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Constraining Active Contour Evolution
via Lie Groups of Transformation

Abdol-Reza Mansouri, Dipti Prasad Mukherjee, Senior Member, IEEE, and Scott T. Acton, Senior Member, IEEE

Abstraci—We present a novel approach to constraining the
evolution of active contours used in image analysis. The proposed
approach constrains the final curve obtained at convergence of
curve evolution to be related to the initial curve from which evo-
lution begins through an element of a desired Lie group of plane
transformations. Constraining curve evolution in such a way is
important in numerous tracking applications where the contour
heing tracked in a certain frame is known to be related to the
contour in the previous frame through a geometric transformation
such as translation, rotation, or affine transformation, for example.
It is also of importance in segmentation applications where the
region to be segmented i known up to a geometric transformation.
Our approach is based on suitably modifying the Euler-Lagrange
descent equations by using the correspondence between Lie groups
of plane actions and their Lie algebras of infinitesimal generators,
and thereby ensures that curve evolution takes place on an orhbit of
the chosen transformation group while remaining a descent equa-
tion of the original functional. The main advantage of our approach
is that it does not necessitate any knowledge of nor any modification
to the original curve functional and is extremely straightforward to
implement. Our approach therefore stands in sharp contrast to
other approaches where the curve functional is modified by the
addition of geometric penalty terms. We illustrate our algorithm
on numerouns real and synthetic examples.

Index Terms— Active contours, curve evolution equations, Lie
groups, tracking.

L INTRODUCTION

HIS paper addresses the problem of curve evolution,
T with applicatons to racking and segmentation in mage
sequences [11]-[13], [19]. Curve evolution equations are usu-
ally obtained as Euler-Lagrange descent equations of a curve
functional & @ v — £iv) £ [ tailored to a particular appli-
cation [2]. Starting {rom an initial curve “g, a curve evolution
equation prescribes the construction of & one-parameter family
iteps of curves (with «|i—n = ) such that the curve
#oe = lime .o v Oblained at convergence is a local minimum
of the curve functional. In many applications of interest such
as tracking, there may be a priori knowledge concerning the
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geometric relation between ~noand v..:
priovi knowledge could dictate that =, and <., be related, up 1o
reparametnization, by an arbitrary lr'.insﬁ}rul.ilu}n TR R
in a certain family of ransformations. For example, it may be
known a priori that v and ~.. should be related by a trans-
lation, or by a Euclidean transformation. Due o image noise
and clutter, however, and depending on the particular curve
functional from which the curve evolution equation 15 denved,
the curve .. obtained at convergence of the evolution may not
have the desired geometric relation to the imitial curve .

Deformation of shape in a more generalized framework can
be accomplished via region imformation. Active shape models
are used to recognize shape deformations given the shape model
and in the estimation of shape deformations using a point distri-
bution model [6]. Region based approaches for tracking shapes
in color images are given in [7]. Segmentation and tracking ap-
plications are also demonstrated applying nonlinear shape sta-
tistics using available tramimng data [8].

The question 15 then how W suitably modify the curve evolu-
tion equation sothat the resulting equations remain descent equia-
tions of the original curve functional while simultaneously en-
sunng thatthe curve obtained at convergence has the desired geo-
metric relation to the inital curve. A solution to this problem has
been proposed in [ 1], whereby the corve functional 15 extended
by the addition of penalty terms which try to bias the minimuom of
the functional wward a curve with the desired geometric proper-
ties. Ln other words, the original curve functional £ is changed to
B+ AR, with By v — £, (] penalizing deviations of < from
the desired geometry. While such penalty terms can be easily de-
fined for simply parametrized shapes such ascircles and ellipses,
it is not clear how 1o define them for arbitrary planar shapes.
Thus, this approach is feasible only invery estneted cases. Fur-
thermaore, even in these cases, 1Lis not clear how the penalty terms
should be weighted in comparison to the original energy func-
tional, that s, how the coefficient A should be chosen.

We propose a novel and strmightforward solution to the
problem of geometrically constraining curve evolution in the
case where the geometric relation between i, and -+ 15 given
by elements of a finite-dimensional Lie group [16] of plane
transformations.! This 1s the case with most applications of
curve evolution, with the Lie groups of interest being the group
of translations, the group of otations, the group of Euclidean
transfommations, as well as the group of affine ransformations.
This allows us to use the correspondence between Lie groups
and their Lie algebras in order o redoce the oniginal problem
to one of basic linear algebra. The main advantage of our

In particular, this a

Tt is important to note that the problem we are addressing in this paper is
radically different from the problem of defining group-invariam flows [9], [15],
i.e., lows which commute with elements of particular groups of transformation,
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approach is that it does nol necessitate any knowledge of
or modification to the original curve functional from which
the onginal curve evolution equations were obtained. Rather,
only the curve evolution equation 1s modified, noa very
straightforward way, all the while ensunng both that the mitial
and final curves are related as desired, and that the modified
curve evolution equation remains a descent equation on the
origimal curve functional. Such a techmigque has already been
proposed for tracking the long tume behavior of dynamical
systems which are known 1o obey certain symmetnes [14].
A related wdea also appears in [4], [3], where 3-D structunes
are tracked by using the Lie algebra of the Special Evclidean
group in B and the Adjoint representation of the group
o tansform the model between video frames. The theory
presented in Sections 11 and 11 in conjunction with the results
shown in Section 1V, demonstrate the efficacy of the proposed
curve evolubion approach.

