A pipeline architecture for computing the Euler
number of a binary image

Arijit Bishnu , Bhargab B. Bhattacharya ", Malay K. Kundu °,
C.A. Murthy ®, Tinku Acharya ©

* dapan Advanced Institute of Sdence and Technology, -1, Asahidai, Tatsunokuchi, Tshikawa 9230292 Japan
" Center for Soft Computing Revearch, Indian Statistical Institwte, 203 BT, Road, Kollata 70008, India
© Avisere Inc., Tucson, AZ 35711, United States

Abstract

Euler number of a binary image is a fundamental topological feature that remains invariant under translation, rota-
tion, scaling, and rubber-sheet transformation of the image. In this work, a run-based method for computing Euler
number is formulated and a new hardware implementation is described. Analysis of time complexity and performance
measure is provided to demonstrate the efficiency of the method. The sequential version of the proposed algorithm
requires significantly fewer number of pixel accesses compared to the existing methods and tools based on bit-quad
counting or quad-tree, both for the worst case and the average case. A pipelined architecture is designed with a single
adder tree to implement the algorithm on-chip by exploiting its inherent parallelism. The architecture uses O{N) 2-input
gates and requires O(Nlog &) time to compute the Euler number of an & x & image. The same hardware, with minor
modification, can be used to handle arbitrarily large pixel matrices. A standard cell based VL3I implementation of the
architecture is also reported. As Euler number is a widely used parameter, the proposed design can be readily used to
save computation time in many image processing applications.

Kevwords: Euler number; Image processing: Pipeline architecture; VLST implementation

A. Bishnu et ol | Journal of Systens Architecture 51 (2005) 470-487 471

1. Introduction

Topological properties that remain invariant
under various transformations are useful in image
characterization for matching shapes, recognizing
objects, image retrieval from a database, and in
many other image processing and computer vision
applications. An important topological feature of
a binary image is the Euwler number (or genus),
which is defined as the difference of the number
of connected components {objects), and the num-
ber of holes [1.2]. Euler number remains invariant
under translation, rotation, scaling, and rubber-
sheet ransformation of the image. Many critical
image processing applications involve large
amount of data, and at the same time demand
quick real-time response. Euler number provides
a simple and fast method of screening in such
cases. Euler number of cell images is widely used
in medical diagnosis [3]. It has recently been ob-
served that Euler number is the most clinically use-
ful feature that discriminates many cervical
disorders [4]. Being a fundamental topological
feature, it has numerous applications in image pro-
cessing, e.g., optical character recognition, docu-
ment image processing [5], reflectance-based
object recognition [6], analysis of sandstone for
geological applications [7], shadow detection [8].
Other topological properties using the convex defi-
ciency and convex hull of the shape are used in
conjunction with Euler number for classifying
typewritten letters or binary silhouettes [9]. Re-
cently, based on Euler number, the concept of
Euler vector is introduced to characterize a gray-
tone image [10].

The classical algorithm for computing the Euler
number of a binary image is based on counting
certain (2x2) pixel patierns called bit-quads
[2.11] over the entire image. Gray [11] used the fact
that the Euler number of a region of space is lo-
cally countable [12]. The classical graph-theoretic
definition of Euler number relating vertices, edges
and faces is applied to an image followed by trian-
gulation and then its Euler number is computed as
the difference of the number of connected compo-
nents and that of holes. Alternatively, Euler num-
ber is shown to be the difference of lefi-facing
convexities and concavities in the image. Compu-

tation of these parameters needs counting of spe-
cific types of bit-quads in the image namely,

10 I | : 1 0
Q1=[ﬂ {],:| QE:[{]' 1:| and QIJ=[G 1:|

and their rotational equivalents. Let v, ¢, and o
be the patterns @y, (4, and Qp respectively in an
image. Then the Euler number can be expressed
as (3 v — 5%t —2x %Y dV4 under the B-connectiv-
ity definition. The commercial image processing
toolbox MATLAB uses the above quad counting
algorithm for Euler number computation [13].
Dyer [14] proposed an algorithm to compute the
Euler number of an image represented by a
quad-tree. Samet and Tamminen [13] improved
the algorithm further by using a new staircase type
of data structure to represent the blocks that have
already been processed. Juan et al [16] considered
a skeletonized version of the binary image and
computed Euler number in terms of the number
of terminal points 7, and the number of three-
edge points TE,, as (T, — TE)2, The terminal
and three-edge points are defined from pixel
neighborhood relations. Chen and Yen [3] devel-
oped a parallel localized algorithm using square
graphs to calculate the Euler number of a given
binary image on a square grid. Chiavetia and Gesi
[17] used connectivity graph representation of a
binary image and developed an algorithm for
computing the Euler number. The connectivity
eraph was derived from the discrete version of
the cylindrical algebraic decomposition of the
digital plane. The authors also described a
parallel implementation of the same algorithm on
a linear array network topology.

Rosenfeld and Kak [18] observed that Euler
number can be computed from the run length
representation of an image. If for each run r,
k(r) be the number of runs on the preceding
row to which r is adjacent, then Euler number
can be expressed as: E=7% {1 — k(r)). Further
results on 2D and 3D images are reported in
[19]. Di Zenzo et al [20] suggested a planar
graph representation of an image from run
descriptions. Next, the number of connected
components C in the image i85 computed by
applying a standard graph algorithm. The num-
ber of holes ff is then computed from the Euler’s

472 A. Bishnu et al ! Journal of Svstens Architecture 51 (20058) 470487

formula of a planar graph as H=1+m—u,
where m = number of edges and v = number of
nodes in the graph. Finally, Euler number is cal-
culated as E=C— H. Dey et al. [21] have re-
ported a divide-and-conquer algorithm that can
be parallelized for computing the Euler number
of a binary image.

In this work, we revisit the run-based expression
of Rosenfeld and Kak [18], and present a novel
hardware design for computing Euler number.
We show that certain properties of runs and neigh-
boring runs and their distributions in the pixel ma-
trix can be exploited to compute the Euler number
of a binary image very efficiently. Performance
analysis of the algorithm indicates that the pro-
posed technique outperforms significantly in
speed, the existing bit-quad counting and quad-
tree based methods [2,11,13-15]. Experimental
results on a logo database show very favorable
results. This run-based algorithm, with its inher-
ent parallelism, provides the basis of building a
pipeline architecture for on-chip computation of
Euler number. Given a pixel matrix of size
(N = N) the upper and lower bounds on the value
of the Euler number are also derived. This result
allows us to design the architecture correctly. We
further derive analytical expressions for perfor-
mance measures of the proposed architecture to
establish its efficiency. It is also shown that the
circuit, with minor modifications, can handle a
pixel matrix of arbitrary size. A standard cell
based VLSI implementation of the architecture
on a real technology is described and relevant
data on circuit area and delay are reported. To
the best of our knowledge, on-chip design of any
run-based technique does not seem to be available
to date.

