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Selection in Building CBR Classifiers
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Abstract—CBR systems that are built for the classification problems are called CBR classifiers. This paper presents a nowvel and fast
approach to building efficient and competent CER classifiers that combines both feature reduction (FR) and case selection (C5). Ithas
three central contributions: 1) it develops a fast rough-set method based on relative attibute dependency among features to compute
the approximate reduct, 2) it constructs and compares different case selection methods based on the similanty measure and the
concepts of case coverage and case reachability, and 3) CBR classifiers built using a combination of the FR and C5 processes can
reduce the training burden as well as the need to acquire domain knowledge. The overall experimental results demonstrating on four
real-life data sets show that the combined FR and CS method can preserve, and may also improve, the solution accuracy while at the
same time substantially reducing the storage space. The case retrieval time is also greatly reduced because the use of CBR classifier
contains a smaller amount of cases with fewer features. The developed FR and C5 combination methed is also compared with the
kernel PCA and 5VMs technigues. Their storage requirement, classification accuracy, and classification speed ame presented and

discussed.

Index Terms—Case-based reasoning, CER classifier, case selection, feature reduction, k-NN principle, rough sets.

1 INTRODUCTION

asE-BAsED Reasoning (CBR) is a reasoning methodology

that is based on prior experience and examples. It
retains a memory of previous problems and their solutions,
and solves new problems by reference to this knowledge
[1]. [2]. When a CBR reasoner is presented with a problem
{or called an unseen case), it searches its MEemaory of past
cases (called the case base) and attempts to find a case that
most closely matches the current unseen case. CBR systems
have been widely used in prediction and classification [3],
[4]. [5] [6], [7]. knowledge inference and evaluation [8], [9],
among others [10], [11]. In these applications, CBR systems
that are built for the classification problem—to determine
whether or not an object is a member of a class, or which of
several classes it may belong to—are called CBR classifiers.
CBR systems usually require significantly less knowledge
acquisition than rule-based systems since they involve the
collection of a set of past experiences without requiring the
extraction of a formal domain model from these cases. In
this paper, we present a novel and fast approach which
builds efficient and competent CBR classifiers by combining
the feature reduction (FR) and case selection (C5) processes.
FR, the first step in building CBR classifiers, is the
process of removing noninformative features or of preser-
ving informative ones. The related work to FR involves
reduction of pattern dimensionality through feature selec-
tion or feature extraction methods [12]. Principle compo-
nent analysis (PCA) [13], [14] &5 one of the widely used
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unsupervised techniques to detect the data structure and
reduce the data dimensionality. Recently, a nonlinear
version of PCA, called kernel PCA (KPCA) [15], was used
to capture the dominant nonlinear features of the original
data. It transformed the data to a high-dimensional feature
space and obtained a set of transformed features rather than
a subset of the original features [16]. Since it is based on the
data variance, this technique can only be used to deal with
numerical features. There are also some other FR methods
that have been used in very spedal applications, such as
Shrunken centroid [17] which i about DNA microarray
analysis.

Another often used approach in FR is rough sets [18],
[19], the effectiveness of which have been demonstrated in
many different domains [20], [21], [22], [23], [24]. Rough sets
allow the most informative features to be detected and then
selected through the reduct computation. Different from
PCA, this approach is supervised and selects a subset of the
original features. Furthermore, PCA is used primarily for
numerical features, and rough sets are often used on
symbolic features. There are two main groups of rough
set-based FR methods: discernibility function-based [25]
and attribute dependency-based [26]. Such methods, how-
ever, are computational intensive, i.e., in the f{]rrner,durhg
the generation of the discernibility matrix and in the latter,
during the discovery of the positive regions.

To reduce the computational load inherent in these
methods, Han et al [27] proposed a relative attribute
dependency approach, which can generate a reduct by
counting the distinct rows in the subdecision tables
produced from the attribute subsets. In this approach,
however, the information systems are always assumed to be
consistent, which is not necessarily true in real-world
wpplications. To overcome this I:lmblem, we will introduce
a new concept of approximate reduct in this paper. The
concepts of dispensable and indispensable attributes; reduct
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and core are also modified. Using these extended concepts,
we then develop a fast rough set-based approach to find the
approximate reduct. Our FR appmach can be considered as
a generalization of the original attribute dependency-based
or discernibility function-based techniques, which is
achieved br].-r infroducing a consistency measurement among
reducts. The computational complexity of this approach is
linear with respect to the number of attributes and cases.
Furthermore, the consistency measurement can be used to
confrol the size of the feature set.

After FR comes CS. Like FR, CS is economical. The main
objective of the C5 process developed in this research is to
identify and remove redundant and noisy cases. If two
cases are the same (ie, case duplication) or if one case
subsumes another case, one of the cases duplicated or
subsumed cases are considered to be redundant. They can
be removed from the case base without affecting the overall
problem-solving ability of the CBR system. The meaning of
subﬁumpti{m is as follows: Given two cases £, and &, when
case £, subsumes case ¢, case ¢, can be used to solve more
problems than e,. In this case, ¢, is said to be redundant. On
the other hand, the definition of noisy cases is very much
dependent on how we interpret the data distribution
regions, and their association with the class labels. Accord-
ing to Brighton and Mellish [28], there are two broad
categories of class structures: the classes are defined by
1) homogeneous regions or 2) heterogeneous regions. In this
paper, we only consider the first category of data distribu-
tion. Based on the assumption that similar problems should
have similar solutions, we define noisy cases as those that
are very similar in their problem sp&lhcah{m yet propose
different {or conflicting) solutions.

C5 schemes are traditionally based on the kNN
principle, e.g., the Condensed Nearest Neighbor Rule
(CNN) [29] and the Wilson Editing method [30]. There are
several variations of the CNN and Wilson Editing method
[31], [32], [33]. These methods have been shown to be very
useful for identifying and removing noisy cases because
they closely examine the k-nearest neighbors of each case. In
this paper, they are referred to as &NN-hased methods.

Another recent approach that has been widely used in
C5 is based on the concepts of case coverage and case
reachability. Coverage of a case is the set of target problems
(ie. cases) that this case can be used to solve. The
reachability of a target problem (ie., a case) is the set of all
cases that can be used to solve the target problem. These
two concepts are very useful for identifying redundant
cases because they examine the problem-solving ability of
each case. Based on these two concepts, some algorithms
are developed in [34], [35], [36], [37]. Other C5 approaches
include density-based [38], [39] and prototype-based
techniques [40], [41], [42]. This research constructs and
compares different case selection approaches based on the
similarity measure and the concepts of case coverage and
reaj:hablhtv, which are closely related to the &-NN-based
methods.

Case generation is another alternative approach for
reducing the size of the case base. New cases (prototypes)
can be generated instead of selecting a subset of cases from
the original case base. These generated new cases have

lower dimension than that in the original case base, for
example, the fuzzy-rough method in [43] generated cases of
variable dimensions of lower size. On the other hand, the
support vectors produced by SYM [44] can be considered as
cases selected as a subset of the original case base. Recently,
SVM ensemble which consists of several SVMs [45], [46] is
proposed to expand the correctly classified area by each
individual 5VM.

In these C5 methods, the issue of feature importance
(weight) should be considered in computing the similarity,
- NNs, casecoverage and case-reachability. These weights
are usually obtained using machine learning methods, such
as decision tree generation [47], or neural network training
[2]. However, this transforms the feature weighting
information into a set of rules or a trained neural network
making them unsuitable for calculating similarity and
adaptation on unseen cases. Other problems of using these
machine learning methods include the difficulty of deter-
mining a feature evaluation function and the requirement of
much training effort due to the presence of noninformative
features in the training process.

