized in
MATLAB toolbox based on Levenberg—Marquardl backprop-
agation algorithm. The main advantage of this algorithm s its
fast convergence [ 12]. We named this network as ANN.
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Fig. 2. Scatter plots of rain rate versus {a) ANN_Hyb and PR, (b) ANN_Hyb and TML, {c) PR and TML and (d) ANN_Hyb, PR, and TMI derived raintall rate

TABLE 111
COMPARISON OF ERRORS OF DIFFERENT NETWORKS WiTH PR NEAR-SURFACE
Ram RATE AND TMI SURFACE RAIN RATE FOR MAarCH 14, 2000 Data

E
- A ]
3 PR 1M1
I
cortclatinn | e has conralarion FITEE Fias
Merwonks | eeoffickeor | rmmy | fomdn | oeceffidiear | rmimd S
AN .70l .37 0.7 (L7580 1.474 TR
b ANNLES | 0783 | 1282 | 0esT | os4s | 1033 47
Fig. 3. Wertical cross section of corrected reflectivity factor in loganthmic ANN Hyr| 0782 1131 | 0501 0,310 1124 D517
povarer showing the bright hund at around 4-km height on March 14, 2000,

2) MLP With Feature Selection (ANN_FS5); The MLP
network 18 traned by the traming dataset with the seven se-
lected features. Thus, the network architecture now becomes
7-25-10-1. Here it should be noted that the number of hidden
layers and nodes are kept the same as in the case of the network
without FS. We named this network ANN FS.

3) Hybrid MLP Network (ANN_Hyb): On the selected
features, k-means clusienng algonthm s applied. Here we
obtain two good clusters. Several MLPs for each cluster are
tramed with training sample and tested with a test sample. Sen-
sitivity based on both weight matrix as well as inputl variations
are studied, and the best MLPs for each cluster are chosen.
The trained MLPs for both clusters have the configuration of
7:25:10:1. These MLPs are then combined to form a hybnd
network (Fig. 13 with the objective that the hybrid network will
reflect output of the best suited MLP. That means an observation
of the selected features of an unknown sample will determing
its cluster number and fire that MLP for rainfall estimation.
This hybrid network 15 named as ANN_Hyh.

Various results of the training and validation of the three dif-
ferent networks, vie. ANN, ANN_FS, and ANN_Hyb are hsted
in Table 1L It s observed that for the trainmg and validabon sets
the correlation coefficient for ANN_Hyb network is higher com-

pared to other two networks. In tenms of rool mean square error
(rmse) also the ANN_Hyb network performs better.

V. CASE STUDY FOR RAIN RATE ESTIMATION

Two rain events from different locations are considered for
this case study. One is stratiform type on March 14, 2000 over
the Atlantic Ocean (347 to 36°5 and 157 10277 W) and the other
having both stratiform and convective on March 21, 2000 over
the Pacific Ocean (267 o 3278 and 1387 o 147°W). Updated
weights from ANN, ANN_FS, and ANN_Hyb networks ane uli-
lized to estimate the instantaneous rain rate from the input BTs.
These estimated rain rate from the networks are compared with
TREMM standard data product 2A25 (PR ) and 2A12 (TMI).

The instantaneons ramfall rates on March 14, 2000 event are
estimated by these three networks. The corresponding statistics
with respect Lo rain rate dedved from PR and TMI are listed in
Table LAY and (B) respectively. Table THGA) revels that the
ANN_Hyb network performs better compared o other networks
in terms of correlation coefficient and mmse. Here biasing is pos-
itive for all the networks, which indicates that with respect 1o PR
standard product the estimated min rate 15 overestimating. From
Table HI(B b, it can be observed that there 15 negative biasing with
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respect 1o TMI min rate, which indicates that estimated rain rate
15 underestmated compared to TML It can also be inferred that
bias in ANN_Hyb versus TMI is more compared to ANN_Hyb
versus PR Fig. 2(a) and (b) shows the scatter plots of ANN_Hyb
estimated ramn rate versus PR and TMI surface mun rate, respec-
tively. For this stratform event, TMI min rate has a biasing of
1.158 mmv'h compared o PR with rmse of 1,19 mm'h and comre-
lation coefficient of 0.79 [Fig. 2ic)]. The pixelwise comparison
of rm mte from ANN_Hyb, PR, and TMIare shownin Fig. 2(d).
ltcan be observed from this figure that the ANN_Hyb estimated
rain rate1s able to capture all the vanations i the stratfonm event
where the maximum rain rate s found to be of 11.2 mm‘h. Here,
the TMI mun rate 1s overestimated with respect to PR This may
be due to the presence of bright band for this event (Fig. 3). Ina
recent study, Nesbitt e all [13] has pointed oul that over ocean
the TMI min mte s overestimated compared o PR and that i
is more prominent in case of stratiform rain. In the ANN_Hyb
model, as networks are trained with PR min rate as target, so the
model-derived rain rate tends to follow the PR ram rate. The TMI
rain rate, therefore, has an overmll overestimabon compared Lo
ANN_Hyhb.