The rest of the paper is organized as follows.
Section 2 presents the formulation for computing
Euler number based on runs, theoretical analysis
of complexities, and experimental resulis on run
distributions. Next in Section 3, a simple parallel
version of the algorithm, the proposed pipeline
architecture, and resulis on its performance analy-
sis are reported. Section 4 describes VLSI imple-
mentation of the design for a 236 x 256 image.
Section 3 concludes the paper.

2. Proposed algorithm
2.1 Theme

Let the binary image be represented by a (-1
pixel mairix of size (N x M), in which an object
{background) pixel is denoted as 1 (0). In a hinary
image, a connected component 1s a set of object pix-
els such that any object pixel in the set is in the 8
{or 4) neighborhood of at least one object pixel
of the same set. A hole is a set of background pix-
els such that any background pixel in the set is in
the 4- {or 8-) neighborhood of at least one back-
ground pixel of the same set and this entire set
of background pixels is enclosed by a connected
component. The sets referred to in the definition
are sets contained in the image. A run in any row
{or column) of the pixel matrix is defined to be a
maximal sequence of consecutive 1's in that row
{or column). Let 8(i{) denote the number of such
runs in the ith row {column). £({) can be counted
as the number of 0 — | transitions in that row
with a 0 padded at the start of the row (the 0 is
to be padded to handle the case where there is a
1 at the start of the row). See Figs. 1 and 2 for
illustration. There can be no holes in a single
row, and the number of connected components
in that row is same as the number of runs in that
row.

Fact 1. If the image | consivis of a single row or a
single column i, the Euler number E(f) = R(i).

Fact 2. Euwler number satisfies the local additive
property. Given two images | and L with Euler
numbers E(1) and E(l) respectively, the Euler
number of the image I= 1) U1 is given by: E(l) =
ElLuly= EIn+ EL)— Ef N L) (see [11,12])

The wnion (L) of two images is defined as simple
juxtaposition of f; and /5 either vertically or hori-
zontally, without any overlap. The infersection (1)
of fi and £5 is the image formed by the last row (or
column) of fi, and the first row (or column) of £+, if
the images /| and /1, are joined horizontally (or ver-
tically). The intersection image is always two pixel
row (or column) wide. Without any loss of gener-

A. Bishnu et ol ! Journal of Systens Architecture 51 (2005) 470-487 473

L] L L}
als a = L R ol s(w o(n o|®
L ' * " L L]
i))
L I B B L I B I
- * 4 & B - » L a 8 8 . 2-pinel whilc
wome ol
[] [] - [] L] - inleraglisn
*« % & 8% B o8 ® B
i
o ()

Fig. |. Union and intersection of images, (a) Image B, (b) image L () image 0 O 0, and (d) image 7 005

P R e iy 3
K = 3 -___,'I_zi . & T 5 -}- bl Bl ed \\ } Nl Tuis
o e O K el i =2
Luns — 4 F:-—’ \’H e It _.‘--'./ . - L.y } Shr rung
o T = i -1
- . | .
T !." Ll N Nher runs
Tuus —1 ole o || L B }’ -3
T

Tarer number — Zegns Eneighloring toes —
D T (O L I el

Fig. 2. Hustration of runs and neighboring runs.

ality, ket £, and /> be joined horizontally. Thus, the
last row of f, will lie above the first row of f. See
Fig. | for an example. Two runs appearing in two
adjacent rows each, are said to be neighboring if at
least one pixel of a run isin the 8- (or 4-) neighbor-
hood of a pixel of the other run (we follow 8-
neighborhood convention throughout). Clearly,
(4, N 15) will denote the image containing the last
row of f; and the first row of f> and is a two-row
wide image. See Fig. | for an example. No holes
can be present in a two-row wide image, and also
the number of connected components in a two-row
wide image is the number of neighboring runs. So,
we have the following observation:

Fact 3. Eif, n 1, = the number of neighborving runs
between !, and I+

We now use Facts 1-3 iteratively to compute
the Euler number of the entire image, as follows.
Let £ be the partial image consisting of rows
1,2,...,(i — 1) of the pixel matrix. Let E{f,_,) be

the Euler number of f,_,. The Euler number of
the image consisting of only row i= R(i) (bhy
Fact 1). The row i is now added to f,_, to form
the union image f; The intersection image is
formed by the (i — 1)th and the ith row. Let the
number of neighboring runs between them be O,
Hence,

E() = R(1),
E(l:) = E(1,) + E(2) — O,

— R(1)+R(2) — O,
(1) = B(I;)+ E{3) — O

— R(1)+R(2) + R(3) — (02 + O),

E(Iy) = E(Ix1)+ E(N) - O,
= (RO +R(2)+R(3)+ -+ R(N))
OO OR),

= iﬂ{r’j - i:t’),.
=1 =2

where, [y denotes the entire image.

The above analysis proves the following known
result [18], and provides the basis of our hardware
implementation.

Theorem 1. The Euwler monber of a given hinary
image is the difference between the swm of the num-
her of runs for all rows (or columns), and the sum of
the neighboring runs between all consecutive paivs of
ronvs (or codumns).

474 A. Bishnu et al ! Journal of Svstens Architecture 51 (20058) 470487

2.2 Computation of run and neighboring run

A run of a row is a sequence of consecutive
l-pixels in that row. See Fig. 2 for an example.

Lemma 1. The number of rins in oany row i
counted av the number of 0 — 1 fransitions in the
row with an additional O padded at the start.

Proof. The proof is trivial. [

Two runs in two adjacent rows are neighboring
if at least one pixel of a run in a row is in 8-neigh-
borhood of a pixel of a run in the other row. To
count the number of neighboring runs, the occur-
rence of the start of a neighboring run is to be
determined. A neighboring run between two rows
can start only when there is an occurrence of a
run {0 — 1 transition) in at least one of the two
rows, and there is at least one 1-pixel in 8-neigh-
borhood of the location where the run starts.

Lemma 2. 4 neighboring run between two rows
occurs §f and only §f there is a 0 — 1 transition i at
least one of the two rows and there is a | pixel in the
B-neighborhood of that location.

Proof. A neighboring run cannot occur without a
run in any of the two rows. Two such runs should
have at least one 1 pixel in their neighborhood fol-
lowing S-neighborhood relations. To count the
number of neighboring runs between the (i — 1)th
and ith rows, we have to do the following. A run
starts in any jth column of the ith row, if there is
a 0in the {j — 1)th column and 1 in the jth column
of the ith row. A run ends in any jth column of the
ith row, if there isa | in the (f — 1)th column and 0
in the fth column of the ith row. The run start loca-
tion s and run end location ¢ are stored while
counting the number of runs in the ith row. When
a run occurs in any kth location in (i + 1)th row, if
the pixel (i + 1,k) is in the 8 neighborhood of any
of the pixels (i, 5,),.. ..(i,¢;), then a neighboring run
count is increased by one. [

See Fig. 2 for an illustration of the above
lemma.