In this paper, the feature importance is addressed by the
reduct generation. The features in the selected reduct are
regarded as the most important ones, and the other features
are regarded as irrelevant. The reduct computation does not
require any domain knowledge, and the computation
complexity is only linear with respect to the number of
attributes and cases. After incorporating the FR and CS5, the
case representation should still be the same as that of the
original case base. That is, each case is described by a set of
features (subset of the original feature set) and a class label.
This form of knowledge representation is easier to under-
stand and more convenient for use in CBR reasoning,

In order to find the “best” subset of features (i.e., the set
of features which can achieve the highest dassification
accuracy) that could be used by the C5 process, we generate
different approximate reducts in FR by fine-tuning the
value of the consistency measurement (ie., parameter ) of
the subfeature set. This allows the size of the approximate
reduct to be controlled, and the “best” subset of features to
be obtained.

This work makes three main contributions. First, based on
the relative attribute dependency among features, we
develop a fast rough-set approach for computing the
approximate reduct instead of the exact reduct. Second, we
construct and compare four different similarity measure-
based case selection methods. Finally, the CBR classifiers
built using a combined FR and CS approach reduces both the
burden of training and the need to acquire domain knowl-
edge. The experimental results show that our proposed FR
and C5 methods, used individually or in combination, can
preserve and evenimprove the classification accuracy while
at the same time reduce the storage space.

The reminder of the paper is organized as follows:
Section 2 presents the fast rough set-based FR approach.
Section 3 provides four C5 algorithms and their rationales.
Section 4 explains the importance of FR in C5 and the steps
for combining them. Section 5 presents and analyses
experimental results on both the individual and synergistic
performance of the FR and C5 methods. Some comparisons



LI ET AL.: COMBIMING FEATURE REDUCTION AND CASE SELECTION IN BUILDING CBR CLASSIFIERS

are also made between the developed FR and C5 methods
and the combination of KPCA and 5VMs techniques.
Section 6 provides the conclusions and discussions.

2 FasT RoucgH SeT-Basep FEATURE REDUCTION
APPROACH

The purpose of FR is to identify the most significant
attributes and eliminate the irrelevant ones to form a good
feature subset for classification tasks. It reduces the running
time of classification processes and increases the accuracy of
classification models. In this paper, we focus on the rough
set-based FR methods.

First, the f{]ll{ming provides some definitions and
properties of rough sets.

Let 15 = (U7, A, f) be an information system, where [V is a
finite nonempty setof N objects {x1, x2,... .2y }; A s a finite
nonempty set of n attributes (features) {a;.04,..., anki fo:
[7 — ¥V, for any a < A, where V, is called the domain of
attribute a. A decision table is an information system
DT = ([, Au{d}, f), where d is the decision attribute,
dé A
Definition 1 (Indiscernibility Relation). Each subset of

attributes B C A determines an equivalent relation, called
indiscernibility relation TN I B) on

U:INDIB)={ir,y) e U x Ul¥a € B, f.(z) = fulw}.

Definition 2 (Dispensable and Indispensable Attributes).
An attribute a is dispensable in an 15, if

IND(A - {a}) = IND(A):;
otherwise, a is indispensable in IS,

Definition 3 (Reduch). A subattribute set B C A is called a
reduct of Aif it is the set of indispensable attributes in the IS,
ie, if B={alINI{A—{a}) # IND{A).ac A}, then B is
a reduct of A,

Definition 4 (Discernibility Matrix [25]). The discernibility
matriv (DM of an TS5 which has n objects is a n = n matrix
represented by (dm;), where

dm;={a € A: fulz:) # fulz)} forij=1,2,...,n

Based on these definitions, it requires a considerable
effort for the discernibility function-based reduct generation
methods to compute the discernibility matrix. For example,
if there are n objects in the IS, m attributes in A U {d}, the
computation complexity of these methods is O(n* x m). To
address this problem, Han et al [27] have developed a
reduct computation approach based on the concept of
relative attribute dependency. Given a subset of condition
attributes, B, the relative attribute dependency is a ratio
between the number of distina rows in the decision table
corresponding to B only and the number of distinct rows in
the decision table corresponding to B together with the
decision attributes, i.e, BU {d}. The larger the relative
attribute dependency value (i.e., close to 1), the more useful
is the subset of condition attributes B in discriminating the
decision attribute values. If this value is equal to 1, each
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distinct row in the decision table corresponding to B maps
to a distinct dedsion attribute value,
Some further concepts [27] are defined as:

Definition 5 (Projection). Let PC AUD, where D= {d}.
The projection of U7 on P, denoted by T](U7), is a subtable of
7 and is constructed as follows: 1) Remove attributes in AL
D — P and 2} merge all indiscernible rows,

Definition 6 (Consistent Decision Table). A decision table
DT on U is comsistent when Yx,v € U, if fa(x) # fav),
d e I, then Ja € A such that £,(x) # £,(v).

Definition 7 (Relative Dependency Degree). Let BC A4, A
be the set of conditional attributes. I is the set of decision
attributes. The relative dependency degree of B with regard to
D is defined as &3,

s (D7)

M gp( L]

where [Ix(U7)| is the mumber of equivalence classes in
U/IND(X).

-[}
é]’.ﬂ

The relative dependency degree &) implies how well
subset B discerns the objects in U7 relative to the original
attribute set 4. It can be computed by counting the number
of equivalence classes induced by B and BUD, ie., the
distinct rows in the projections of U7 on B and BU D. Based
on the definiion of the relative dependency degree,
dispensable and indispensable attributes are defined as:

Definition 8 (Dispensable and Indispensable Attributes).
An attribute a € A is said to be dispensable in A with regard
o I if .-‘:'__’1-’_{“] = &4 otherwise, a is indispensable in A with
regard to D

According to Definitions 6, 7, and 8, Theorem 1 can be
obtained.

Theorem 1. If[7 is consistent, B C A is a reduct of Awith regard
to D, if and only if §5 = & =1 and for ¥Q} C B, :‘:gj =05
(See [27] for the progf.)

In order to compute the reduct quickly, we use
Definitions 7 and 8 (relative dependency degree, dispen-
sable and indispensable attributes) and Theorem 1. Theo-
rem 1 gives the necessary and sufficient conditions for
reduct computation and implies that the reduct can be
generated by only counting the distinct rows in some
projections.

In Theorem 1, I7 is always assumed to be consistent,
which is not necessarily true in real-life applications. In
order to find approximate reducts rather than the exact
reducts, we relax this condition. The use of a relative
dependency degree in reduct computation is extended to
inconsistent information systems. Some new concepts, such
as the [-dispensable attribute, Findispensable attribute,
H-reduct (i.e., approximate reduct), and fF-core are intro-
duced to modify the traditional concepts in the rough set
theory. The parameter 7 is used as the consistency
measurement to evaluate the goodness of the subset of
attributes currently under consideration. It can also deter-
mine the number of attributes which will be selected in the
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Feature Reduction Algorithm T

frpauid: L5 the eative set of offects:

A — the enfive condition attribule el
2 the decision atvibute set
Cluignai: i — the approcimate rechict of 4

Stepr | dnitialize B — S fenpiy seil
Step 2 Compure the gppeacimote reduct,

Hedrile ¢ is met et Clonnprute fﬁ'_r':.:" s

IFe8y = [ Retwrn R and stop;

Otherwvise
R=FR .4k
A-4-8;

Step 3 Dt R

Fig. 1. Feature reduction Algorithm 1.

generated approximate reduct. These are explained as
follows:

Definition 9 (J-dispensable attribute and A-indispensable
attribute). If ac A is an attribute that satisfies
f‘:f;'_{u] = A8, ais called a G-dispensable attribute in A
Otherwise, a is called a G-indispensable attribute. The
parameter 4, 3 < [0, 1], is called the consistency measurement,

Definition 10 {f-reduct/approximate reduct and F-core). B
is called a fG-reduct or approximate reduct of conditional
attribute set A if B is the minimal subset of A such that
&f = 4. 85, The G-core of A is the set of F-indispensable
attribn tes.