II. CURVE EVOLUTION EQUATIONS AND
LIE TRANSFORMATION GROLUPS

A. Basic Curve Evolution Eguations

Consider a smooth functional I : T — [, where T s the
family of smooth closed plane curves v 1 T — RZ, 2 — 3], 1
is a compact interval of [, and » is the arc parameter (not nec-
essarily are length). We mestnet ourselves to functionals of the
form

S f"l“r:l == [f_,lr_cj:_.r:\,-f_w:_“;-__-;:_-l:_'ﬂ.:|_.'-.;-'::4-::|:____.:I o5 [1::'
JI

where £ 15 a smooth function, and 5 (resp. <, .. ) denotes the
first (resp. second, .. ) derivative of ~ with respect o . This
is the general form of the curve functionals most used in image
processing applications [10]. We are interested in finding the
curve (or those curves) m |7 which (locally) minmmizes £ To
perform this minimization, v is embedded in a family (v g+
of curves, and this family is constructed so as to satisfy the evo-
lution equation

iy [
— = ——{, {20
“dt fe L -
i le =0 (2)

where v, is the initial curve, and where (8777530} is the fune-
tional dervative of & with respect to v at « [2] (85 tvi(w)
15 & vector tangent o the space 1M at the point < 1, Le., an
element of the tangent space Y2 1" An element of the langent
space’f L 1'] o L at aparticular curve v < 1718 given by asmooth
vector field along ~, that is, by a mapping X : 1 — B* 5 —
X [~1a)]. Thus, for each value of the are parameter & £ L of
=, X&) is a vector in B2, This allows us to define an inner
product {.. . on TL01 as follows:

(XY, = /cj.t-h-[.s-j LY s ds,  FXLY © T
T
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where {.. g2 1% the Euclidean inner product on B?. The tangent
vector (85 By i is defined as the unigue element of 72 (17
which sausfies the relation

e (3)

iL
& b

il EE
2 gl = £ S,
&l {“ﬁ.- St

It follows from (2) and (3) that

o L ".I&E. .o l:‘l;_-'.t\.
& Ame )
_ R L BE Y < )

\‘-\ﬁ._":r"' it h fj.":r' L Ii.}l,-"l._.l
by the positive-definiteness of the inner product. As a result
the mapping { — £~ ] is monotonically decreasing. Equa-
tion (2) is thus a descent equation, and the family [~ .
of curves a minimizing family for the functional . The goal
of constructing such a family is w compute the curve =, =
it =, which, if it exists, is a critical point, and hopefully
a local minimum, of I,

In image processing applications of curve evolution, a
closed plane curve is usually represented by an N-tuple

ETI L P rat of points i & B, yielding a polygonal
approximabion W the desired curve. The space '+ of such
N-tuples can then be identified with the finite-dimensional
vector space B, and the curve evolution (2) in | is replaced
with an evolution equation in T s

Ay . 2 il e n 3 . ;
T:"“ AN bty d—uru N
Fili=n  fin (4)

where the functions I are obtained by spatial discretization
of the expression for (8F1/08~) in (2). Here again, the

N-tuple (b (TN D FRllE D0 - BN IE 00
15 a4 veclor tangent w1y =  H*Y at the point

AL T of 4% which associates 1o
Wil & T the vector ﬁ!flﬁ_;J:,I:I]:I_;“;1j £ 7. Not surprisingly,
the space Tl s} of all vectors tangent to 1"+ at the point
v € T can be identified with %Y as well. Let then ¥
e Ex LY = (W) © Tl ~ REX
(with 7, 9, £ R forall i = 1, .. A): the inner product 28
on T.{T 7" is defined as follows:

N
(.Y =3 (€ yiee
=L

The evolution (4) 15 further discretized temporally as well,
yielding the followmg discrete evolution equation:

Flik+ LIAL FikAl— AF: ((FikAY ],
e, i=1.....% (3)

Bile 0 =1

where AL is the temporal discretization step.
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B. Group Actions, Orbits, and Infinitesimal Generators

Let £ be a (finite-dimensional) Lie group of transformations
acting on K<, We refer the interested reader to [16]-[18] for a
detailed introduction o the theory of Lie groups. Assume & acts
on B¥ viaa smooth map (7 ¥ B — K", (4.7 — g Fsuch that
b7 fforall € B, where ks the identity element of ¢, and
grelgept = (gpgtp'forall g, g2 © C. © BY. The action of
7 on K? induces an action of ¢ on 1" given by the smooth map
0wl — T, {g.~) — g - v where the curve g -~ is defined by
g1 B a0 s (g {4} The orbit of v under the action
of €' is the subset (- v of T defined as

fres=dg-~vC ' gC].

The meaning of the orbit (7 -+ is clear: It is the set of all plane
curves obtained by applying all the transformations in O 1o the
curve .