2.3, Algorithm

Method
Input: An (N = M) binary pixel matrix of an image
I
Output: Euler number £(1).
Compute_Fuler_Sequential
compute the number of runs R(l) present in the
first row:;
Eil) = R(1);
for (i = row number 2 to N)
calculate the number of runs R({) in the ith
row;
if (there are runs between the (i — 1)th and
ith rows)
{comments: see Lemma 2)
calculate the number of neighboring runs
; between (i — Dth and ith rows;
endif
{see Section 2.2)
£y = E(h + Ri(i) — O
endfor
return £(f) as the Euler number.

2.4, Space and time complexity

The lower bound of computation of Euler num-
ber is (N by definition of the Euler number. In
that sense, most of the algorithms are asymptoti-
cally optimal in that they compute Euler number
in O(N7). But in image processing applications
where huge data is involved and real time applica-
tion is needed, the constant so often hidden in the
O-notation becomes important. This has moti-
vated several algorithms for computation of Euler
number. So, we find out the exact number of image
pixel matrix accesses for an N x N matrix under
the sequential RAM model for the previous
algorithms and compare it to the run-based
method.

The bit-quad counting technique [2.11] checks
for bit-quads (i.e. 4 pixels) for each entry and also
has to check for the convexity and concavity along
the borders. This takes 4N* + 4N accesses. Note
that, irrespective of the matrix entries, these num-
ber of pixel accesses are required. So, the average
case access would also be the same.

A. Bishnu et ol | Journal of Systens Architecture 51 (2005) 470-487 475

The Euler number computation based on the
thinned version of the image [16] checks for two
types of terminal points. For that, 8 neighbors of
each pixel is to be accessed. That takes 8N, add
to that the time thinning takes and obviously this
algorithm takes more pixel accesses than the bhit-
quad counting technique [2,11].

The Euler number computation based on the
quad-tree [14,15] involves computing the quad-tree
from the pixel entries followed by a traversal on
the quad-tree. The time complexity Tin) for forma-
tion of the quad-tree involwes the following
recurrence:

T 1 if n=1;
{nj_{4T[:—]+n if n =2

Solving this recurrence, T{n)=nlogyw +n. In
our case n =M, so the number of accesses is
NlogaN + N2 Now, traversal of a quad-tree for
computing the Euler number takes linear time in
the number of lkeaf nodes in the quad-tree [14,15].
The number of leaf nodes can be N°. So, Euler
number computation takes N logaN + N + eN%.
This is obviously greater than the accesses required
by the bit-quad counting technique.

The above analysis shows that the bit-quad
counting algorithm is the best in terms of less num-
ber of pixel accesses. That might be the reason of
the commercial image processing toolbox MAT-
LAB using this algorithm [13].

Mext, we compute the worst case and average
case analysis of the proposed run-based technique
to show its efficacy.

We require N x N space to store all the pixels of
the given image. To calculate the number of neigh-
boring runs between two consecutive rows, we
need to store for each run, the column numbers
where a run starts or terminates. The worst case
arises in a checkerboard situation when a row
has the maximum number of runs, ie., when every
alternating pixel is an object pixel. For N columns,
the maximum number of runs in a row is N/2. We
calculate the number of neighborhood runs be-
tween two consecutive rows at a time. Since a
run can be designated by its two ends, the total

space required = (Nx N) + 4= (N2) = O(NY), ie.
linear in the number of pixels.

Computation of runs for all the rows needs
2% (N= N) pixel accesses. The number of runs
B(i) in a row in the worst case is N2. The number
of pixel accesses required to check and store the
two end points of all runs present in the matrix =
Pp=2x YN R(i) = N°. Checking whether a run
in row ({ — 1) is in the neighborhood of a run of
row i, requires 2 accesses. Also, a neighboring run
is to be checked only after the occurrence of a run.
So, determination of neighboring runs for all con-
secutive pairs of rows needs=2 x Y .Y "0, =
N x (N —1)= (N2 — (N /2) accesses. Note that,
the upper limit on the summation of @, is R{i)
{due to Lemma 2) and not N. Therefore, the total
number of accesses is, 2N* + N + (N - N) =
4NT— N.

For the average case analysis, we assume a ran-
dom input of 0 and 1 with a probability of 1 each.
As the number of accesses depend on the number
of runs, we compute the expected number of runs
in a row of width N. Let X, be the number of 1
runs in the first ¢ entries and ¥, be the number of
0 or 1 runs in the first ¢ entries. Obviously,
E(X) = HY)2, where E[X) denotes the expecta-
tion of X. Now, the conditional expectation of
Yoy when Y, =cis E(Y,4|Y, = ¢) = ¢ + 1, because
a(or 1 can occur with probability 4 in the (t + 1)th
entry. Now, E(¥,) =Y, (JeP(Y, =c) +1(c+1)
PiY, = o)) =3 éP(¥e=e) +13 DY, =) =
E(¥Y)+ 1 Now, surely F(¥)=1 because either
there is a 0 or 1. Therefore, according to the recur-
rence just deduced E(Y,) =% So, E(X,) =
Elw) — 84l As an example, for N=4, there
are 2' = 16 possible entries of 0 and 1 combina-
tion. The frequency of a single run is 10 and the
frequency of two runs is 5. So, the expected
value of 1 runs is 1214253 — 2 8o, the number of
accesses in the expected case is 2N + 2N (M) +
2(N — 1)(%) = 38* + ¥ — L Thus, it can be seen
that the proposed method of Euler number com-
putation requires fewer number of accesses than
the bit-quad counting method.

In the proposed method, the number of pixel
accesses depends on the distribution of the runs
in the pixel matrix in contrast to the method in

476 A. Bishnu et al ! Journal of Svstens Architecture 51 (20058) 470487

. : ' : ! T ()

N of columns i 1039 images laving teat mum

; il SYTOR

Na of Funs ima colunn

L] (L] b £ 4 £l L]

H

t i ' i i

= @ = = =
i -

b
o

i T

2 L 4 £l L]

Mo of successive colummns having that no. of neighboring mns

Naroof medglubvor ing runs between sueeess ve columms

Fig. 3. Graphs showing () run and (b) neighboring run statistics,

[11]. It has been observed that for most of the
images, R({) <= M and also O, < M, and typically
both R{i) and ; have a value around 4. Thus, on
the average, the number of pixel accesses will be
much less compared to those of the other methods.
Empirical evidence justifies the rationale. We have
considered a database of 1039 logo images, and
normalized each of them to the same size. From
the experimental results, the expected value of
the number of runs Rii) present in a column is ob-
served to be 4252741 and that of the neighboring
runs between two consecutive columns, (@, is found
to be 4260170 (see Fig. 3(a) and (b)). Thus, the ex-
pected number of runs in actual images is nearly
constant and much less than the expected case of
* runs. Therefore, the number of accesses would
be much less than that of the average case value.
The above analytical expressions and experimental
validation suggest that the proposed method of
computing Euler number will outperform the
existing techniques significantly.

We observed that the average CPU time re-
quired for computing the Euler number of a
256x 256 logo image by running the proposed
algorithm is around 11 % 10" ps on a Sun Ultra-
5_10 Sparc workstation (233 MHz) with SunOS8
Release 5.7 Generic O5. On the same platform,
the bit-quad based algorithm [2,11] takes around
19.5 % 10° ps.