The consistency measurement 7 represents how consis-
tent the subdecision table (with respect to the considered
subset of attributes) is relative to the original decision table
{with respect to the original attribute set). It also reflects the
relationship of the approximate reduct and the exact reduct.
The larger the value of 4, the more similar is the
approximate reduct to the exact reduct computed using
the traditional discernibility function-based methods. If 7 =
1 (i.e, attains its maximum), the two reducts are equal
(according to Theorem 1). The reduct computation is
implemented by counting the distinct rows in the subdeci-
sion tables of some subattribute sets. 7 controls the end
condition of the algorithm and, therefore, controls the size
of reduced feature set. Based on Definitions 9 and 10, the
first rough set-based FR algorithm in our developed
apprﬂach is given in Fig. 1.

In some domains, the order for selecting attributes in the
reduct must be considered carefully. For example, when
dealing with text documents, there are hundreds or
thousands of keywords which are all regarded as attributes,
If the order is randomly selected or if one simply makes use
of the order in which keywords appear in a text document,
the most informative attributes may not be selected initially
during reduct computation. Therefore, the end condition
#4 = 4 in Algorithm 1 cannot be satisfied quickly. It should
also be borne in mind that the final attribute set may consist

Feature Rednetion Algorithm 2
The irpns el cntent are the same ay that in algorithm 1,

Step 1 Tuitialize R = &3
Sten 2 bar each a=4
Compuile the sieniffcance of a;
Al the mosi sigdficant one, g fo R
R = RLfq):
A A fql
Sep 3 or coverent B
e the relative deperdency degree 5;.) £
Step 4 Wihile (A iy ot cmpivi
It ()1;;" = L veturn B and stop;
(therwise, go to step 2 aid thea siep 3.

Fig. 2. Feature reduction Algorithm 2.

of many noninformative features. This issue is addressed by
computing the significance value of each attribute. These
sig;niﬁcance values are used to guide the attribute selection
sequence. Details are given in Algorithm 2 (see Fig. 2).

The computation complexities of the feature reduction
Algorithms 1 and 2 are ({n = m), where m is the number of
features in AU I, n is the number of objects in U7,

3 CASE SELECTION APPROACH

In this section, we present four CS algorithms that are based
on the similarity measure but that use of the case similarity
in different ways. Algorithm 1 first selects cases having a
large coverage and then, if the two cases have a similar
coverage, selects the one with the smaller reachability set.
5 Alg{:-rithm 2 directly selects cases according to measure-
ments of case similarity. The CS Algorithms 3 and 4 are
formed by incorporating the NN principle into CS
Algorithm 1 and C5 Algorithm 2, respectively.

The four C5 approaches each has its own rationale. For
5 Alguriﬂmn 1, the similarity measure is used to compute a
case's coverage and reachability values which can be
interpreted as an measurement of its significance with
respect to all other cases. A case is considered to be
important if it “covers” many similar cases (with a
similarity value greater than a threshold o) all belonging
to the same dass. Here, o is the similarity threshold
between a particular case and its nearest b{:-urn:la.lj.-r case,
Since the cluster centers (cases) often have large coverage
sets and the boundary cases have small coverage sets, this
CS algorithm tends to select the cluster centers and remove
the boundary cases.

C5 Algorithm 2 assumes that redundant cases can be
found in densely populated case clusters, with the
similarity measure being used to describe the local density
around a case. The more densely populated the cluster, the
more redundant cases should be removed. A threshold can
then be set up to determine the number of cases which
should be deleted. Assume ¢, is a case which has been
already selected. A case e, is considered to be redundant
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D Pasilive case
O Negarive case

L. Uoveraae Set

Fig. 3. The CoverageSet and Reachability Set.

and should be removed if the similarity of ¢, and e, is
greater than the given threshold and the classification label
of ¢, is the same as that of ¢,. As they tend to have different
class labels from their neighbor cases, boundary cases will
not be removed. Therefore, a number of representative
interior cases and the bm.lndar}r cases are preserved. This
algorithm is fast, and it is suitable for case bases with high
densities. However, both C5 Algorithms 1 and 2 are
vulnerable to noisy cases. The noisy cases mislead the
computations of case coverage and reachability in the first
C5 algorithm, and they are often recognized as boundary
cases which play an important role in the second
C5 algorithm. In order to solve this problem, the &-NN
principle is incorporated into the C5 Algorithms 1 and 2 to
first detect and remove noisy cases, thereby forming
Algorithms 3 and 4. Based on the assumption that similar
cases should have similar solutions, noisy cases are defined
as cases having different class labels from the majority
voting of their k-nearest neighbors. After the noisy cases are
removed, C5 Algorithms 1 and 2 are applied to remove the
redundant cases. In this way, both noisy and redundant
cases can be deleted from the case base.

Before providing a detailed description of the four
C5 algorithms, we shall define some related concepts.
Assume there is a case base OB, the condition attribute set
is A, the decision attribute set is ). The concepts of case
coverage and case reachability are defined as follows:

Definition 11 Coverage Set of a case e is defined as
Coverle) = {€|e € OB, sim(e, €)= a,de) = d{e},

where o is the similarity computed between case e and its
nearest boundary case (the cases which have different class
label of e); d is the decision attribute in D,

Here, the coverage set of a case ¢ is the set of cases which
fall in the disc centerd at e with radius «. We assume there
are only one decision attribute 4. It is straightforward to
extend the definition to a situation with multiple decision
attributes.

Definition 12. Reaclability Set of a case can be derived from the
Definition 11:

Reachie) = {€'|¢ € CB.e can be covered by '}

These definitions are illustrated in Fig. 3, where € is
the nearest boundary case of cases £ and e; € is the
boundary case of €5 and ¢;. The dotted circle centerd at a
case represents the coverage set of this case. According to
Definitions 11 and 12, we have

Cuse Seleclion Alooeithem |

Trpnet: Cff — the endire case base;
A the enfive condition antvilnite set;
LY — the decivion attrifnie sel.
Ot & the selected suhser of cases,

Step P Tnivialize 5 & fempiy serl.
Stegr 2 Fov every case e, ¢ © UF,
Comerhie the  coveraee  sel
reachalyilite sef of e
Step 3 Select the cave whick has the murimam
COvErage Ser.
Tiew e Droken b selecting the cose
wieh smallest veachabiling set

cirief

Fig. 4. Case selection Algorithm 1.