Let now ] — ecef[— &4 — RIL) be a smooth curve in 5
(with ¢ 2= Oarbitrary ) with {00 = o Let o = (al/dt) ¢ oh(#]);
is an element of the tangent space T, (&) of €7 at . The smooth
curve & in €3 induces a smooth curve o= 7] — e e[— O L —
ACE] - in the orbit 67+ of ». The vector X {1 & .01 defined
by the vector field 5 — (el fefl) o[ Bif 1 - ~051] on ~ is thus an
clement of the tangent space 7% (67 ) of the orbit &7 - at ~,
Since & -+ o T,¥5{7 - ~) is a vector subspace of F..(T"). and
since ) is finite-dimensional, T.067 %7 is finite-dimensional
as well. Thus, o each 2 & °F, [(fr’] there corresponds a unigue
vector X (i) € TG - ~) « TLiT). Furthermore, the mapping
Now X o) as linear, and for each ¥ Z Ti_\.[:(_.* oy h, there
existsa e £ 4 (Fisuchthat ¥ ¥ (&), Therefore, the tangent
space o £ v at v is given by

Aotz =X el 2 LT v e i

C. Cuwrve Evelution on Orbits of Lie Transformation Groups

Assume we are given curve evolution (2) corresponding o

the minimization of the functional £ and assume we Know a
priori that the initial curve v; £ T and the final curve . £ T
should be related, up o repammetrization, via a transfomation
in £7; that is, there exists g & {7 and a monotonically increasing
diffeomorphism 0 © I — T (called a reparametrization of 1)
such that ~.. =3 = & -~y The question 15 how 1o ncorporale
this @ priori information in the evolution equation (2) without
assuming any knowledge of the functional £'; in other words,
we wish to suitably modify (2) such that the following two re-
quirements are mel.

Iy £ — Koy should be a decreasing function of , that 15,
the resulting evolution equation should remain a descent
equation on the functional £

2V o and ; should be related, up o reparametnezation, by
a transformation of the Lie group &,

Note that the first requirement guarantees that the modified evo-
lution equation still minimizes the functional £ and thus con-
tnues o solve the oniginal problem for which the functional
Lowas intended. The second requirement is that ~.. lie in the
union || €7 (= 0¢ ) of orbits, where the union is taken over all
rupunimﬁlrizuliuns{."} of L. Note in particular that if ~.,, < -,
then the second requircment 1s met.

Our approach hinges on the following proposition:

Pioposition 1: I~ < ¢~y foralld € BY then (d fdl) &
T i forallf © B Conversely, if 1 is finite dimensional,
then [y fddl & Fo (7 - w0 forall # = BT implies v £ (7 %
forall £ & [E™.

FProof: See Appendix. 11

Remark [: The importance of Proposiion 1 Lies in the
fact that it converts the original difficult problem of verifying
whether or not a curve lies in the orbit of another curve into
a family of wactable problems, each consisting of verifying
whether a given vector lies in a certain veclor space.

Remark 2: To use the full force of Proposition 1, we shall as-

sume henceforth that I is finite-dimensional. This restricts inno
way Lthe practical applications of the results that follows, since,
as was noted following (4), in all implementations of curve evo-
lution equations, the space of curves can be identified with R*Y
for some positive integer N, and hence is finite-dimensional.
For simplicity of notation however, we shall use the notation of
(2).
Consider the tangent space Tt (T to T atthe curve . Recall
that the tangent space F., (€ <] is a finite-dimensional vector
subspace of 7. (Tl forallt & R Let ., -7, (T) — 4. (-
=i+ | be the projection operator defined with respect to the inner
product §.. 3., . We have the following result:

Proposition 2: Let I : T — T be a smooth functional. Let
e be be o one-parameter family of smooth closed plane curves
satisfying the evolution equation

lllr-";'n o &F izl
E Fsierel) ﬁ—ﬁ fil |
“-'t|1.'_|:| = 0. (6)

Then
1y ¥ & €4 7, and
2) L oy s a decreasing function of 1.
Proof: We have o, ((F R 80000 & 1L, (0 - 7 for all
f = RY, and hence [dv Al & T 000 - =00 for all £ & Y the
fact that ~... & (7 .y, thus follows from Proposition 1. To show
that L — & o~ is a decreasing function of ©, we wrile:
di bk o)
et

Since the projecton ., 15 defmed with respect o the inner
product {., ., on TL (17, we have

P W M )

‘ TX.¥Y T, s
that is,
(X 7 (Y Y, = X0

We thus obtain,

ditien) _f (FE Y[R
It — \_‘IL_.-_ , (.E",' |: .'C_.I) 1, ( =l

and hence & — £ ooy, is 8 decreasing function of . d
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The evolution equation (6) fulfills both of the requirements
we had imposed on constraming curve evolution via transfor-
mution groups, The tangent space T -+ o the orbit £
~ 18 the vector space spanned by the infinitesimal generators of
the group action of &' at +. By virlwe of Proposition 2 therefore,
projectng the velocity vector of a curve onto the Lie algebra
of mfinitesimal generators of a group action yields an evolution
which minimizes the desired functional while taking place on
the desred orbil. In Section [11, we compute ., for some of the
Lie groups we shall consider.

