183
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Abstract—We propose a new approach for designing classifiers
for a c-class (v = 2) problem using genetic programming (GF).
The proposed approach takes an integrated view of all classes when
the GPevolves. A multitree representation of chromosomes is used.
In this context, we propose a modified crossover operation and a
new mutation operation that reduces the destructive nature of con-
ventional genetic operations. We use a new concept of unfitness of
a tree to select trees for genetic operations. This gives more oppor-
tunity to unfit trees to become fit. A new concept of OR-ing chromo-
somes in the terminal population is introduced, which enables us
to get a classifier with better performance. Finally, a weight-hased
scheme and some heuristic rules characterizing typical ambiguous
situations are used for conflict resolution. The classifier is capable
of saying “don't know" when faced with unfamiliar examples. The
effectiveness of our scheme is demonstrated on several real data
sets,

Index Terms—Classifier, genetic programming (GI'), multicat-
egory pattern classification, multitree representation, nondest ruc-
tive directed point mutation, OR-ing operation.

I INTRODUCTION

ENETIC PROGEAMMING (GP) introduced by Koza
Gund his group [1] 15 popular for its ability 1o learn
relationships hidden in data and express them automatically
in 4 mathematical manner. GP has already spawned numerous
mteresting applications such as [2]-[12]. GP has been used
by many authors [13]-[18] w design classifiers or 0 generle
rules for rwe class problems. Although genetic algorithm
has been used by many researchers o design classifiers for
multiclass problems, only a few attempts have been made to
solve the same problem using GP. Holland [19] provides a nice
discussion about designing classifier systems. Rauss er al [13]
used GP o evolve binary tees (equations) mvolving simple
arithmetic operators and feature variables for hyper-spectral
image classification. A data point is assigned a class if the
response for that class is positive and responses for all other
classes are negative. Agnelli er all [14] also apphed GP for
image classification problems. In addition 1o simple adthmetic
operations, they considered exponential function, conditional
function and constants to construct binary trees. The generation
of rules using GP for two class problems has been addressed
by Stanhope and Dada [15] and Falco et al [16]. Binary trees
consisting of logical functions, comparators, feature varables
and constants have been generated 1o epresent possible clas-
sification rules. During the construction of binary trees, some

restrictions are imposed w enforce a particular structure, 5o
that they can represent logical statements or rules. Dounias et
al. [17] implemented GP 1o generate both crisp and fuzey rules
for classification of medical data.

Multicategory pattem classification using GP has been at-
tempted by a few researchers [12], [20}-[22]. Loveard er af
[20] proposed five methodologies for multicategory classifica-
tion problems. OF these five methodologies, they have shown
that dynamic mnge selection method 15 more suitable for mul-
ticlass problems. In this dynamic range selection scheme, they
record the real valued output returned by a classifier (ree or pro-
eram) for a subset of taining samples. The range of the recorded
values 1s then segmented into e regions § A s, . F.0 o rep-
resent e class boundanies. 1f the output of the classifier for a pat-
tern x falls in the region A, then the ¢th class is assigned 0 x.
Once the segmentation of the output range has been performed,
the memaining training samples can then be vsed o deermine
the fitness of an individual (or classifier). Chien ef af. [21] used
GF o generate discriminant functions using arithmetic operi-
tions with fuzzy attributes for a classification problem. In [22],
Mendes er al. used GP o evolve a population of fuzzy rule
sets and a simple evolutionary algonthm to evolve the member-
ship function definitions. These two populations are allowed 1o
co-evolve so that both rule sets and membership functions can
adapt to each other. For a c-class problem, the system is run ¢
times. Kishore erafl. [12] proposed an interesting method which
considers a ¢ class problem as a set of o two-class problems.
When a GP classifier expression (GPCE) is designed for a par-
ticular class, that class s viewed as the desired class and the re-
maining classes taken together are treated as a single undesired
class. So,with o P runs, all GPCEs are evolved and can be used
together 1o get the final classifier for the c-class problem. They
have experimented with different function sets and incremental
learning. For conflict resolution (where a pattern is classified
by more than one GPCE) each GPCE 15 assigned a “strength of
association” (8A). In case of a conflicting situation, a pattern is
assigned the class of the GPCE having the largest SA. They have
also used heunstic rules w further reduce the misclassification.