Cover{e;) = {e1}, Cover{ea) = {1, 62},

Cover(ey) = {e1, 62, 63, 64}, Coverley ) = {e};
and

Reach(e)) = {6y, 62, 65}, Heachies) = {ea, 63},
Reach(ey) = {eg}, Reachiey) = {eg, 61},

The implication of the concepts of case coverage and
reachability is that the larger the coverage set of a case, the
more significant the case because it can correctly classify
more cases based on the &-NN principle. In contrast, the
larger the reachability set of a case, the less important the
case in the case base because it can be reached by more
existing cases. One focus of this paper is the preservation of
the competence (the number of cases the case base can
cover) of the case bases. We attempt to build an algorithm
(see Fig. 4) for selecting a subset of cases that would
preserve the overall competence as compared to the original
entire case base.

Since the algorithm involves the computation of cover-
age set and reachability set for each case in the original case
base, the computation complexity of this algorithm is
O{m = n*), where m is the number of condition attributes
in A; n is the number of cases in the case base. Case
selection Algorithm 2, shown in Fig. 5, is much faster since
it requires only one pass of the case base to compute the
similarity between each two cases. Algorithm 2 is totally
similarity-based. If the similarity between a case ¢* and the
current case e is larger than a given threshold i and they are
with the same class label, ¢* will be considered as
redundant and eliminated from the case base. This
algorithm is suitable to the case bases with high density
cases, while the C5 Algorithm 1 can be used on both sparse
and dense cases. Notice that, the larger the parameter 7, the
more cases are selected by this algorithm. The value of i can
be determined either by the predefined size of the selected
case base, or by the required cdassification accuracy.

Based on the concepts of coverage and reachability, case
selection Algorithm 1 could remove not only the redundant
cases but also the noisy cases due to the small coverage sets
of the noisy cases (see Fig. 6). However, the effectiveness of



420 IEEE THAMSACTIONS ON KNOWLEDGE AMD DATA ENGINEERING, WVOL. 18, NO. 3, MARCH 2008

Case Sefection Aleorithn 2

Srpe: OO — Hhe eative cose base:

A the entive aifribute vet:

L) — the decivion atiribute et
Chetper: & rhe selecred wubser qf cases,

Sten F Initialize resulted subset cose boge 5 — CR,
Siep 2 Fov cach case e in U8,
Corpide e similucioe batween o ard
all the casey in CF.

Ifsimie, &) = n, anef o fe7) = d (e,
semove e e 58 - §—Jel;
Sten 3 Outpur 5

Fig. 5. Case selection Algonthm 2.

C5 is still degraded by the existence of noisy cases. Cases
located near the noisy cases tend to have smaller coverage
sets than do other cases. As a result, cases close to noisy
cases would be selected less often, which may lead to the
loss of important information. As shown in Fig. 7, case
selection Algnrithm 2 tends to eliminate redundant cases
but was not able to effectively deal with noisy cases. A noisy
case €' may be regarded as a 1:|-{Jnum:|ar].-r case. Since its class
label could not be predicted by the cases which satisfy
sitm{e, e*) = n, it could not be removed. This would result in
the preservation of noisy cases (see Fig. 7) and the selection
of an unsatisfactory case base.

To tackle the mentioned problems with case selection
Algorithm 1 and Algorithm 2, the NN principle i
incorporated to delete both the noisy cases and the
redundant cases. Based on the similarity computation

L ]
et - Noisy " )
e cases - &
L) - 0
'.- -
&t — 9 - =]
= PO
- = - -
o
-
Orizinal case base | Selecled case hase
Fig. 6. Case selection Algorthm 1 with noisy cases.
L ]
o T aae w )
Yy b i &= o
- - -
b ) -
tar} ) ) - - & s
W  E— . AN 2
o s - -
- L]
L | -
Crieinal case base | selected case base

Fig. 7. Case selection Algorthm 2 with noisy cases.

between cases, the --NN principle is first used to find out
the noisy cases. A case is said to be a noisy case if it cannot
be correctly classified by the majority of its fk-nearest
neighbors. Notice that, when the value & increases, the
possibility of a case being a noisy case decreases, and vice
versa. In this paper, & is equal to the small odd number, 3.
After the noisy case removal, the case selection Algorithms
1 and 2 are then applied to further eliminate the redundant
cases. The CSmethod s which incorporate the &NN prindple
in the C5 Algorithms 1 and 2 are given as case selection
Algorithms 3 and 4 (see Fig. 8).

4 ComsINING FEATURE REDUCTION AND
CASE SELECTION

In most existing CS methods, as a first step, one computes
the similarity between cases using all features involved and
then the similarities are used to compute k-nearest
neighbors, case coverage sets and reachability sets. The
feature importance can be determined in advance with
domain knowledge; or the feature weights are learned br].-r
training some models. Each method, however, has some
limitations which offer challenges to both FR and C5.

When the feature weights must be determined in
advance using required domain knowledge, the knowl-
edge is obtained either by interviewing experts—which is
labor intensive—or is extracted from the cases—which
adds to the burden of training Similarly, when feature
weights must be learned using models such as neural
networks or decision trees, the burden of training is again
not trivial and, even after training these models, the case
representation is then in the form of a trained neural
network or a number of rules, which is not convenient for
directly retrieving similar cases from a case base for the
UNSEeen Cases.
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Fig. 8. Case selection Algorthms 3 and 4.

We address these problems by combining the fast rough
set-based FR approach with the (S algorithms. Feature
importance is taken into account through reduct generation.
The features in the reduct are regarded as the most
important while other features are considered to be
irrelevant. Reduct computation does not require any domain
knowled ge and the computational complexity is only linear
with respect to the number of attributes and cases. After
combining the FR method and C5 algorithms, the case
representation is still the same as that of the original case
base. This form of knowledge representation is easier to
understand and more convenient for retrieving unseen
cases. Furthermore, since only the features in the reduct
are involved in the computations in the CS algorithms, the
running time for case selection is also red uced.

For the CBR classifiers, there are three main benefits
from combining FR with C5: 1) classification accuracy can
be preserved or even improved by removing noninforma-
tive features and redundant and noisy cases, 2) storage
requirements are reduced b'l.-r deleting irrelevant features
and redundant cases, and 3) the classification decision
response time can be reduced because fewer features and
cases will be examined when an unseen case occurs.

In this work, we will propose two ways to combine FR
and CS based on different definitions of a “best” subfeature
set (approximate reduct) B*. The first method—called an
“open loop” —applies the FR and CS sequentially and only
once. The best approximate reduct is identified after
applying FR alone. In contrast, the second method can be
regarded as an “close loop,” which integrates FR and C5 in
an interactive manner, determining the best approximate
reduct after applying both FR and CS approaches. The
interaction of FR and C5 is reflected in the identification of
the suitable [ value.