It 15 important o note that constrainmg -~ 0 evolve on the
orbit {7 -; of = under the action of the Licgmup {7 is equivalent
Lo estimaling a one-parmeler f.inllly il |.';_|'.t| T L such lhdl
~p = gy oy for all £ Indeed, expressing 0~ as Ko iR
the gradient descent equation for gy can be writlen:

rodl

dee  AUf e gy

o1h &

Wil SR

& T 'f-"II:' II"-:I
I'-.I I"": ;

S ofw

This 15 a descent equation m the L group {7 isell, and not in
the space of all plane curves. As €7 is finite-dimensional, and is
typically small-dimensional, 1t can be locally parametneed by
a small number of parameters; the descent equation in {7 then
corresponds o estimating these few parmeters which defing
the transformation q.. relating -~ and ~

II. LE GrOUPS OF PLANE TRANSFORMATIONS

We consider a (discretized) curve -~ o be an N-tuple
(. e, oo e ] of points iw; 0] € B an element
of the tangent space to 1" at =+ is then given by an N-tuple
(... T of vectors i & HY. We also assume given a
unL-p.iruleLr family [~ )y=n of curves evolving according
to (4). This has the advantage of illustrating very concretely
the computation of the projection operator .. Recall that
the tangent space 7. (1] is endowed with the following inner
product: .

where X ['H],'Hz,... ' |'_-",\|.':|11Er |::'H_"|.'-!.'_.?-3_,.

ments of (17 In what follows, all projection operators « .. are
computed with respect o this inper produoct.

L] oare ele-

A. The Group of Plane Translations

The most basic nontrivial group of transformations of the
plane 15 the group of plane translations. This group s 1somor-
phicto (B*, 7, and an element [, #) of it acts on B? by

Do B Lo = S acy | B,
In this section, we describe how 1o constram active contour
evolution equations $o0 that the evolving contour remain on the
orbit, under the group of plane translations, of the initial con-
tour. Let then € ~ RB* be this group. Lets > (a5, b 1] be
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a one-parameter family of (7 with {a(TH, 4071 the identity ele-
ment (3,01}, Then

IR eI R T

il T=li
o) CodhE
_ ful S e 40,1
el dr |0
The tangent space L7 -~ of (7 -~ aty = (fh. ... a0 18

thus l'l.i-{Hjlle'JhIUl'Jdl, and spanned h} the vectlors

A= {00 (L 00

FER AUV B PR R R R I R
Let ¥ L Bl & T T be a vector tangent to
[ at *r; the projection operator -, = T (1« T 000w
associated Lo €7 is given by X — 7, (X1 = A =000, where
. s & IE are such that

n

-:.-.‘It H k-._ e A | :l‘l‘f H X :l = Z ” I:'-J-'f‘l‘: .'.:'-'Il‘.' } "I-'!.!: i

=1

‘
bk A
15 minimized. The necessary conditions

= Zn i = =0

for a minimum easily yield

Y
. e 1
(eeg, 1= ~ %‘ i,

Thus, inorder to constraim evolution equation (4) o evolution on
the orbit of ~; under the group of plane translations, (4) should
be replaced with

‘f (8] =
l”m =1
and, comespondingly, (5) with

{ il —
i =t

B. The Group of Plane Rotations

.-

:’_’{}. Z ||[LLf .Jlf

=]

NZ;L

Fotis

. Tlrle-l'_r—l}'

0,

i=1....N

LA = Flfedd] — —
}_rg:n.

E (kA X

Eol, r=1... 4.

In this section, we describe how to constrain active contour
evolution equations so that the evolving contour rémain on the
orbil, under the group of plane mtations, of the initial contour.
The group & of plane rotatons s 1somorphic o the crele & =
H/2x#, and an element # £ {7 acts on B¥ by

folw oyl =i{reosd  gsin# oasind | yoosf)
Let v — #i7) be a one-parameter family of & with 2[U) the
identity element (0. Then
IR TN T ;
— R (=120

il . T

=L} +=il
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The tangent space 12.(( - ) of 3. val v = (), fa ... . Pn]
(with JT; [z 400 is thus one-dimensional, and spanned by
the vector

. . . T . . 1 < A
= f'k—.U'l-:P1,-'~'k—.02-.-*‘9,- ----- Ik A

Let X (# ., ,Tn) € 40T be a vector tangent 1o T
. v oy e L ] e
at v, with o, = (e, -J.=l* Yyfor i = 1...., A'; the projection

operator 7, @ 45 (T — 35,007 - ) associated to (7 is given

by X — 5. (X)) = wy ), where w; € Ris such that

N
fen € — X 0 — X E lif —gtypiatis — % 2

1

15 munimized. The necessary condinons for a minimum casily

- N Ll
Foami L=
W = N i3 a4 '
PRSI
To constrain evolution (2) to evolution on the orbit of <y under
the group of plane mtations therefore, (4) should be replaced
with

yield

s LA A Y N

bl d=1....,N
and, comespondingly, (3} with (see first equation at the
botiom of the page) where ) [l.’p}-f!-}j_‘?"'_ﬁl = -':'-'Jl.l :I.'J.:j‘ "1 for
) 2