3. Hardware implementation

Euler number satisfies the local additive pro-
perty or additive set property [11]. This property
allows us to split the image into smaller sub-
images, and calculate the overall Euler number
by combining the Euler numbers of the smaller
subimages. An essential feature common to most
of these methods is the addition and subtrac-
tion of the Euler numbers or some other param-
eters of the subimages [3,11,16-18,21]. Thus for
fast computation of Euler number, the design
of the adder is most vital. It may be noted that
once the local property counting has been com-
pleted involving a set of pixels, the same pixels
should not be required again to reduce CPU
time. This indicates that in terms of precedence
relations the addition process follows the local
property counting and it can be overlapped with
the next set of local property counting involving
another set of pixels. This observation suggests
that addition can be pipelined with the local prop-
erty counting. In this section, the hardware de-
sign is reported. We also derive the upper and
lower bounds of Euler number, which lead to
estimation of the time complexity as well as the
overall gate count. The design proposed here is
then compared to other methods. The run-based
sequential algorithm can be easily parallelized

A. Bishnu et ol | Journal of Systens Architecture 51 (2005) 470-487 477

soas to make it suitabke for hardware

implementation.
31 Parallel algovichm

Method
Input: An (N = M) binary pixel matrix of an image
f;
Output: Euler number £(1).
Compute_Fuler_Parallel
for (i = row number 1 till end do in parallel)
calculate the number of runs B({) in the ith
row;
{by Fact 1, run of each row can be computed
independently)
calculate the number of neighboring runs &;
between (i — 1)th and ith rows; (by Fact 3)
endfor
E(I) = 3, R(i) — 3,05 (by Theorem 1)
return £(f) as the Euler number.

3.2, Hardware architecture

To implement the proposed algorithm in hard-
ware, two types of processing elements (PE) are re-
quired: P, for identifying the start of a run in a
row; P to signal the start of a neighboring run.

ook 0
, I
input flip-flop
la) |

mi‘t o 'x 5
(;] i ‘r

Using Lemma 1, the PE £ (shown in Fig. 4{a))
is used to detect the transition from 0 to 1; the
number of runs s equal to the number of such
detections. A delay (D) flip-flop is initialized to 0
at the start of processing each row. It holds the
value of the previous pixel for the purpose of
checking a transition. The pixels in a row are pipe-
lined into Py At any instant of time f;, the ith pixel
and (i — 1jth pixel of a row are checked for a
(0 — 1 transition. The maximum number of runs
in a row having M columns is [(M/2)].

In Fig. 4{b), P, is shown within a box, and the
remaining portion of the circuit constitutes the
processing element P»_ It is used to detect the start
of a neighboring run between two consecutive
rows following Lemma 2. The PE Ps checks for
the condition when a run in a row begins, and
whether it is in the neighborhood of another run
in its adjacent row. The pixels corresponding to the
columns of two adjacent rows are fed to P, in a
pipeline. In addition, it receives data from the out-
puts of the D flip-flops of these two rows. At any
instant of time f;, ith and (i — 1)th pixels of two con-
secutive rows are checked for a neighboring run.
The maximum number of neighboring runs is 2 x
[(M2)]. To process an (N = M) image in parallel,
we require NV pieces of P, and (N — 1) pieces of P,.

gt
IJE&Q X LP|

]

1 |

—

Fig. 4. Processing elements £y (a) and £z (b).

478 A. Bishnu et al ! Journal of Svstens Architecture 51 (20058) 470487

Table |
Truth table

P, P,

(Fo+p)— Sign-bit Data-hil
1P+ p:) {51 (d)

=
"

|
—_——=

B0 -l O s e e el

—_ e e
|

e — I — T — T — T T
—_— e e S e e OSSO
el — T — I — R = = =R — T —]
=T — I — T S A S I — R]
=R R T — B S R — B —

To compute Euler number of the whole image,
we add the number of runs (calculated by sum-
ming up all 0 — 1 transitions in all rows) and de-
duct from it the number of neighboring runs
{calculated by adding up the number of all neigh-
boring runs between consecutive rows). At any in-
stant of time {; the output from P or P» goes high
or low indicating the start of a run or neighboring
run respectively. A neighboring run implies the
presence of a run in either or both of the corre-
sponding row(s). Thus, a high (1) output from P»
is accompanied by a high output from either one

or both of the P{’s connected to it. The interrela-
tion of runs and neighboring runs is depicted as
a truth table in Table 1, where x represents a don’t
care entry.

3.3, Truth table and combinational cirewil

In order to perform the addition process effi-
ciently, we combine the local results in such a fash-
ion so that the final subtraction can be avoided
and a single adder tree can be designed to output
the final result.

We take the outputs from the two modules gen-
erating P, and two modules producing P, for con-
secutive rows. To distinguish them, we use upper
and lower case symbols (P, py, Ps,) in Table 1.
The sum of the two P, outputs is computed, and
the sum of the two P> outputs is then subtracted
from it. It is easy to prove that the result is always
either —1, or 0, or 1. This follows from the proper-
ties of runs and neighboring runs as mentioned in
the previous subsection. The entries corresponding
torows 5 and 6 in the truth table are not feasible as
P5 =1 implies that either or both of P and py
must be 1. The case as in row 10 does not appear
as p» = 1 and p; = 0 implies the PE P) associated
with p, (and not included in this group of 4 P’s
and P4+'s, and as such not shown in the truth table)
should be high. If 2} and p» = 1, it implies the pres-
ence of a continuing run (not a run start) in the
row associated with p; otherwise p» cannot be-

faa =y

R
n H>e—

B e

Data-lsit, o

B [y B

DO U

]

I

Fig. 5. Combinational circuit for finding the sign and data bit.

A. Bishnu et ol | Journal of Systens Architecture 51 (2005) 470-487 474

come high. If there exists a continuing run associ-
ated with p; and also P, =1, then P, should be
high, but that does not happen. Hence, this input
combination never arises. Rows 11 and 12 are also
inadmissible as in both the cases, P = land p = |
imply that P =1, which is not true. To represent
—1,0, 1 in 2’'s complement, we require 2 bits (the
sign bit and data bit). A combinational circuit C
as shown in Fig. 5, is designed following the truth
table (Table 1) to produce the sign and data bits
from different input combinations of the two Pjs
and Pis.

3.4, Adder design and time complexity

The sum of the combination of the outputs
from the two modules generating P; and two
modules generating P-» for consecutive rows lies
in the range [—1,1]. To design the adder circuit
for Euler number computation, it is essential to
determine the range of values Euler number
can assume for an (N x M) image, so that the
width of the adders can be properly determined.

Lemma 3. The Euler number of an (N = M) binary
image lies in the range | —M2 = [(N/2)], M/2 %
[(N/2)]1.