In the first, “open loop” method, the “best” approximate
reduct B* is defined as the approximate reduct which can
achieve the highest accuracy after applying only the FR
process. Such a best approximate reduct can be generated
by iteratively tuning the value of the consistency measure-
ment 7. For example, we start from the exact reduct with
d=1, and in each iteration reduce 7 using a given
parameter A = {1.01. When the classification accuracy attains
its maximum after applying FR alone, the approximate
reduct is selected as . In the full{ming C5 process, ' is
used to detect redundant and noisy cases. In the second,
“close loop™ method, the “best” subfeature set is defined as
the approximate reduct which can achieve the highest
accuracy after applying both FR and C5. B* is determined
much as in the first method. The value of consistency

measurement 7 is modified with step length A until it
attains its maximum classification accuracy. Theoretically
speaking, the “best” approximation reduct found using the
second method is not necessarily the same as that found
using the first method. The two combination methods are
described as follows (see Fig. 9 and Fig, 10):

Obviously, the second combination method, RFRCS2,
requires more computational effort because the “best”
approximate reduct depends on both FR and CS processes,

5 EXPERIMENTAL RESULTS

In this section, we test our proposed FR algorithms,
5 algnrithrm-:, their combinations and provide compar-
isons with KPCA and SVMs techniques. To demonstrate
their effectiveness, we use three main evaluation indices:
storage requirement, dassification accuracy, and classifica-
tion speed. In Section 5.1, storage is the percentage of
preserved features after FR process; in Section 5.2, storage is
the percentage of selected cases after C5 process. The

BIRONT (Renigh seif-based Feafnee Rechuction and
Crose Sefection metbod £):

Step [ Indtiafize £ — & deor — & and B — 1 o8 will
store the veduced case hases afier FR; Aoer
will stewe  the corresponding olassification
aremracies wsing these reduced cose baseas)

Stepr 2 Whife ¢ = 0]

Tmiplement Feature Reduciion Algarithm;
(Chtpnt the genervated approximate redict
)

PePooflhli

hmplement  wnseen  cave  classification
using  ff (TN fOumur the  nurrent
CLCHTGCY, &)

Aver ¢ Acoe L faly

A=p- A

Step 3 Find o', o
covrespenicling R

Step 4 Ouiput he reduced final case base
corresponding o R, denoted tne CB = [l

Step 5§ Lei €8 be the il vriginal case base, Apply
the cose sefection aleorithms -4,

waviu = Acerfs and find the
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Fig. 8. The RFRCS1 Algorithm.
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Fig. 10. The RFRCS 2 Algorithm.

classification accuracy is the percentage of the unseen cases

which can be correctly classify. The classification speed is

used in Section 532 to examine the effidency of the built

classifier using the FR and C5 combinations. In Section 5.4,

all these evaluation indices are considered in the compar-

isons between our approach with the KPCA and 5VMs.
The experiments used four real-life data sets:

1. House-votes-54 database [48]. It contains a total of
435 cases and 17 Boolean valued features.

2. Text document sets (Texts 1-8). It is composed of
eight text document sets randomly sampled from
Reuters21578 [49]. The number of documents ranges
from 40 to 1,578, and the number of distinct words
(i.e., condition attributes) ranges from 150 to 2,018

3. Mushroom Database [48]. There are 8,124 samples
and 23 nominally valued features.

4. Multiple Features [48]. This data set consists of
numerical features of handwritten numbers from
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“0 to “9." There are a total of 2,000 samples,
649 attributes, and 10 classes. This data set is used to
compare our developed FR and C5 methods with the
combination of KPCA and 5VMs techniques.

5.1 Rough Set-Based Feature Reduction

In this section, we test and analyze the feature reduction
capability of the rough set-based algorithm proposed in
Section 2. FR Algorithm 2 is used on the Text data sets, and
FR Algorithm 1 is used for other data sets.

House-votes-84. This data set is tested using four splits:
randomly selecting 20, 30, 40, and 50 percent, as the testing
data (unseen data); the corresponding left data are used as
the training data. The four splits are denoted as Split 1-4.
Table 1 shows the reduced storage requirement and the
classification accuracy with different [ values,

Table 1 provokes two observations: 1) The dassification
accuracy is improved after the rough set-based FR with
almost all of the used [ values. 2) The accuracy attains most
of its maximums for the four splits when 3 =0.95 (see
Table 1). This is why the J value is set at (.95 in Table 2.
Here, 0 represents the original accuracy with the whole
data set, while F{FR) denotes the accuracy with the reduced
feature set after applying FR Algorithm 1 (Section 2).

Text data sets. Here, the FR Algorithm 2 is applied. We
randomly select 80 percent documents in each text data set
as the training data and the remaining 20 percent is used as
the testing data. In the FR Algorithm 2, the significance of
each feature is evaluated by its frequency of occurrence.

Table 3 shows that the storage requirements for all the
eight data sets fall significantly, and the accuracy using
reduced feature set is preserved for Text2, Text3, and Text6
and even improves for Textl, Textsd-5. For Texts7-8, the
accuracy decreases a little due to the reduction of features.
Since the accuracy attains its maximum when 7 = 1, here 3
is set to be 1.

Summary. After applying the fast rough set-based FR
method to House-votes data and texts 1-8, the feature set is
substantiall}r reduced and the classification accuracy is
preserved or even improved. Tables 1, Table 2, and Table 3
show that the improvement in dassification accuracy is
3.06 percent for House-votes-84 and 3.77 percent for the text
data sets. The size of the feature set decreases from the
original 100 percent to 53.13 percent for house-votes-84 and
14.11 percent for text data sets.

TABLE 1
Storage and Accuracy with Different 3 Values on House-Votes-84

i Split | Splic 2 Split 3 Split 4

! K Slorage | Aceoraey | Slorape | Acvcurdey | Storgge | Accuracy | Slorape | Accutdey
L& (%) (%2} (o) (%) (%) (o} (*a) (%)

[ 1O | 10,00 G310 100,04 9231 100h O HAR L(H).00 H4.01

| 90| 4375 Y655 43.75 .62 43.75 05, 9% 43.75 BaE5

| 95| 2625 @I S0.00 9462 51004 93,68 SH.25 on 1

| 0,96 63,50 G4.25 .25 95,38 62,50 94,33 62,50 94.47

| 0.97 | 68.75 04,25 H2.50 H4.62 B2.50 94,83 68,75 9363
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TABLE 2
Storage and Accuracy Using 9= 0.5 on House-Voles-84
" 1 PR o
Splic (%) %) Storage
I 93,110 a7, 325
2 0231 04.62 .00
3 93,68 308 3000
4 G (h] 0631 5025
Avg, U328 V6.15 5513
TABLE 3

Reduced Storage and Improved Accuracy
When Applying 7 = 1 to Text Data

Texl dalasel | PO PEFRY () Slorase (%)
Textl (2. 5] 75.04) 12.50
Text2 32,50 32,50 G903
Text3 3333 3333 2H A48
Textd 3rus 41,38 1L51
Texls 36.25 75,00 .39
Tueals T78 AN 31.53
Toext? 51.19 510.04) TRl
Textd 72,79 759,39 337
Avgr, 367K i35 i4.11

5.2 Case Selection

The CS algorithms developed in Section 3 are applied to the
real-life data sets and compared with the traditional Wilson
Editing. Note that the generation method of the training
data and testing data is the same as that in Section 5.1 for
each data set.

Table 4 and Table 5 demonstrate the reduced storage and
improved accuracy when using different C5 algorithms.
P(W), Pil1), P(2), and P(4) represent the classification
accuracy using Wilson Editing, case selection Algorithms 1,
2, and 4, respectively. Notice that the results of Algorithm 3 are
very similar to those of Algorithm 1. Due to space limitations, they
are not included in Table 4 and Table 5 and related results in the
following sections. Unlike in Section 5.1, in this section
“storage” means the proportion of cases which are selected
in the final case base. In case selection Algorithm 2, the
parameter 1 = (.99,
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Table 4 (the house-votes data) shows that after case
selection, all the CS algorithms were able to reduce cases
while preserve or even improve classification accuracy. The
Wilson Editing and case selection Algorithm 4 attain
greatest accuracy while Algorithm 4 has a more pmverful
capabilit}r to reduce useless cases than other algorithms do.
Table 5 shows the results for the text data sets. Algorithm 2
is most accurate. Algorithm 4 produced the smallest
reduced case base with respect to the number of cases. To
summarize, both Table 4 and Table 5 show results for
Algorithm 4 that are satisfactory in terms of both classifica-
tion accuracy and storage requirements after the case
selection.