C. The Group of Euclidean Plane Transformations

In this secton, we describe how o constrain active contour
evolution equations so that the evolving contour reman on the
orbit, under the group of plane Euclidean transformations, of the
mnitial contour. The group 7 of Euchdean plane transformations
15 the semi-direct product of the group of plane motations and the
group of plane translations, and an element (o008 & O acts
on H* by

Co B - e

= [ os ) — yaind! — aorsind + ool — 00

R57

It follows from the above that the tangent space V.07 - +} of
L L1 e e oo Ty ) (with T, i,y ) is three-
dimensional, and spanned by the vectors

A=({1.00.0.0)....01.0}

LA {0 B VO R LI R )

= !jl:_—-,',rl.;t:j_:l, =tz oo ey :I i
Let ¥ ':-'_"| : '-'_"2 veeey i
at g, with i = ::-:;:;1 ", i ! . % the projection
operator m-, L. (I — T, 0 7] associated to & is given
by Xvow A =al G E | owel, where oo, Uy 0y CR
are such that

& T iT) be a vector tangent to T

1 J -
Tlore = 1. ...

fnA+ B — - XA+ 50—t — X

A
= Z ”[I'.L'[ — Wil I.KJII + -L;FL'.'I'{J == 'l','lgllz
=1

is minimized. An easy caleulation shows that oy, 5w are
given by
; 1 . -1
- £ 3,5
1 | wF 3_,5 W i
N Zt- Ly + w7 )
i
oty
12
Z{ A

(2 1%
s (: NI T )

With ﬂ{lli[’-'..ltjlzf=|:l in (4) and (3) being writlen as
f_"}::l_’ﬁ;[f 'j"_] = I_’i:;”__ 1-.-53 1,..., 4%, and with
iy, Syl given as above, constraining evolution (4) o evo-
lution on the orbit of <y under the group of Euchidean plane
transformmations is performed by replacing (4) with

]
g
=
2
-

Bl o

Dfor il =

-::'.'Ex i-'w'f'!_.'i{f-}, _-':f-r el (f] :: .
IT{.U
G =10

and, comespondingly, (5) with (see second equation at the
bottom of the page).

D, The Group of Affine Plane Transformations
In this section, we describe how to constrain active contour

evolution equations so that the evolving contour rémain on
the orbit, under the group of affine plane transformations,

Fith 4 11AR] = FihAF] — Al i= 1. N
k= = B
wepg bl hes d=1 00N

{;}}[I:J'.'. + 1A = @FihAR 4+ Al — anad k)L 0 —

Filb=0 = P
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of the mmiboal contour. The group (7 of afline plane transfor-
mations is the semi-direct product of the group GLI2 E) of

invertible two-by-two real matrices and of 37, and an element
{n b, doe, £ 67 (where ad — be 22 0) acts on 1* by

Gy Bened e [T 0 e — By — e o 4 g + 1

The tangent space T.00 - < of O -5 at~ = {plpz.. o opa
(with 7, = [ .r;\;}}l 15 thus six-dimensional, and spanned by the
veclors

= [P0 s (1.0

i L, lj. e L |

Ey = (o 0], (. 0, (o U

Fro = (lan 00 Do 000 D 00
L SR R (R RO { (R-PE3 Y
Fz = l:l:l::l :t"'_::1 l:l'}' :E«":Z:h s I:'I-If.i,f_'\' :I :'

Let ¥ = (¢ ah. ..
at v, with &i; = ':ft'!r"..:!l; LI fori =1,....N
operator ., ¢ T (17 "
h} X—= i |r Yj

'.;"-. 1-.1 whene g .r,l |'L.r

Lta ) O L (1) be a vector tangent to |7
; the projection
"l’_,‘ *\,.] associated to G 1s giu,n

ud+dB—m T AT+ AN
are such that

T IR o~ TR
.r."-jlf - ¥y -.-d;'

“t
[ . 2021 ="
P T IO T G M I mjl N f”

1|
i1

‘1
(r.':,- + kT

- T ; ]
1s minimized. An easy calculation shows that e, 0, 75

(21 4030 . . .
fl.'.:'. "_,.;i'f are given by solving the overdetermined systems

o 0%
i R ity 1'11\
B o l" i
LI oot P [ s
rxfg] e
1 wx ux ot i
and
. Ty
L FH i I,_j.l Ty :
L azx i ;?F" |
ik -
T . a A2
L xa oy Yot
With I':l u" [.,JI]:‘ Yoin (4) and (3 being  wrillen  as
I_ (e UI T ‘l’,'-':;:"g":'- ) T ) N, and with g,

b e e : _
St g '.-:.1':. LA™ given by solving the above linear

overdetermined systems, constrining evolution equation (4) 1o
evolution on the orbit of 7, under the group of affine plane trans-
fomations 1s performed by replacing (4) with (equation at the
bottom of the page) and (3) with the corresponding temporally
discretized equaton, as illustrated i the previous cases.
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IV, EXPERIMENTAL RESULTS
In our implementation of curve evolution on orbits of Lie
transformation groups, we adopt the curve functional