Proof. For an Nx M image, we require [(N/2)]
pieces of combinational module C. Each C-module
produces an output in the range [—1,1]. Thus, each
column can have a maximum sum of [(N/2)] and a
minimum sum of —[(N/2)]. Since a run and a
neighboring run for a row cannot begin in two
consecutive columns, the Euler number should lie
in the range [—M/2 x [(N/2)], M/2 = [(N/2)]]. The
adders should be so designed that they are able
to handle this range of numbers. Alternatively, it
can also be proved from the truth table entries as
given in Table 1. The truth table entries that give
rise to a sum of 1 are 3, 9 and 15 of Table 1; the
entries that give rise to a sum of —1 are 2, 8 and
14 of Table 1. To prove that the range of Euler
number for an (Nx M) image lies in [—M/
2% [(N/2)], M2 x [(N/2)]], it suffices to show that
if any one of the entries 3, 9 and 15 of Table 1
occurs at any clock instant, the other two entries
cannot occur at the next clock instant. Similar

cases arise for the entries 2, 8 and 14 of Tahle 1.
If otherwise, then the sum would not lie in the
range [—M/2 x [(N/2)], M2 x [(N2)]]. If the entry
3 occurred at any clock instant &, then for py (see
Table 1) to have a high (1) output, a 1 was fired
at time instance § and a 0 at {_, for a run
{0 — 1 transition) to be detected. At time instance
ti+1, the 9th or 15th entry of the Table 1 cannot
occur. If the 9th entry occurred, there should be
an occurrence of a neighboring run, because with
i going high at time instance ¢; and P, going high
at time instance f;,;, £, should also go high at time
instance . S0, the 9th entry should have been as
Pi=1 Ps=1,p=0and ps =0 So, there is a
contradiction, and as such the %th entry cannot
occur after the 3rd entry. Similarly, it can be
shown that the pairs (3,15), (9,15), (2,8), (2,14)
and (8, 14) cannot occur at consecutive time
instances. [

The complete hardware design for a (16x 16)
image is shown in Fig. 7. The output of C repre-
sents a 2-bit 2's complement number generated by
two Pjs and two Pis. An adder circuit is needed
to sum up the outputs of all these C-modules to
obtain the final result. We use a binary adder tree
in pipeline [22] to accelerate the addition process.
Addition of two 2's complement numbers may
produce a 3-bit number. To implement such a
scheme, we use at the leaf level of the adder tree,
a set of 3-bit adders each with a sign bit exten-
sion. For each subsequent level in the tree, the
adder size (width) is increased by one bit. The
depth of the adder tree would be [log,N| — 1. As
the width of the adder in the tree increases by 1 at
each level, the width of the adder A4, at the root,
would be=(3— 1)+ [log:N] — 1 = [logaN| + 1.
Finally, a sequential full adder /4 is used to accu-
mulate the sum. The range of numbers F4 should
be able to handle is [— M2 = [(N/2)], MI2 = [(N2)]]
{see Lemma 3) Thus, the number of bits T re-
quired for the adder FA4 would be = [log, {M %
[(N/2)] + 1}]. With the assumption that M=
N, T is Oflog:N). The number of the stages
of the pipeline is two more (one for the PEs
Py, Py and C and the other for the adder FA)
than the depth of the adder tree. Therefore, the
stages of the pipeline equals ([logaN] — 1)+ 2 =

480 A. Bishnu et al | Journal of Svstens Architecture 51 (2005) 470487

[logaN| + 1. The clock period of the linear pipe-
line is determined by the sum of the longest pipe-
line stage and the delay of the latches, and hence
is equal to T + 4, where T is the time taken by the
adder F4 and 4 is the time delay of the laiches.
The number of clock cycles required by the linear
pipeline to perform the entire addition is
([logaN]+ 1)+ (M — 1) = [logaN|+ M. There-
fore, total time needed to produce the final output
in 2's complement form is (T+d)={M+
[logaN|} and M being approximately equal to
N, the time taken is O(NlogN + 2 x logiN) =
O(N log). The performance measures eg., speed
up, efficiency and throughput [22] for the linear
pipeline designed here are given below.

11

Speed-up, S0 The speed-up is nkik +{n— 1),
where n is the number of tasks and & is the number
of stages of the pipeline. So, in our case for an
(N = N) image,

N{[log,N|+ 1) 1+ [log,N]

= ([log.N|+ 1)+ (N —1) g =1 [ksif.ﬁ.'] 1

Efficiency, n: The efficiency is the ratio of speed-
up and the number of stages. So, here the efficiency
: 1

18 7
o N
T+adgel

Throughput, w: The throughput is defined as the
number of tasks that the pipeline can complete per
unit time and is the ratio of the efficiency and the
clock period of the pipeline. Thus,

== 1 - -
il Idoal Spead Up _ -_:_:_"'_,_-:—:';-;F--- (a) | aml f____ﬂw——___ (b)
- asa|
ar 0.4 [
& gl §~n.9.z IIl
§ 3 os I,'
= - =
o uigsaf|
B 0.88 '||
! 0.8
& :III Y
II i i i P — P — aa ' z - z = ¥ =
b 300 SO0 A0 B00 BOb 70h B00 B0 3030 1106 100 200 200 400 500 600 700 800 900 1000 1100 1200
N N
0.25 -
L (e)
1]
0.2 l:'-., L
= \\ ', ldeal thraughput i.e. fraquaney
So1s .
3 %
[RS
01t H““M
Actual tiroughput "~ _
S
__:-:\-ba"""-—.___
0.05 | , —
10' 10° 10°
g M

Fig. 6. Performance measures of the pipeline. {(a) Speed-up of the pipeline, (b) efficiency of the pipeling, and (<) throughput of the

pipeline.

A. Bishnu et ol ! Journal of Systens Architecture 51 (2005) 470-487 481

— .. 3 The graphs in Fig. 6(a)—{c) show speed-up, effi-
I'+o ciency, and throughput, with the variations in the
1 image size N respectively.

If the final adder ¥4 performs a carry look-
ahead addition [23] taking O(logT) time, then
the clock period of the pipeline can further be re-
neglecting 4. duced and would be determined by the delay of 4,

(Mlogs {N x [(V/2)] + 1}]) (1 + o)

Acider Trec

dl{i
d, 3
iy
4§ :'/
g

i,

4

y al;
o

t g : Latch
d, /; /

=
RRSRRR

T
s
.
|
5

1 :'1_,-:- Tia il
- =N
—-I- ¥ i T

it i] #hit
! - adder

=%
1
WL
I
I
virj

A
-
= |
|\\“ LR
1
[
1
-
-

A H-Lrit
al.. |
i i
L. % ::: - -
— I~ |i| J - -
I — P e
— — A
e .
F, d = b h
I c —
O B
}:'I: diy
3 b
g —_ r /
o — o lis \‘
—m — £
a ; B
L g i
¥. —
C * i i
—4r e iRt R] LR
. kY
]
....................... e = -, \"\‘
g o H

e Pipolines Sages

Fig. 7. A sample circuit for caleulating the Euler number of a {16 = 16) image.