5.3 Combining Feature Reduction and
Case Selection

In this section, we will discuss some experiments using
RFRCS1 and RFRCS2 (Section 4) that were conducted to
show the positive impact of the rough set-based FR method
on the C5 algﬂrithms. The two main evaluation measure-
ments are still storage and accuracy. Comparisons are made
based on the &NN classifier, using different C5 algorithms
in combination with FR. Here, & is set to a small odd
number, 3. The data splitting methods of training data/
testing data for all the involved data sets are the same as
those in Sections 5.1 and 5.2,

In this section, let P(F+W) denote the classification
accuracy of the combination of the rough set-based FR
and Wilson Editing; and P(F+1), P(F+2), P(F+3), P(F+4) that
of case selection Algorithms 1 to 4. The final reduced case
base is the case base containing the reduced feature set and
the selected cases. Since RFRCS2 requires a greater
computational effort, in this section, we mainly conduct
the experiments using the algorithm RFRCSI.

53.1 RFRCS1: Storage Requirement and
Classification AGCUI'&C_F

House-votes-84. On this data set, RFRCS] incorporates
the proposed fast rough set-based FR approach into the
(5 algorithms. From Table 6, the combined algorithms
are more accurate and require less storage space than
the approaches that make use of individual CS algo-
rithms alone.

Algorithms (F+W) and (F+4) are shown to be most
accurate. The (F+4) algorithm also has the best dassification
accuracy and the most reduced storage requirement. This is
because the CS Algorithm 4 & able to reduce cases more
effectively than algorithm that use Wilson Editing (Table 4).

TABLE 4
Case Selection Using the House-Votes-84 Data Set
Split {E—,;ED}] P{E‘:‘] ! Sloruge I;E rl f Slumug ?,rf; Storape E,Ir?; Slorage
I 9310 | 9540 92,32 93,11 7443 a3, 10 ®1.03 Qx40 | 73RS
2 92.31 94,62 93,11 02l 54,26 na.31 8197 | 9d4e2 | 708
3 D368 | Y540 9234 th 83 6743 U368 widd | s | TTTR
4 EEN 2539 Q.74 S 93 LR Q4 1011 BETR | 9539 | 7752
Avp | 9328 | 93 8230 93,79 7740 0328 BisG | 9528 | 7odn
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TABLE 5
Case Selection Using Text Data Sets
Ml f['::ﬁ T:{i”“]J Slorage 1;:/1; Slorage E‘,[‘:;] SloTuge ];E?}' Sloragc
Textl G250 | TA00 | 4043 | 6250 | BT.23 6250 | 8936 | TR0 | 3830
Texi2 G250 | RGO | 1765 | 62500 3480 | 7500 | 4118 | F300 | 17.65
Tesi3 3333 ] 6667 | 7534 | 33353 904] 3333 | 7260 | 6667 | 672
Textd 3703 ] 3103 | %286 | 3448 | REEA | 3793 | 7429 | 3103 B0
Texts J025 | 5625 | TAAR | 5625 D474 | 3025 [ TLOS | 3625 | TLOS
lexin TTIE | 3333 go9 | TS l482 | 7778 | LG | 3333 .56
Test? SL19 | 4048 | 2297 | 4405 | 5403 31.19 [ 4324 [ 4048 | 2297
Testd T2RO] LS | 3220 | TR 44.00 | 6837 | 2520 | 72435 18,40
Avg | S6TR ) S6.T1 | 4427 | 5538 | G338 | SA79 | 3338 | 5628 | 40.26
TABLE 6
Applying RFRCS1 to House-Vates-84 (9 = 0.95)
St P{w) | B(i+w) | P(1y [ BED) | B2 | B(H2) | P3) | B4
%) )] %) {a) i%al i) %) (%)
] 9540 9770 O30 | 435 | S0 90 G340 | 970
2 94.62 Q6. | 5 0r31 | 94a2 | 9231 9462 9462 | 9615
3 93.400 9713 0483 | 9598 | 93.68 93,98 o540 | 9713
4 G953% 37 g4.03 | 9539 | 9401 96,31 943,30 | a7
Ave, [ 9520 969 U3 | U5s06 | 9538 G615 4320 | %6.94
+1.74 +1.27 +2.87 +1.74
TABLE 7
Applying RFRCS1 to Text Data Sets (7 =1)
Dl PiWy | MF-W MLy | TF=1y | M2y P F+2) P4} P(F+d)
ol i%a) %) {"al )] () (¥ %)
Texdl 75.000 27.50 G230 [ TR00 | 62.50 7500 7500 K750
Text2 3.0 73.00 G20 [ 6250 | T3.00 (2,5 75,00 F5.00
Textd H6.67 o667 3333 3333 | 3B 3333 66,67 66,67
Textd JL03 4453 3443 4483 | 3793 41.38 31.03 44,23
Texts 56.25 63.75 3625 TR0 [ 5625 7500 56.23 %75
Textf 3333 4444 178 TIE | TIUR 7178 3333 44.44
Text? 40148 41.67 44.05 4524 | 5119 | 3357 4048 41.67
Lexts 7104 TS5 7211 68,71 BR37 | 6327 7245 .41
Avg 36.11 62.45 3338 630 [ 5770 .23 56.2¥ 02.41
—.34 +4.92 +2.44 +6.13

MARCH 2008

We can conclude that the fast rough set-based FR approach
with C5 Algorithm 4is superior to other FR and C5 algorithms

used either individually or in combination.
Text data sets. This section examines the impact of FR on

5 using the text data sets. Table 7 displays the text data set
results. They are similar to those for the house-votes data
set, except that the improvement in accuracy is much

greater after incorporating FR to 5.
Mushroom data. We found that only C5 Algorithm 1

was able to remove cases. This is because the Mushroom
data is sparse and other (5 algorithms are suitable to the
highly dense data. The classification accuracy of the
FR approach was the same as the original accuracy using
the entire case base, 1. Table 8 shows the impact of feature
reduction on C5 Algorithm 1. On average, the classification
accuracy after applying the combination of FR and the

(5 algorithm 1 increases by 9.3 percent. Here, the storage is
the percentage of cases which need to be stored in the final
reduced case base after applying the (5 Algorithm 1. For

TABLE 8

Applying RFRCS1 ta Mushroom Data

: P{l; MF 1} Storape
Split (%) (%) (%
| ] | 104106 2550
s 8933 9867 743
3 W50 9 50 11.33
4 2160 T 60 VRSN
Avp ol QR 94 13.57
9,23% 13.57
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TABLE 9
Speed of Case Classification Using RFRCS1
Datasels TER | Tes| 1o |1 | o
H"““‘;j”‘““‘ 0243 | 0004 | 00 | o7 | 003
Text duta SSU7 | 0020 | 158 | 002 | 1.56
Musheomn 0600 | 0008 | 114 | ues | 0z
data : . :

the FR in algorithm (F+1), 7 is set to be 1. There are five
features in the generated reduct so the storage of the feature
set is 22.7 percent of the original feature set.