Lim er al. presented an excellent comparison of 33 classifica-
tion algorithms m [23 ] They vsed a large number of benchmark
data sets for comparison. None of these 33 algorthms use GP.
The set of algonthms icludes 22 decision tree/rule-based al-
gorithms, mine statistical algonthms, and two neural network-
based algonthms. We shall use the results reported in [23] for
comparison of our resulls.

In this paper, we propose 8 method to design classifiers for a
r=class pattem classification problem using a single mun of GP.
For a «: class problem, a multitree classifier consisting of ¢ trees
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is evolved, where each tree represents a classifier for a paric-
ular class. The performance of a multitree classifier depends on
the performance of its constituent trees. A new concept of unfit-
ness of a tree is exploiled in order o improve genetic evolution.
Weak trees having poor performance are given more chance to
participate in the genetic operations so that they get more chance
Lo improve themselves.,

In this context, a new mutation operation calked nondestruc-
tve directed pomnt muotation 1s proposed which redoces the de-
structive nature of mutation operation. During crossover, not
only is swapping of sublrees among partners performed but also
swapping of wees is allowed. As a result, more fit trees may
replace the corresponding less fit trees in the classifier. Mul-
tiple classifiers from the terminal population are then combined
together by a suitable OR-ing operation in order to further im-
prove the classification result. A conflict situation occurs when
a pattern x 18 recognized by more than one tree W their respec-
tive classes. Each tree of the classifier is assigned a weight to
help conflict resolution. In addition, heuristic rules, that char-
acterize typical situations when the classifier fails to make un-
ambiguous decisions, are used o further enhance the classifier
performance. For a reasonably large number of tmining points,
if the classifier fails 1o make unambiguous decision, and the re-
sponse of the classifier for each such data point is the same, then
it is likely that those training points come from some particular
area of the input space. Heurstic rules exploit this information
and try toresolve situations when more than one tree of the clas-
sifier produce positive responses. A combination of all of these
results in a good classifier.

II. BRIEF INTRODUCTION TO GP

GF[1].[2].[24] evolves a population of compuler programs,
which are possible solutions 1o a given optimization problem,
using the Darwinian principle of survival of the fittest. It uses bi-
ologically inspired operatons like reproduction, crossover and
mutation. Each program or individual in the population 1s gen-
erally represented as a tree composed of functions and datafer-
minals appropriate o the problem domain. The set of functions
P and set of terminalsfinputs T must satisfy the closure and
sufficiency properties. The closure property demands that the
function set is well defined and closed for any combination of
arguments that it may encounter. On the other hand, the suffi-
ciency properly requires that the set of functions in F and the set
of terminals be able Lo express asolution of the problem [ 1] The
function set may contain standard arithmetic operators, mathe-
matical functions, logical operators, and domain-specific func-
tions. The terminal set usually consists of feature variables and
constants. Each individual in the population is assigned a fitness
value, which quantifies how well it performs in the problem en-
vironment. The fitness value 15 computed by a problem-depen-
dent fitness function.

A typical implementation of GP involves the following steps.

Step 1) GP begins with a randomly generated population of

solutions of size .

Step2) A fitness value is assigned o each solution of the

population.

Step 3) A genctic operator 15 selected probabilistcally.
Casei) If it is the reproduction operator, then an in-
dividual is selected (we use fimess proportion-
based selection) from the current population and
it 15 copied mto the new population. Reproduc-
tion replicates the principle of natural selection
and survival of the fittest
If it s the crossover operator, then two individ-
pals are selected. We use toumament selection

Case 1)

where + number of individuals are taken ran-
domly from the current population, and out of
these 7, the best two individoals (in terms of fit-
ness value) are chosen for the crossover opera-
ton. Then, we randomly select a subtree from
each of the selected individuals and interchange
these two subtrees. These two offspring are in-
cluded in the new population. Crossover plays a
vital role in the evolutionary process.

If the selected operator is mutation, then a so-
lution is (randomly) selected. Now, a subtree of
the selected individual 15 randomly selected and
replaced by a new randomly generated subtree.
This mutated solution is allowed Lo survive inthe
new population. Mutation maintams diversity.
Step4) Continue Step F), until the new population gets 2V
solutions. This completes one generation.