The rain event on March 21, 2000, which contains both strat-
tlorm and convectve min, maximum ran mate 15 observed up
to 45 mm. Fig. 4 a)—{c) shows the scatter plots for ANN_Hyb
versus PR, ANN_Hyb versus TMIL and PR versus TMI-denved
rain mte, respectively. The ermor statistics for this evenl are
shown in Table IV. Similar to the earlier event, ANN_Hyb
estimated mun rate has positive bias with respect 1w PR and
negative bias with respect to TMI observations. The comrelation
between estmated rain rate from ANN_Hyb network and PR
15 about (.81 with rmse 4.15 mm/h. This increase in emor 18
acceptable becavse this dataset contams BTs rom convective
situation also. As in convective siluabions, rain rale 1% nol uni-
form, having updraft and downdraft. This introduces the emor
in min rale estimation. For this event also, there 1s an overall

Scatter plots of rain rate versus (1) ANN_Hyb and PR, (b) ANN_Hyb and TMI, (c) PR and TML, and {d) ANN_Hyh, PR, and TMI derived rainfall rote

TABLE IV
CoMPARISON OF ERRORS FOR RAIN BATES BETWEEN ANN_HYB,
PR, axn TMI For THE MARCH 21, 2000 EVENT

cerclatian LS Tnins
cretricicrt mimih) mimih)
AMNM_Hvh V3 PR &1 A 104 LIRS
ANM_Hyh Ve TMI 1.752 A1Té (LS
THI %5 TR 1,795 .39 1351

overestimaton of TMI min rate with respect w PR [Fig. 4ic)].
From Table IV, 1t can be infemed that the ANN_Hyb dernived
rain rate 15 underestimated with respect to TMIL But it s less
as this event contains convectve min also. Figo 4id) shows the
pixelwise plot of mun rate from ANN_Hyb network PR and
TMI.

A. Spatial Comparison of ANN_Hvb With TMI Rain Rate

The spatial distribution of rain rmate estmated from the
ANN_Hyb model 15 compared with TMIL Fig. 5 shows the
contour plots of rain rate for the TMI and ANN_Hyb models,
respectively, for the March 14, 2000 event over the Atlantic
Ocean. 1t can be inferred from the figure that the spatial stre-
ture of ANN_Hyb estimated ran rate 15 almost similar to that
of TML The high min rate area around 27*W and 33.5%5 is
outside the PR swath, which contains convective ran. Bul
mnside the PR swath the ran pattem s stratiform. ANN_Hyb
algorithm s able to capture these high rain mte areas also.

B. Ground Validation

For the actual test of the ANN_Hyb model it s validated
with an operational Doppler Weather Radar (DWR) at SHAR
(13.66"N and 80.23°E), India. Two events of TRMM that over-
pass on November 6 and 7, 2003 have been considered where
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= the training data considered here are comprised of BTs from
£ 40 corr =052 Ei e, R ofall i 5
E MW frequencies, and over sea its response o rainfall is more
E compared to land, particularly for the lower frequency chan-
% 50 v i nels. Moreover, over land, use of lower frequency channels
= (which work on absorption/emission mechanism) are limited
w2 . . due to the high background emissivity [~{1.5% Performance
= g ' of the network improves for input features that are selected
£ 10 By A 3 utilizing FSMLP algorithm. This may be due to the fact that
E “a ) R the discarded channels do not represent very much the surface
L 00 —13——— E:D_ 30 4—;0 rain rate and thus produce more error in output. The kK-means
OAWR rain tate i clustenng technigue has so .I‘ur hf_::n used in many fiekds, eg.,
see [14]. Results presented m this paper show good meason 1o
Fig. 6. Scatter plot of DWE and ANN_Hyb min mte. incorporate FS and clustering technigues for rainfall estimation

precipitation echoes were present. DWER data are averaged in
N_1< 5 N1 gad resolution. For rainfall retrieval from DWR, two
Z-R relations for convective (72 = 20938 Ry and stratiform
(Z = 61.2 RV min are utilized. These relations are found out
from Joss—Waldvogel Disdrometer located near the radar site.
Fig. 6 shows the scater plot of DWR and ANN_Hyb rain rate
forthe same events. Correlation of 0,52 and rmse of 5.20 mm/h
is observed for the rain rate comparison,

V1. DISCUSSION AND CONCLUSION

This study manifested use of a hybrid neural network model
for rainfall retdeval from the TMI passive sensor onboard
TRMM uvsing online feature selection and clustering tech-
nigues. Separate ANN maodels have been developed with and
without theses technigues. All the networks are trained 1o give
the near-surface instantaneous rain rate. Application of the
networks in this study clings to over sea only. This 1s because

from remotely sensed data. The network developed shows
flexibility for data from different locations. 1t is able to capture
rain rate for an independent validation dataset on March 21,
2000 over the Pacific Ocean as well as for March 14, 2000 over
the Atantic Ocean. The hybrid network ANN_Hyb provided
better instantaneous rain fall rate estimation compared o ANN
and ANN_FS for the same events when compared with the PR
and TMI surface rmin rate. ANN_Hyb estimated rain rate is
underestimated with respect to TMI over ocean, and 1t 1s more
for the swratiform event. This is attdbuted 1o the presence of
bright band. The proposed ANN_Hyb model 1s validated with
ground-based DWR observations.
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