482 A. Bishnu et al ! Journal of Svstens Architecture 51 (20058) 470487

3.5 Circuit cost and gate count

We require the following components to imple-
ment the hardware architecture for processing an
(N = M) binary image:

(1) N pieces of processing element P, each hav-
ing one edge triggered D-flip-flop and one 2-
input AND gate. The gate count is O(N),
with constant number of gates required for
each P and D-flip-flop.

(2) N — 1 pieces of processing element P,, each
having four 2-input AND gates and one 4-
input OR gate. Here, also the gate count is
O(N).

(3) [{N2)] pieces of the combinational circuit C,
each having four inverters, six 2-input AND
gates and five 2-input OR gates. As each
piece of combinational circuit C requires
constant number of gates, the gate require-
ment 15 O(N).

(4) [(N/4)] pieces of 3-bit full adder, [(N/8)]
pieces of 4-bit full adder, ..., one piece of
[log,N]-bit full adder. The Ffull adders
require constant number of gates for each
full bit adder. So, the gate count is of the
arder of the following:

AMN/A) + 4[(N/8)] +--- + log. N

U3V 4N T L

=~ 23 21 o 0, ziﬂE!."n.'
13V — 4 log,N .

gt~ OW).

(5) One piece of [loga{M x [(N/2)] + 1}]-bit full
adder. The gate count is O{N).

{6) Latches between the two adjacent stages of
the pipeline. The total gate count =
S48 -+ [log,N] + 14T = O(N).

Hence, the total gate count is O(N).

The complete circuit for a (16x 16) image with
appropriate adder blocks is shown in Fig 7.

3.6 Comparisons with other methods

The various formulations of computing Euler
number require additions of two or more proper-

ties and finally their subtraction. The formulation
in [11] given as =(} v — 3t — 2x %)4 requires
addition and subtraction of three properties viz.
v, + and &, pertaining to bit-quads ¢, ¢- and
Opn. Three types of processing elements would be
required to detect bit-quads &, 0+ and Qp. Also,
adder complexity would be higher as more vari-
ables are to be dealt with in comparison to the
run based method. The formulation has a divide-
by operation. So, it is obvious that the width
of the adder would be more and shift registers will
be needed for the division operator. This bit-quad
formulation for computing the Euler number has
also another drawback regarding bhorder pixels.
Any implementation of this bit-quad algorithm
has to deal with the convexity on the border by
specially employing separate processing elements
for the border pixels other than the ones required
for bit-quad checking. The parallel implementa-
tion based on Euler number computation of the
thinned version [16] does not hold promise as par-
allel thinning in itself is a non-trivial task [24]. The
hardware implementation of quad-tree hased algo-
rithms [14,15] are complicated as the sizes of the
blocks represented by the leaf nodes may be un-
equal. Further, the number of leaf nodes may vary
widely for different image samples. The best
known parallel algorithm has been proposed in
[17] that uses the connectivity graph (CG) derived
from the cylindrical algebraic decomposition of
the Euclidean plane. The authors describe a paral-
lel implementation of their algorithm on a linear
array network topology that uses the CG as the
image data structure and performs a parallel
searching of the sub graphs in CG. The estimated
time complexity is O [M/S]/16)(1 + log. M),
where M is the number of arcs in the CG. A care-
ful analysis reveals that the number of arcs M in
CG can be linear in the number of pixel entries
(which is N) i.e, M can be O(N) and so does
the time complexity. Our proposed algorithm with
O(Nlog N) time complexity and O(N) gates thus
compares favorably against existing algorithms.

3.7 Handling large images

Given an architecture for computing the Euler
number of an image matrix of size Nx N, the

A. Bishnu et ol ! Journal of Systens Architecture 51 (2005) 470-487 483

Euler number of a larger image of size Kx K,
where K= xx N can be easily determined. The
matrix is partiioned into several N x K sub-blocks
B, where each B;is an N = K matrix.

as B 8B4, ..,

-

Adder Treeo

]
—

=

e %;

—l . 12-bic

E iz
5{ ¢« i
a
—fr— A z
—!lli— RANE

€]

ma

[R5

L _u

] a&

ElgFl

1

ﬂbjfb?
Cp—

—

The Euler number of each such block of size N x K
is computed using our proposed architecture for
an N x N block by changing the size of the adder
FA. Let E; be the Euler number of a block 8.

s i bIRA . Final
e Ti-lvit 4 X1} l'.]utput
adder

Fig. 8. A scalable circuit For caleulating the Euler number of a (256 < 256) image using the areuil Tor a (16 = 16) image.

484 A. Bishnu et al ! Journal of Svstens Architecture 51 (20058) 470487

The Euler number of the overall image can now be
easily determined by using the following algorithm
based on Facts 2 and 3 as mentioned in Section 2.1.

Method
Input: A (K = K) binary pixel matrix of an image /,
where K= xx N:
Output: Euler number £(1).
Compute_Fuler_General
Efny =1,
o=
for (i = block number 1 to x — 1)
calculate the Euler number, E(B;) of the
block B; using Compute_Euler _Parallel;
calculate the number of neighboring runs 0,
between last row of block 8; and first row of
block B;.: (by Fact 3)
E(I) = E(l) + E(B) — O (by Fact 2)
endfor
compute the Euler number, E{(B,) of the last
block B, using Compute_Euler _Parallel,
Ehy=EN+ E(B,); (by Fact 2)
return £(f) as the Euler number.

The adder tree can handle an image matrix with
N rows, as it deals with only one column at a time.
The adder ¥4 adds up values from all columns.
When the number of columns changes from N to
K, the width W of the adder F4 should be made
equal to [log:{K x [(N/2)] + 1}]. To cakulate the
number of neighboring runs (;) between the last
row of block B, and the first row of block B,
we require processing elements P and Ps. The
output of P, is fed as an input of the last C-module
in the column (Fig. 8). The outputs of F4 corre-
sponding to each block of size N x K is pipelined
to the final sequential adder FRA (Final Root
Adder) (see Fig. 8). Using Lemma 3, it can be de-
duced that the number of hits T required for the
adder FRA would be [log:{ K= [(K/2)] +1}].
The clock period of the linear pipeline is obviously
T+ &, where 4 is the delay of the latches. The num-
ber of stages Sy of the linear pipeline in the scal-
able circuit is one more than the earlier case and
is {[log: N + 2]). Therefore, the total time needed
to compute the Euler number scalably is (T'+ d) x
(84) = OiNxlogs Nx)). The speed-up, efficiency,
throughput are as follows:

Speed-up S;: The number of tasks is obviously
now Kx =% and the number of stages is §,. So,
the speed-up is
£ x (logaN +2) Na([log,N] +2)

[log,N] +%.1+ 1 [logaN] +Ne* + 17

The ideal speed-up is obviously [log.N + 2].
Efficiency n: The efficiency is the ratio of speed-

up and the number of stages and is ““E_,‘;“i";_\,_ i
Throughput w: The throughput is

N
(Mog:N] + N + 1)([logs (M x [%] +1)7)

It can be seen that for a fixed N, speed-up and
efficiency of the pipeline increases with x and
throughput decreases with x. This is a desirable
feature of the pipeline.