To conclude, when RFRCS] is applied, the results of
almost all of the data sets and of all of the proposed
C5 algorithms are positive. The classification accuracy and
storage requirement show a notable improvement: When
the C5 algorithms are applied to the houwse-votes-84 data,
the average increase in accuracy is 1.91 percent (Table 6).
Applied to the text data sets, it is 4.95 percent (Table 7), and
applied to the mushroom data set it is 9.33 percent (Table 8).
These improvements in accuracy are, respectively, achieved
only with 51.13 percent (Table 2), 14.9 percent (Table 3), and
22.73 percent of the original features for the three data sets.
The combination of the rough set-based FR approach with
the C5 Algorithm 4, (F + 4), is the most promising algorithm
in terms of both accuracy and storage.

5.3.2 Classification Efficiency of RFRCS1

This section describes some experiments using RFRCS1
carried out to determine the effidency of case retrieval or
unseen case (testing case) classification after reducing both
features and cases.

Table 9 shows the average T_FR, T_CS, T0, T, and T,
using the three data sets. T_FR and T_CS are the average
time cost in the FR process and the CS Algorithm 4,
respectively. TO and T are the average time needed to
4:Ia:a-:if].-r ONEe UNSEEN case using the entire original data sets,
and using the reduced data set, respectively. T, =T0 - T,
describes the amount of time that is saved for an unseen
case classificaion due to this data compression. T_FR,
T C5 T0, T, and T, are represented in seconds. The
efficiency of case classification is shown to be improved
using the reduced data sets. Although the average saved
time of identifying only one unseen case is not notable, it
could be significant using all the testing cases. For example,
for house-votes-84 data, the total saved time for classifying
all the 217 testing cases is (.03 = 217) = 6.51 seconds.

5.3.3 Storage Requirement and Classification Accuracy
of RFRCS2

In previous sections, we perfurmed some experiments using
RFRCS]. The "best” 4 and approximate reduct were
determined through only in the FR process. In this section,
the RFRCS2 is applied to real-life data, where the most
suitable [ is obtained when the final accuracy attains its
maximum after both FR and CS. The experimental results
show that the best 9 values found in RFRCS2 are not
necessarily the same as those in RFRCSI. Compared with
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L 4

Fig. 11. P(F + 4) versus J values.

RFRCS], using this kind of combination of FR with CS, the
classification accuracy is shown to be further improved
and /or the storage space could be further reduced.

House-votes-84. The most suitable 7 found for this data
set is 0.90, but not 0.95 in RFRCS1. There are seven features
(43.75 percent of the original features) in the corresponding
approximate reduct. Compared with RFRCS1, the classifi-
cation accuracy is preserved using the reduced case base
while the number of features is further reduced. Fig. 11
shows the relationship between P(F+4) and 7 values. When
e [090,095), the accuracy attains its maximum, (.977.
Since the smaller the 7 value, the fewer the features in the
corresponding approximate reduct, 7 is set to be 0.90 so that
the accuracy can be preserved whereas the number of
features is minimum. The similar results could be achieved
using other C5 algorithms. Table 10 shows the results in
detail. Here, “Storage” means the storage requirement with
respect to the features instead of the cases; “Max accuracy™
is the highest classification accuracy obtained by combina-
tions of FR with different CS algorithms. As can be seen in
Table 10 using RFRCS2, the maximum accurades have been
preserved and the feature storage requirement decreases br].-r
9.38 percent from 53.13 (using RFRCS1) to 4375 (using
RFRCS2).

Text data sets. In Section 5.3.1, 7 is set to be 1 for the text
data sets. In this section, using the combination method
RFRCS2, various best 7 values are found for different text
data sets. Table 11 demonstrates that, with these different
A wvalues, the average required storage space could be
further reduced from 14.11 percent to 9.84 percent of the
original features, the average Maximum accuracy increases
by 511 percent from 67.85 percent to 72.96 percent.

Mushroom data. After applying RFRCS2, the best [ in
the mushroom data set is the same as in RFRCS], ie., 7 = 1
Therefore, the results of RFRCS2 with respect to the storage

TABLE 10

Applying RFRCS2 to House-Voles Data (7 = (.10))

Splits Storage (%) | Storage (%) Max.
(RFRCET) (RFROS2Y | Accuracy (%)

1 23 4175 o7.70

2 .00 4375 24,15

3 000 43,75 9713

4 56.23 43.73 96.77

Avp 5313 431.75 2. 94 |
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TABLE 11
RFRCS2 with Various 7 Values on Text Data Sets

Siorage [y Slorage (e Ilax, blax. Accuracy '
Texdatn | g (RF]%CJS'E}} (nmfc:én} Accaracy (%) tRFRCSI}J[ !
Textl 085 | 623 12,50 100,00 37.50
lext2 070 571 AV #3750 7500
Texl3 18] .93 2848 G667 G667
Textd 1410 [0.51 I1.51 44 83 44 53
Texts 085 | 362 2.54 &1.25 700
leat 1.00 31.33 31,33 TR 7778
loxl7? 1.0 TR 701 53.57 53.57
TextH 1.4 3.37 3.37 T2 00 6245
A, 0.90 9.54 14,11 T1.96 6735
Comparisons -4.27 15,11
TABLE 12

Rough Set-Based FR versus KPCA Feature Extraction

Bough set-based UR

EPCA Gealure exlraclion

gvalues Storape T train Accuracy Storape T train T trans Accuracy
10 1.15 5.(H) 21.30 1.13 17.23 1291.940 H3.20
0, ik 130 5.0 B2.80 1.30 17.55 117010 89,40
(h.93 | .44 5. (H] 2420 144 | 7.30 117170 Q46
[ 1.73 5.(H) 2630 1.73 17.20 | RN L] w10
.34 |87 T.0H) 91,30 1.87 16,809 L6750 0320
Aur (.33 k520 A, [7.23 193,446 Ha 30

requirement, classification accuracy are the same as in
Section h.3.1.

Discussions. Using the combination method RFRCS2, the
best 7 values which achieve the maximum accuracies after
applying both FR and 5 can be found for the real-life data
sets. Compared with RFRCS51, more computational efforts
are required by RFRCS2 because the C5 process is involved
in tuning the 7 values. The accu racy is shown to be preserved
(for House-votes-84 and Mushroom data) and even im-
proved (for the text data sets) and the storage requirement of
the feature set is further reduced (for House-votes-84 and
text data sets). The users can choose either RFRCS1 or
RFRCS? toconstruct the final case base for the CBR classifier.
For large case bases, users can select RFRCS1 which has less
computational load with still Sal‘iﬁfﬂcl{]r}’ aACCuracy.

5.4 Comparisons: Rough Set-Based FR and CS
versus KPCA and SVYMs

Some comparisons are made to further demonstrate the

effectiveness of our FR and CS methods. In Section 5.4.1, the

fast rough set-based FR method is compared with KPCA. In

Section 5.4.2, RFRCS1 is compared with the combination of

KPCA and SVM ensembles.

The experiment setup is as follows: 1) Data: Since KPCA
can only handle numerical data, the data set of Multiple
Features is used in the experiments. 2) Data splitting: We use
the training/ testing data sets in the original data of Multiple
Features, which has 1,000 training samples and 1,000 testing
samples. 3) Performance evaluation: Four main evaluation
indices are used including fraining time, retrieval time,
storage requirement, and classification accuracy. Here, the
unit of time is second.

54.1 Rough Set-Based FR and KPCA Feature Exaction
In order to compare the developed rough set-based FR and
KPCA methods, fuzzy discretization [43] is performed
before applying rough sets for feature reduction. For the
EPCA method, we select polynomial kernels due to the
expensive training with RBF kernels.