[ R .
v I EL{MHHW+WﬂﬂWHH

ol
|/ Lol vis) 1 s (7)
SN

which 15 of the same form as the funcuonal in (1) (with T =
[0 1y and is similar to the functional proposed in [ 10]. Whereas
the first integral on the nght-hand side of (7) represents the -
ternal energy of the active contour due to streteching and bending,
the second mtegral represents the image-dependent (i.e., ex-
ternal) energy of the snake, and the Lagrangian /... is defined
as the distance of the actve contour from the local gradient
maxima of the image function. The positive coefficients g and
v control the elasticity and stiffness, respectively, of the active
contour. It should be noted that using the Lie group approach,
the active contour becomes less sensitive Lo the standard active
contour parameters that represent stretching and bending. Al
though these “smoothness™ terms are still retained, the final con-
tour determined by the transfomation 1 nol sensiive 1o minor
variations in the parameters. As such, the contours evolved by
Lie groups of transformation are more robust 1o parameter se-
lection.
The Euler-Lagrange descent equation corresponding to the
functional (7) 15 given by
edr,

—ia]

AL Moy = FEenlnisll  (8)

P sl — vy
where '_-'-"'-\' denotes the fourth derivative of = with respect to the
are parameler 4. Spatial and temporal discretizations of (8) yield
a representation of the curve + as a finite ordered set of points
fpi)is, n B, and yield an evolution equation of the form

ﬁj.-'-—u — Jﬁ‘.El-j- s T-I.;;k‘. (9)

where the superscript denotes the iteration index (see (3)). As-
surming a temporal discretization step of At the inili.il CUTVE Yo

is thus represented by the ordered set of points I.r,- ‘1, while the
CUNVE ¥y 43, cOrTesponding 1o iteration & of the evolution, is rep-

PN

resented by the ordered set (777 ).

.

A. Svnthetic Results

We lirst demonsirate the basic concepl of active conlour ¢vo-
lution on Lie group orbits through a set of synthetic images.
The synthetic experiments are followed by experiments on real
image sequences. We adopt the discretized version (9) of curve
evolution equation (8) as our benchmark, and we shall call 1t
wnconstrained curve evolwtion. In all experniments, the energy
functional parameters goand @ are assigned valves (0001 and 0,

A i
Eay.

File_o =m0

= (r.t[ — f.r':;‘_l’.;-':; if— f.r':;‘_z': i, + .'Z-.!IE-L:'.'::;{.!] + ,i'J':_:g': m[.‘,:l) el = Lo
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Fig. 1. Capturing an ellipse: (a) initial contour: {h) evolution on translation
group arhit; () initial comour; {d) evolution on affine group orbit; (2) uncon-
strained evolution for capturing noisy ellipse: (F) evolution on affine group arbit
for capturing noisy ellipse.

respectively. In all the images shown, a red thin contour rep-
resents either the initial curve [~y] or the intermediate curves
(vpar & = L1, 0 (shown every 50 iterations, ic., for & =
0,000, 1900, L), while a thick green contour represents the con-
tour at convergence [ ). The stopping criterion we have used
is as follows: Curve evolution stops whenever there is less than
one pixel maximum displacement between the current and the
previous contours at all contour points.

Fig. 1(a) is conswructed from the binary image of a dark el-
lipse (the target) on a uniform white background by the addition
of zero-mean white Gaussian noise of normalized vanance .01,
The thin red contour represents the initial position of the snake
i=: 1. Clearly, the initial contour -, and the target ellipse differ
only by a translation; hence, constraining the snake +; o evolve
on the orbit of =y under the group of translations should yield
a contour <. at convergence that coincides with the target el-
lipse. The result of this constrained evolution is as expected and
is shown in Fig. 1(b). Note that convergence is achieved even if
the initial axes are different in length. Consider now Fig. Lic);
the undedying image is similar to that in Fig. 1(b), but the ini-
tial contour + is now defined so0 as 1o be unrelated o the target
ellipse by a mere ranslation. Thus, constraining the snake v 1o
evolve on the orbit of = under the group of translations would
not yield a contour ~,. at convergence that coincides with the
target ellipse. However, v being an ellipse as well, consiraining

A oo -
T S I g
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- L L e
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- Ny gl
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Fig. 2. {a) Evoluion on affine group orhit for captuning noisy ellipse;
(h) evalution on Euclidean group orhit for capturing noisy ellipse: {c) evolution
on affine gmoup orhit for capturing noisy rectangle: (d) unconstrained evolution
for capturing noisy rectangle: {e) evolution on affine group orbit for capturing
paddle; {f) unconstrained evolution for capturing paddle.

the snake - to evolve on the orbit of ~; under the group of
affine transformation allows ~... 1o coincide with the target el-
lipse. This is shown in Fig. 1(d). Note that in Fig. 1{b)} [resp.
1(d}] the intermediate contours 7, | are all related to the initial
contour v, by a translation (resp. affine transformation), consis-
tent with evolution on a transformation group orbit.

In Fig. lie) and (f), the target ellipse is itself randomly de-
formed while preserving itsrough elliptic shape . Fig. 1(e) shows
the result of unconstrained snake evolution, yielding a contour
“re Al cOnvergence that has a very imegular shape. Constraining
snake evolution to lie on the orbit of ~; under the affine group,
however, yields an elliptic contour v, al convergence, as can be
seen in Fig. 1if). Clearly, constraining contour evolution to take
place on a transformation group orbil has a regularizing effect
on the contour.