The circuit for computing the Euler number of
an image of size (256 x 256) using the circuit mod-
ule for a (16x16) image, is shown in Fig. 8. We
have assumed sequential full adders for our com-
plexity analysis for both the normal and scalable
cases. It can be ohserved that the time complexity
can further be improved by using carry-save addi-
tion [23].

4. VLSI implementation of the architecture

The proposed architecture has been designed
on-chip using Mentor Graphics Leonardo Spec-
trum, Modelsim, and IC Station run on a SUN
Blade 2000 Workstation. The design is coded with
VHDL, and after simulating and verifying it using
Modelsim, all the VHDL modules are synthesized
to generate the Verilog netlist using 0.18 micron
technology. The Verilog netlist file is then fed to
the tool IC Station, which produces the final chip
layout using standard cell design style. All the geo-
metric information of the layout is produced in
Graphic Design System-11 (GDS-11) code that is
needed by foundry for fabrication of the chip.
The synthesized netlist report is presented in Table
2 for a 256 = 256 image. The internal zone area is
400.980.9 pm:_ The overall chip X-dimension is
6079 pm and the Y-dimension is 671.2 pm. The
critical delay in the circuit is 2.29 ns. The on-chip

A. Bishnu et ol | Journal of Systens Architecture 51 (2005) 470-487 485

Table 2

Svnthesis report of the circuit Tor processing a (256 256)
Tma e

Mumber of ports 74
Mumber of nets 5362
Totwl number of gates 138,594

time to compute Euler number of a 256 x 256 bin-
ary logo image turns out to be (L6 ps.

5. Conclusions and discussions

A run-based algorithm for computing the
Euler number of a binary image is formulated
and its performance is analyzed. The algorithm
is based on certain combinatorial and statistical
properties of runs present in the pixel matrix of
the image Analytical and experimental studies
on a logo database show that the proposed algo-
rithm outperforms existing methods based on
bit-quad or quad-tree significantly. A new hard-
ware implementation using pipeline architecture
for fast on-chip computation of Euler number
is also reported. The hardware design uses
O(N) gates to compute the Euler number of an
Nx N image in OiNlogN) time. This improves
on the best known parallel implementation of
O(N) on a linear array network topology. The
basic module can be used to handle arbitrarily
large-sized pixel matrices. The architecture has
been implemented in VLSl and relevant chip
data on area and speed are reported. It has been
observed that the on-chip computation is extre-
mely fast and hence, the design will be useful
to many realtime applications. Design of algo-
rithms for applicability to higher dimensions
needs further investigation.

Acknowledgment

We would like to thank Prof. Anil K. Jain and
Dr. Aditya Vailaya for sending us the logo trade-
mark database. Thanks are also due to Mr. Soura-
dip Sarkar and Mr. Souvik Maity of the Sikkim
Manipal Institute of Technology, for their help
in implementing the VLSI architecture. The
authors wish to thank Dr. Mitsuo Motoki for

helpful discussions. We also take this opportunity
to thank the reviewers for their constructive and
critical comments that helped us to improve the
paper significantly.

References

[1] B.C. Gonzaler, RE. Woods, Digital Image Processing,
Addison-Wesley, Reading, MA, 1993,

[3] WK Pratt, Digital Image Provessing, John Wiley & Sons,
1978,

[3] M.-H. Chen, P-F. Yan, A [ast algorithm 1o caleulate the
Euler number [or binary image, Pattern Recogmition
Letters B (5) (1988) 295-297.

[4] BW. Pogue, M.A. Mycek, D. Harper, Imapge analysis for
discrimination of cervical neoplasia, Journal of Biomedical
Owptics 5 (1) (2000) 72-82.

[5] 5.M. Schar, Document image understanding, in: Proc.
ACMVIEEE Joint Fall Computer Conference, 1986,

[6] S.K. Mayar, R.M. Bolle, Reflectance-based objedt recop-
nition, International Journal of Computer Vision 17 (3)
(1996) 219-240.

[7] AB. Venkatarangan, Geometric and statistical analysis of
porous media, Ph.D. Dissertation, Department of A pplied
Mathematics and Statistics, SUNY at Steny Brook, NY,
LISA, 2000,

[&] B.L. Rosin, T. Ellis, Image difference threshold strategies
and shadow detection, in: Proc. Britush Machine Vision
Conlerence, 1995, pp. 347-356,

[9] A Stavrianopoulow, V. Anastassopoulos, The Euler lea-
ture vector, in: Proc, Intl, Cenl. on Pattern Recognilion
(ICPR), September, vol. 11, IEEE CS Press, Barcelona,
Spain, 2000, pp. W34-7034,

(10} A, Bishnu, B.B. Bhatacharva, MK, Kundu, CA Murthy,
T. Acharva, Euler vector: a combinatorial signature [or
gray-tone images, in: Proc. 3ed Intl. Confl. on Information
Technology: Coding and Computing (ITCC), April, IEEE
5 Press, Las Vegas, 2002, pp. 121-126.

[11] 5.B. Gray, Local properties of binary images in two dimen-
siens, |EEE Transactions on Computers 5 (1971) 551-561.

(12 M. Minsky, 5. Papert, Perceptrons, MIT Press, Cam-
bridge, USA, 1948,

[13] =httpaitvvow mathworks.comiaocessihel pdesk/hel pltool o
imagesbweuler shiml=,

[14] C.R. Dver, Computing the Eoler number of an image [rom
its quadtres, Computer Graphics and Image Processing 13
(3) (1980) 270-276.

[13] H. Samet, H. Tamminen, Compuling geomelric properties
of images represented by linear quadtress, 1EEE Transac-
tiens on PAMI PAMI-T (2) (1985).

[ta] LS. Juan, HLS. Juan, On the computation of the Eoler
number of a binary object, Pattern Becognition 29 (3)
(1996) 471-476.

[17] F. Chiaveua, V.00 Gesi, Parallel computation of the Eoler
number via connectivity graph, Pattern Recognition Let-
ters 14 (11 (1993) B49-859.

486 A. Bishnu et al ! Journal of Svstens Architecture 51 (20058) 470487

[I8] A, Rosenfeld, AC, Kak, Digial Picture Processing,
Academic Press Inc., New York, 1982,

[19] C.M. Lee, T. Poston, A Rosenfeld, Winding and Euoler
numbers for 20 and 3D digital images, Computer Vision,
Graphics and Image Processing 53 (1991) 322-537.

[20] 8. D Zenzo, L. Cingue, 5. Levialdi, Run-based algorithms
[or binary image analvsis and processing. IEEE Transac-
tions on PAMI PAMI-LE (1) {1996) B389,

[211 8. Dey, B.B. Bhattacharya, M.K. Kundu, T. Acharya, &
[ast algorithm for computing the euler number of an image
and its VLSI implementation, in: Proc. [3th Ind, Conll on
VLS Dresign, 2000, 330-335

[22] K. Hwang, F.A. Briges, Computer Architecture and
Parallel Processing, MoGraw-Hill Inlernational Edition,
Singapore, 1985,

[23) F.T. Leighton, Introduction o Parallel Algorithms and
Architectures: Arravs, Trees, Hypercubes, Morgan Kaul-
mann Publishers, San Matleo, CA, 1992,

[24] F.¥. Shih, C.T. King, C.C. Pu, Pipeline Architectures for
Recursive Morphological Operations, IEEE Transactions
on Image Processing 4 (1) (1995) 1 1-18.