Table 12 shows the experimental results, where
“T_train” is the training time; “T_trans” in KPCA is the
required time for testing data transformation on the
extracted components. The comparisons are made based
on the same number of selected features. It is demonstrated
that the KPCA achieves a slightly higher classification
accuracy; however, the training time and the transformation
time are much more than the training time in rough set-
based FR method.

5.4.2 RFRCS1 and the Combination of KPCA and SVIMs
In this section, RFRCS5] is compared with the combined
EPCA and SVM ensembles. Here, the CS Algorithm 4 is
used for C5 after the FR process. From Table 12, we notice
that when 1.87 percent features (ie, 13 features) are
selected, the accuracy attains its maximum. Therefore, [
value is set as 0.99 and the number of eigenvectors extracted
by KPCA is determined as 13. On the other hand, after the
feature extraction of KPCA, a transformed data set is
obtained which has a lower dimensionality. This new
reduced data set is then used in constructing the multiple
5VM classifiers. Here, we use the one-against-all method to
deal with the multiple class problem, and the final results
are combined based on the majority voting rule. Since the
data set contains 10 classes, 10 5VMs are constructed and
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TABLE 13 i
RFRCS1 (3 = (.10
Lk
Slota ; ; : ' Acouracy B f
52 T leain | 1 retrieval Gt 5 H
i (] - = (%] 0
.55 Lk 10 ) f B3, E !
el | 2410 160} 21 7H.50 T
(.65 ez, S 383 ot /6,50 -
0. T 20 B Fit) Q01310 i i O O O 1
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xS EhL G0 14 278 41,50 Fig. 12. The effect of k value on accuracy.
=1 ) 99,30 Q18 274 21,50
A, 68,73 09,75 168,25 RB3.93 is slightly higher than the maximum accuracy obtained by
rough set-based method, 91.5 percent. However, the total
TABLE 14 training time of the 10 SVMs is unacceptable. In contrast,
KPCA and 10 SVMs (Accuracy = 93.80 Percent) the combination of our FR and CS approach cost less
processing time and can still achieve satiaifactﬂry classifica-
SV NO T train Veo MU tion accuracy.
l 2236 33 In RFRCS1, we use the k-NN principle to classify unseen
2 2195 +H cases, where the & value may affect the classification
i E;ng :f accuracy. Here, we report the results of some testing using
z 524;‘ ,*E different & values in RFRCS1 on the data set of Multiple
;\) 24{_];:' :‘-i[] Features. Let £ =1.3,..., w1, where n is the number of
7 2554 40 training samples. It is demonstrated in Fig. 12 that, the
% 7785 37 accuracy attains its maximum when k= 3. Therefore, we set
7 2477 43 k= 3 in the experiments in previous sections.
10 23059 40 Table 15 shows the comprehensive comparisons in terms
SUM 33299 4018 of both qualitative and quantitative indices between the

SV¥M_NO: the ID number of the trained SVM classifier; Vec_NUM: the
numbar of generated suppant vaclors. The refrieval time is not listed in
Tabla 14 hecause it is tivial compared with the training time.

trained in the experiments. Here, we use the Matlab
Support Vector Machine Toolbox developed by Gunn [50].

Table 13 and Table 14 show the results of RFRCS1 and
the combination of KPCA and 5VMs. Here, the “Storage” is
the percentage of selected cases; “T_train” is the processing
time of the C5 method. In RFRCS], with the increase of 5
value, the storage, training time, retrieval time, and the
accuracy also increase. The combination of KPCA and
10 5VMs totally extracts 408 support vectors (prototypical
cases), and the dassification accuracy is 93.8 percent, which

developed rough set-based FR and CS approach and the
combination KPCA and SVMs. They are based on different
rationales and are suitable to different data types. The
rough set-based FR is supervised learning while KPCA is
unsupervised. The rough set-based FR generates a subset of
the original features and KPCA extracts a set of transformed
features. The combination of FR and CS is fast while KPCA
and 5VMs achieve a slightly higher accuracy. Users can
choose either of the combination methods based on the used
data and their requirements on efficiency and accuracy.

6 ConcLusions aAND DiscuUsSIONS

In this paper, we describe a fast rough set-based FR
approach and four similarity—based 5 algorithms. In the

TABLE 15
Comparisons between the FR and C5 Approach and KPCA and SVMs
Comparizons TR and CF approach K;Ei;:”']
Rationale d;;i::lﬁi}r Lara variance
Irainings Tyvpe Supervised Lnsupervised
Uru.nl' Tz Svim, Yo Mia
My Tupu M. Mead dizcratization Ve
Beduced A subsct A trgnsformed
featarne sot of original fearunes firatura set
Cluam, Training time filite 75 23200
TiJicus Accuracy U150 03 &0

Oual.  Cualitarive: {Juan.

Cuanticarive: Svm.

Svmbalic; Mum.  kumerical
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FR approach, the concept of a reduct is generalized to an
approximate reduct, which makes the reduct computation
faster and more flexible. In some situations, the crisp reduct
is the best subset of features in terms of the classification
accuracy, e.g., when J =1 for the Text data and Mushroom
data (Section 5.1). Although the crisp reduct can be obtained
by the traditional discernibility function-based methods, the
computational complexity has been reduced using our
FR approach. In some other situations, the crisp reduct is
not the optimal subset of features, e.g., 7 < 1 for the House-
votes-84 (Section 5.1) and the Multiple Features database
(Section 5.4). In this paper, the 7 value is determined to
optimize the classification accuracy. The developed
C5 algorithms can remove not only the redundant cases
but also the noisy cases. The CS Algorithm 4 and Wilson
Editing achieve the highest accuracy, but the former
requires lower storage. It can be shown that, compared
with using the original case base, higher classification
accuracy and less storage space requirement could be
obtained with each individual FR and CS algorithm. By
combining the FR and CS5 processes, we could further
enhance the accuracy and reduce the storage. Two methods
of combination, RFRCS1 and RFRCS2, are developed based
on different definitions of the “best” value of the consis-
fency measurement.

The experimental results show that the C5 Algorithm 4
with the rough set-based FR algorithm, denoted by (F + 4),
is the most promising one which has the highest accuracy
and the least storage requirement. The enhanced efficiency
using the reduced data sets is also demonstrated through
the experimental results in Section 532, Comparisons are
made between RFRCS1 and RFRCS? in Section 5.3.3.
RFRCS2? shows higher accuracy and lower storage load
but requires more computational efforts. Some comparisons
are also made between the rough set-based FR and KPCA,
the RFRCS1 and the combination of KPCA and SVMs.
These two combination methods have different character-
istics, based on which users can select one of them to reduce
both the dimensionality and size of data.

There are still some limitations of our developed FR and
C5 approaches, which may need to be tackled in our future
work: 1) We have only considered the case bases which
consist of homogeneous data regions, in which the noisy
cases are defined as the cases that cannot be correctly
classified by their k-nearest neighbors. Therefore, our
approach cannot be directly used on case bases containing
heterogeneous data regions, which may result in the fact
that some useful cases are misclassified as noisy cases.
2) The determination of the parameters, i.e., 7in FR and 7 in
C5, is empirical and heuristic based during the testing and
their best values are data set dependent. 3) The fast rough
set-based FR method works better with symbolic data. The
numerical data needs to be discretized before applying
FR process.
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