Unlike GA [25]. GP will not converge. So,
Step 2)—4) are repeated ull a desired solution
(may be 100% correct solunon) 1s achieved. Other-
wise, lerminate the GP operation afier a predefined
number of generations.

Case 1)

Step 5)

1I. PrOPOSED MULTITREE GP-BASED CLASSIFIER

A classifier D is 8 mapping, [ 0 ¥ — Ny, where R¥ is
the p-dimensional real space and N . is the set of label vectors
for a r-class problem and is defined as ¥, = {y & ®°
w & ML Y v = 1} For any vector x & R¥, Dix)
15 a vector in e-dimension with only one componentas 1 and all
others as (). In other words, a classifieris a function which takes
a feature vector in p dimension as input and assigns a class label
Lo it

In this paper, our objective is to find a TF using GP. We shall
use a multitree concept for designing classifiers. The beauty of
using this concept is that we can get a classifier for the multiclass
problem in a single run of GF.

Given a set of training data ¥ =[x, %p....,xx] C R*
and its associated set of label vectors ¥V = {y. ¥a .o ¥a L
Ny, our objective is to find a “good™ I using GP.

For a two class problem, a possible classifier or an individual
15 generally represented by asingle tee (7 ). For a pattern x

if T'ix) =0, % Cclass |
else . x = class 2.
The single tree representation of the classifier is sufficient for

a two-class problem. This scheme can be extended to a mulucat-
cgory classification problem. In our design, every chromosome



or individual will have a tree for every class. So, the ith chro-
mosome will have ¢ trees, and these will be denoted by T_.-{‘.,
f=1,2... ., ¢ If the identity of the chromosome is not impor-
tant, then for clarity we will ignore the superscript and use only
the class index, 1., the subscripl. 50 a possible solution or an
individual forthe GP is represented by o trees (79,7, 00
For a pattern x

if T =0 and fiixy < for all 5 #£4, 4,
el ) then x € dlass i,

If more than one tree show positive responses for the pat-
tern x, then we require additional methodologies for assigning
aclass to w. The steps followed 1o achieve our goal are summa-
rized in the following sections.

A Initialization

Each of the « trees for each individual is initialized randomly
using the function set F which consists of arithmetic functions
and the terminal set T containing feature variables and con-
stants. The function set 7 and terminal set T used here are as
follows:

F=d4+.— 4/ and T = {feature variables, TU}, where R
contains randomly generated constants in [0.0,10.0]. We have
initialized trees using the ramped half-and-half method [1].

B. Training and Fitness Measure

The GP is trained with a set of & (mining samples,
N = %o %e. .. %o ). Instead of taining the GP with all
training samples at a ume, it is accomplished in a step-wise
mannéer mereasing the number of taming samples in steps. The
step-wise increment of trmining samples 15 accomplished by a
preset number of generations M. The step-wise leaming can
reduce the computational overhead significantly [27], [28] and
can improve the performance [12]. If we use #; steps, then
cach step size will be A, /5| generations. And the incremental
change in the size of training subset in each step will be
N = Nie Let X be the set of the training samples at step
g, N.| = N, Atthe firstslep X, = /5 and at the last step,
X. X After step-wise learning GP is continued with all
N training samples up o the maximum number of generation
M, where A7 = AL

While raining, the response of a tree T; for a pattern x is
expected 1o be as follows:

Tiix) =0if = = class ¥

Tiix) =0 if x & class §

In other words, a classifier with o trees 1s sad o correctly
classify asample x, if and only if all of its trees correctly classify
that sample. We emphasize that if a training sample x € I¥ is
from class &, then we say that tree T, comrectly classifies x, if

185

Teix) = 0. Onthe other hand, the tee i o 18 said Lo comrectly
classify x, if T;ix)
training sample by a classifier, its raw fitness is increased by 1.