Arijit Bishnu receivad the BE. degree
in electrical engineering from the
Burdwan University, India in 1995,
M. Tech. degree in compuler science
and the Ph.D. degree both [rom the
Indian Statistical Institute, Kolkata,
India in 1998 and 2003 respectively.
Currently he is an Associate in the
School of Infoermation Sciences, Japan
Advanced Institute ol Science and
Technology, Japan.

Bhargab B. Bhattacharya received
the B.Sc. degree in physics [rom
the Presidency College, Caleutta, the
B.Tech. and M. Tech., degrees in
radiophysics and electronics, and the
Ph.D. degree in computer science all
[rem the University of Caleutta, India.
Since 1982, he has been on the Taculty
of the Indian Statistical Institute,
Caleutta, where he is [ull professor.
He wvisited the Department of Com-
puter Science and Engineering, University of Mebraska—Lin-
coln, USA, during 19851987, and 20001 -2002, and the Fault-
Telerant Computing Group, Institute of Informatics, at the
University of Polsdam, Germany during 19982000, His
research interest includes logic synthesis and lesting of VLSI
circuits, physical design, graph algorithms, and image pro-
cessing architecture, He has published more than |50 papers in
archival journalk and refereed conlerence procesdings, and
helds four United States Patents. Currently, he is collaborating
with Intel Corporation, USA, and IRISA, France, lor devel-

opment o image processing hardware and reconfigurable
parallel computing Lools,

Dr. Bhattacharva is a Fellow of the Indian Matonal
Academy of Engineering. He served on the conlerence com-
mitlees of the International Test Conflerence (1TC), the Asian
Test Svmposium (ATS), the VLS Design and Test Work-
shop (VDAT), the International Conference on Advanced
Computing (ADCOMP), and the International Conflerence on
High-Performance Computing (HiPC). For the Interna-
tienal Conference on VLSI Design, he served as Tuterial Co-
Chair {1994}, Program Co-Chair (1997), General Co-Chair
{20007, and as a member of the Steering Committes since 2001,
He is on the editorial board of the Journal of Circuits, Sys-
tems, and Computers {World Scientific, Singapore), and the
Journal of Electronic Testing Theory and Applications
(JETTA).

Malay K. Kundu received his B Tech.,
M. Tech, and Ph.D. (Tech.) degrees all
in radiophysics and electronics from
the University of Caleutta, In 1982, he
joined the Indian Statistical Institute,
Calcutta, as a faculty member. He had
been the Head of the Machine Intelh-
gence Unit of the Insttute during
Seplember 1993 1o November 1995,
and currently he is Tull professor at the
same unit. His current research interest
includes image processing and analysis, image compression,
digital watermarking, wavelets, [ractals, VLS design For digital
imaging and soft Computing. He received the prestigioos
VASVIK award [or industrial research in Electronic Sciences
and Technology for the vear 1999 and Sir J.C. Bose memorial
award in the year 1986,

He has contributed about 80 research papers in well known
and prestigious archival journals, internatonal refereed con-
lerences and as chaplers in monographs and edited volumes, He
i5 the holder of four US Patents, He is co-author of the book
titled Soft Computing for Image Processing published [rom
Physica-Verlag, Heidelberg, He is a Rellow of the Mational
Academy of Sciences, India and a Ellow of the Institute of
Electronics and Telecommunication Engineers, India.

CA. Murthy was born in Ongole,
Andhra Pradesh in 1958, He obtaimed
B.Stal. (Hons), M.Swt. and Ph.D.
degrees [rom the Indian Statisticl
Institute (IS0} He visited the Michigan
State University, East Lansing in 1991

1992, and the Pennsylvania State
University, University Park in [996-
1997, Currently heis a Prolessor at the
Machine Intelligence Unit of 151, His
fiedds of research interest include pat-
lern recognition, image processing, machine learning, neural
networks, Mractals, genetic algorithms, wavelets and data min-

A. Bishnu et ol | Journal of Systens Architecture 51 (2005) 470-487 487

ing. He received the best paper award in 1996 in Computer
Science [rom the Institute of Engineers, India. He received the
Vasvik award for Electronic Sciences and Technology lor
the vear 1999 along with his two colleagues, Heis a lellow of the
Indian MNational Academy of Engineering.

Tinku Acharya is currently Senior
Executive Vice President and Chiel
Scienoe Offcer of Avisere Ine, Tucson,
Arizona. He is alse Adjunct Prolessor
in the Department of Electrical Eng-
neering, Arizona State University,
Tempe, Arizona since 1997, He
received his B.Sc. (Honours) in physics,
B.Tech. and M. Tech. in compuler sci-
ence [rom the University of Caleutta,
India and Ph.D. in compuler saence
from the University of Central Florida, UUSA.

D, Acharya was a Principal Engineer in Intel Corporation,
Artzona (1996-2002), a consulting engineer al AT&T Bell
Laboratories {1995-1996) in MNew Jersey, a research [aculty
member al the Institute of Svstems Research, University of
Marvland at College Park { 1994-1995), and held visiting faculty
positions at Indian Institute of Technology (11T), Kharagpur
{on several oocasions during 1998-2003). He also served as
Svstems Analyst in Mational Informatics Center, Planning

Commission, Government of India ([988—1990), He held many
other positions in industry and research laboratories,

D, Acharya is an inventor of 80 US patents and 15 Euro-
pean patents in diverse areas of data compression, multimedia
computing, electronic imaging, VLSI architectures, and more
than 50 patents are currently pending in the US Patent Office.
He has been awarded the “Most Prolific Inventor”™ in Intel
Corporation Worldwide in 1999 and “Most Prolific Inventor”
in Intel Corporation Arizona sile lor lve conseculive vears
(199720011 He contributed to over 70 refereed technical
papers. He is author two books Data Minig: Multimedia, Soff
Computing and Bioinformatics (2003, and JPEG200 Standard

Sor Image Compression: Concepts, Algorithms, and VLST

Architectires (2004, published by John Wiley & Sons, Mew
Jersey., He also co-adited the book Information Technology:
Principles and Applications, published by Prentice-Hall India,
Mew Delhi, 2004,

D, Acharva is a Lile Fellow of the Institution of Electron-
ics and Telecommunication Engineers (FIETE), and Senior
Member of IEEE. He served on the US Mational Body of
JPEG2000 standards commiltes (199820021, He served in
program commitless of several international conferences and
many olher professional bodies in acdemia and industey. His
current research interssts are in compuler vision [or enterprise
applications, biometrics, multimedia computing, and VLSI
architectures and algorithms.

	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg
	17.jpg
	18.jpg