Fig. 2(a) shows the result of snake evolution on the orbit of
under the affine group, as in Fig. 1(f) and with a similar under-
lying image, but with different initial contour ~w,. Fig. 2(b), on
the other hand, shows the result of snake evolution on the orbit of
“p under the Euclidean group. In both cases, the contour ., at
convergence caplures the target noisy ellipse while retaining its
elliptic shape. In Fig. 2(c) and (d) the undedying image is con-
structed just as in Fig. 1 except that the target 1s now a dark rec-
tangle which has been randomly distorted. Fig. 2(¢) shows the
result of constrained snake evolution on the affine group orbit
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Results of i vivo cell tracking by constrained snake evolution on affine group orbit: (a) initial contour in frome (& (h) frame 1; (c) frame 3: (d) frame 5;

Fig. 3.
{e) frame 10: (F) frame 15; (g) frame 20; (h) frame 25,

{a) (b

Fig. 4.
15; (g) frame 20; (h) frame 25.

of an initial contour ~;, which is itself a rectangle larger than the
targel rectangle. As can be seen in that same figure, the rectan-
gular shape of the target noisy rectangle is perfectly captured by
the contour <., at convergence. Unconstrained snake evolution
on a similar image and starting from a similar initial contour
~n yields a contour ... al convergence which is not rectangular
anymore, as can be seen in Fig. 20d).

To further demonstrate the regularizing effect of contour
evolution on transformation group orbits, we have used video
frames from a table tennis sequence. The frame to frame co-
herence that is required for tracking is maintained through our
proposed algorithm, as is shown in Fig. 2(e): Here, the contour
" Al convergence is constrained 1o lie on the orbit of the initial
contour -~y under the affine group. Unconstrained contour
evolution [from the same initial contour as in Fig. 2(e)], on
the other hand, yields the result in Fig. 2(); there, the contour
al convergence is distorted, and the distortion worsens as we
progress through the sequence. We shall clanfy this further
when we discuss the tracking examples below.

B. Tracking Results

We use three different sequences from three different applica-
tion areas o demonstrate the usefulness of constraining snake
evolution o transfomation group orhits. In each of these se-
quences, tracking is done over 25 frames, and in each frame
(except frame zero), the initial contour from which snake evo-
lution starts is the contour at convergence of snake evolution of
the preceding frame.

The first tracking application is that of tracking a white blood
cell in vivo. Fig. 3 shows the results of tracking using affine
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(b}

Results of in vive cell tracking by unconstmined snike evolution: (a) initial contour in frame 0: (h) frame 1:(c) frame 3; {d) frume 5;{e) frome 10; (F) frame

group constrained snake evolution, while Fig. 4 shows the re-
sults of tracking using unconstrained snake evolution. Not only
does our proposed algorithm allow the shape to be caplured
propedy, but the detection of the shape is consistent with the
direction of flow within the blood vessel as well. The result
of tracking using unconstrained snake evolution violates the
known circular shape of the leukocyte and yields boundary lo-
calization error. Figs. 3(a) and 4(a) show the initial contours in
frame 0, while Figs. 3(b)—ih) and 4{b)—(h) depict the tracking
results in frames 1, 3, 5, 10, 15, 20, and 25, respectively.

For the table tenms sequence, in which a paddle s tacked,
the results of affine group constrained snake evolution and un-
constrained snake evolution are shown in Figs. 5 and 6, respec-
tively. Fig. 5(a) and (b) depict the initial contours in frame (0,
while Figs. 5(bi~(g) and 6(b(g) show the tacking results in
frames 1, 5, 10, 15, 20, and 25, respectively. Fig. 6ig) cleady
shows that a simple snake with no additional constraint cleardy
loses the paddle shape while tacking. The errors in capluring
the shape in previous frames are compounded and ultimately
force the active contour to drft away from the true boundary.
For our proposed algorithm, with the special choice of the affine
eroup, shape fidelity is maintained for the entive 25 frames under
observation.

The final image sequence gives an example of tacking of
a tank under difficult imaging conditions from infrared video.
Figs. 7 and 8§ show the results of affine group constrained snake
evolution and unconstraned snake evolution, respectively. As
in previous examples, Figs. 7ia) and 8(a) show the initial snake
in frame 0, while Figs. 7(b)—(g) and 8(b)-(g) show the results
of tracking in frames 1, 5, 10, 15, 20, and 25. Note that the



MANSOURI er ol : CONSTRAINING ACTIVE CONTOUR EVOLUTION VIA LIE GROUPS OF TRANSFORMATION Rl

(f) (s

Fig. 5. Results of tracking paddle by constmined snake evolution on affine group orbit: (a) initial contour in frame 0; (b)) frame 1; {¢) frame 5; (d) frame 10
(e) frame 15; (f) frame 20: (g) fmme 25,

{e)

Fig. 6. Results of tracking paddle by unconstrmined snake evolution: () initial contour in frame O (h) frame 1; () frome 5: (d) frame 10: {e) frame §5: {f) frume 20;