Al the initial stage of learning (evolution), if some but not all
of the trees of a classifier are able 10 do a good job, then that
should not necessarily be considered a bad classifier. Because
by giving more chance to unfit trees to ke part in subsequent
genelic operations, unfil trees may be made 1o converge Lo more
fit trees and, hence, may result in a better overall classifier. We
will take into account this factor, while computing the fitness
value. Let £ trees comrectly classify a training sample x. Then,
we increase the raw fimess by [ irrespective of the class label

1), For each correct classification of a

of X In other words, we give equal importance to all rees. 5o,
if all trees correctly classify a data point, then the raw fitness
15 increased by 1 oas mentioned above, This partial mcrement
of mw fitness function by /¢ (for { = ¢) is considered only
during the stepwise learning, ie., only up to M., generations.
This helps to refine the initial population. After completion of
the step-wise learning, the fitness function considers only the
correctly classified samples. We again emphasize the definition
of correct classification by a rree. 16 % 2 £ is from class &,
then for a chromosome, if Fix} = {0, then 1.5 classification
i5 correct, and also, if Tj.x(x} < 0, then T; also classifies x
correctly.

Let [; be the number of trees that correctly classify x; = X,
So the fitness function f, at step & of the siep-wise learning task
is defined as

Yo
[ ikt 1
: N, &
In(1), &, = | X, = Number of raining samples used at
step .

Aler step-wise leaming we consider the samples which are
correctly classified by all wees (I, &) of the classifier. So, the
fitness funcion after step-wise leaming is defined as shown in
(2}, at the bottom of the page.

Thus, duning initial evolution, individuals with potential {par-
tially good) trees are given some extra importance in the fitness
calculation. Note that fitness function (1) or (2) can be used for
selection of individuals. Algorithm fitness shows the procedure
for evaluating the fitness of an individual during the step-wise
learning process.

Algorithm fitness
BEGIN
e l;
for all ¢=1.2.....};
for all =l
conl = 0;
If (i erfass §) AND (% =)
counl  eount — 1;
end if fe if T classifies x;

f=

Number of training samples comectly classified (for which 1; = )

;
5 2)
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Fig. 1.

correctly =~/
if (i%; & rlnss j} BND [(fiix;] < 07)
oLl counl 4+ 1;
end if PSS S P
correctly =/

classifies x;

/% For other cases the trees make
wrong decisions and, hence, cownf is not
incremented =/
end for
.fT':’HI.' = .f.' e [{1""'"'7’"-*.'{"':_,:';

end for
f-‘ = 1'rJ.1r'.-"I-'.I"'I.uF
END

C. Unfitness of Trees

When all trees are able o classify a pattern comectly then
the said classifier will recognize the pattern correctly. On the
other hand, if there are some unfit trees in the classifier, they
should be given more chance o evolve through gencetic opera-
tions in order o improve their performance. In addition o the
fitness functions, we need another unfimess function, o select a
tree after an individual is selected [using (1) or (2)] for genetic
OpLeTations.

So after an individual is selected for genetic operation, we
compute the degree of unfitness of its each constituent tree Ty,
i L2, e The total number of training samples for which
T is unable 1o classify corectly is counted. Let &; be the total
number of training samples not corectly classified by 'f;. To
compute k.8 L4 - we proceed as follows: If o training
sample x is from class § and ¥ < {1, then & is increased by
1 and also if (2} = 0,7 /[ then &, is increased by 1.

If & =y, then f) is more unfit then ;. Let

ok
TRk

This p, is used as the probability of selection of the ith tee
by the Roulete wheel selection as an unfit tree for genetic op-
erationy as desenbed i Secuons 111-D and E. In this way, the
unfit trees are given more chance to take part in the genetic op-
erations Lo rectify themselves.

(3)

{a) and {h) Chromosomes C 1 and C2 before crossover operation. {¢) and {d) Chromosomes C1 and C2 after crossover operation.

D, Modified Crossover Operation

Crossover plays avital role in GP for evolution. To select trees
(within a chromosome) for crossover, we use p, as the proba-
bility of selection and this gives more preference to unfit trees
for the crossover operation. We use the wurnament selection
scheme for selecting chromosomes for the crossover operation.
The fitness function defined in (1) or (2) 1s used for the selection
of a pair of chromosomes. Let the selected chromosomes be €
and . Each of 7 and ¢ has e trees 4 7 2,6 1. Booeer