(g) frame 25,

EY (b} o) {dj
(&)
Fig.7. Results oftmeking tank in clutter by constmined snuke evolution on affine group orbit: (a)initial contour in frame (& {b) frume O0: {c) frame 5; (d) frame 10

() (f)
{e) frame 15; (f) frame 20; (g) fume 25,

{a) 8] (e (d)
] I£} (=]

Fig. 8.  Results of tracking tank in clutter by unconstrained snake evolution: {a) initial contour in frame 0; (b) frame O; {c) frame 5 (d) frame 10; (e) fmme 15;
(£) frame 20; {g) frame 25,
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TABLE 1
SEGMENTATION ERROR BETWEEN ACTIVE CONTOUR AT CONVERGENCE AND THE GROUND TRUTH. POSITIVE AND NEGATIVE QUANTITIES REPRESENT (WER AND
UNDER SEGMENTATION, RESPECTIVELY

Frame Number

Sequence | 5t e gtk e 1t | op gl

Bload Cell Alline +7.31 | -0vE | Ll | -2 -ndd -2.1 -l.al
Uneovalrainead | -10C22 | 132 ( 502 [ -F33 475 | -1.99 | -1.7

Table Termis | Affine +0.43 o +1.28 | —L.%3 +0.21 | +0.94 | +1.18
Uneenstrained | -2.32 - SAMG [ -LGD -Ew | -2ME | -1

Tank Affine -2.31 - -6.74 | -512 -381 | -T.av | -12.01
Uneonstrained | +3.37 = +3.2 | +42 417 | +1.24 | 046

unconstrained snake responds to spurious details and unreli- APPENDIX

able image clutter; the constrained snake, on the other hand,
preserves ils hexagonal shape throughout tracking, providing
a target boundary that could be utlized for automatic target
recognition.

For the three tracking examples, we provide numencal data
to substantiate the validation of active contour evolution on the
affine group orbit. Using manually segmented boundaries, we
have computed the segmentation ermr for cach frame for both
the unconstraimed active contour evolution and the evolution on
the affine group orbit (Table ). A segmentation error of 0%
means exact agreement with the “ground uth.” Over-segmen-
tation (under-segmentation) occurs when the detected segment
15 bigger (smaller) than the segment in the ground truth. The seg-
mentation error 15 expressed as a percentage of excess or less
number of pixels with respect o the size of the ground truth
segmenl.

V. CONCLUSION

In this paper, we have presented a novel approach o constrain
curve evolution equations to orbits of particular Lie groups of
transformation. Such constraints are important in nUMEerous ap-
plications of curve evolution where the preservation of certain
geometric properties of curves is desired. The approach we have
presented makes use of the relation between the group action
and the infinitesimal generators of this action. In this way, the
original problem of muntaining cettam geometncal properties
of the curve during its evolution is translated into a straightfor-
ward linear algebraic problem. The main advantage of the ap-
proach we have presented 1s that only the curve evolulion equia-
tionis modified, in a very straightforward way, andno knowledge
of or modification to the curve functional from which the curve
evolution equation was derived, is assumed. The synthetic image
segmentation results demonstrate the shape-preserving noise-me-
silient properties of the active contour moving on the orbits of
Lie groups of transformation. Extending the results o tracking
objects in a video sequence, we find that the novel active contour
implementation iseffective in tracking objects that move and dis-
tort according 1o Lie groups of transformation. Thus, for tracking
the same object in a video sequence, the assumptions of evolution
on orbits of Lie groups of transformation are well motivated and
powerdul. In contrast, using the traditional active contour evo-
lution equations leads to detection of objects of arbitrary shape,
which may lead to emors during tracking.

In this Appendix, we provide a Proof of Proposition 1. As-
sume then that v £ & -, forall £ £ R7. Then (dv /ot €
P07 o forall ¢ = BY as well. 4 £ {5 -+ implies there
exisls o O 67 such that - i+ vo. and hence {7
€ (g = {0 gl = 0 =g, by virtue of the asso-
ciativity of the group action and the fact that & is a group. Thus
LT = S Y T, 060 - v and the statement is
proved. Conversely, and assuming 1" is finite-dimensional, as-
surme (v folt}h C L () forall ¢ C B L Identifying |7 with
R for some positive integer /Y. =, can be considered as a point
in [2% . Assuming the Lie group € has dimension v and that it
acts regularly at v o000 - +] is an s-dimensional vector sub-
space of B for all ~ € K*"Y in a small neighborhood of ~,,
yielding a field v — 15067 ) of n-dimensional subspaces in
a neighborhood of ~, forall £ — B . Since these subspaces are
spanned by the infinitesimal generators of the Lie group action,
and since these infinitesimal generators form a Lie algebra of
vector fields, the field « — 1L - ) is completely integrable
by virtue of Frobenius® theorem [ 18]. 1t is then possible to find
local coordinates {1, x4, ..., 215 ¢ In B*Y In a neighborhood
of =, for which the orbit £+ =, in that neighborhood is given by
Wl = voush, o, e = const, Loy = consl, Ithen follows
from (el felt) & T 000 -, forall L= B that = = -
for t = {1 small enough. By piecing together local coordinate
chans, we deduce the result fort Z 12
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