Now, we select a tree T)' from chromosome €7 using
Roulette  wheel u:lu_'liun based on the probability p,
] Lidivcovenp o ig compuled IJHIHE! (3). We now randomly
select a nu-dL from each of ;" and 73", where the probability
of selecting a function node type 15 gy and that of a terminal
node type is o, ¢ — g = 1. After selecting one node from
each of the two trees "F}1 and ".f;-z, we swap the subtrees moted
at the selected nodes. In addition o this, we also swap the trees
fis " and T'J-? forall =14 1 1.....c That means we swap trees
1 b of chromosome €5 with g 2 of chromosome (7 for all
Frii S

This crossover operation has three interesting aspects. First,
we swap subtrees between classifiers from the same class. The
motivation is that, good features of one classifier may get com-
bined with good features of another classifier. Note that a sub-
tree of the good classifier for class &, may not be very useful
for aclass j, 7 &£ & of a different classifier. The second inter-
esting aspectof this crossover operation is that it also exchanges
classifier trees as a whole between two chromosomes. The third
point 15 that, by selecting trees for the crossover operation ac-
cording to their unfitness, the chance of unwanted disruption of
already fit trees is reduced and the chance of evolution of weak
trees 15 increased. Thus, we not only try o change weak trees
but also try to protect good trees from the destructive nature of
the crossover operbon.

Fig. 1 illustrates the crossover operation. In Fig. 1a)and (b),
two chromosomes are selected for crossover. Suppose 73" of
is selected using (3). A node of T,! and a node of 77 (shown
by the dotted cireles) are then randomly selected (the probability
of selecting a function node is gy, and that of a terminal node
15 1) Tor crossover operation. Now, the subtrees mooted at the
selected nodes are swapped. Also, 74"~ ." are swapped,
respectively, with T2, - - T.”. The resultant chromosomes ob-
tained after crossover are shown in Fig. 1 (¢) and (d).



A schematic description of the crossover operation is given
next.
Algorithm Crossover
Step 1) Randomly select ¢ (tournament
size) individuals from the pop-
ulation for tournament selection.

Step 2) Select the best two individuals
({7 and {4, say) of the tournament
for the crossover operation.

Step 3) Compute 11;1, i=12 . .- ¢ of {7 using
(3).

Step 4) Select a tree 'f;1 of 4, by the

Eoulette-wheel selection using the
unfitness probability, ;U;l.

Choose a node type—a function
(internal) node type is chosen
with probability g; and a terminal
(leaf) node type is selected with
probability ¢:. Randomly select a
node of the chosen type from each
of the trees D! and T)°.

L

Step 5)

Step 6) Swap the subtrees rooted at the
selected nodes of ¥~ and ")"32.
Step 7) Swap Tﬁ;l with T3¢, for all

Jomih =y

E. Modified Point Mutation Operation

The conventional GP mutation is uwsually a destructive
process, because it swaps a subtree for a randomly generated
tree. For this reason, we have utlized point mutation with
some additional precautions. It is just like the fine-tuning of a
selution.

In case of point mutation, a node is randomly picked. If it
is a function (terminal) node then it is replaced by a randomly
chosen new function (terminal) node (having the same arity).
Thus, it cavses a very small change. To make a considerable
change, it is repeated a number of times. Although, usually it
is not expected 1o severely affect the tree, sometimes its effect
could be significant. So, we introduce a kind of directed muta-
tion, which always accepls mutations that improve the solution,
but also oceasionally, with some probability, accepts a mutation
that does not improve the solution. This involves comparison of
the fitness of the mutated tree with that of the original tree. To
reduce computation time, we evaluate fitness £, of the mutated
tree Ty, and fitness f, of original tree T, using only 50% of
the training samples of the ith class. If f,. equals §., then we
use the remaining 30% of training samples of the ith class o
find [y, . If the mutated tree is equal or more fit than the original
tree, then the mutated tree is retained. Otherwise, it is ignored
with probability pth. We have taken pth = 13,

Mutation causes random variation and unfit trees need such
vadation more than fit ones. Consequently, afler selecting an
individual for mutation, the more unfil trees are given more
chances to mutate. In other words, more fit trees are given more
opportunities 1o protect themselves from the destructive nature
of mutation. To achieve this, we proceed as follows.

We randomly select a chromosome and then select a tree T,
from the chromosome. The tree is selected using Roulette wheel
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selection criterion with 3; in (3). This is tree selection with a
probability proportional o the unfimess of the tree. Then, we
select m% of nodes from the selected tree for point mutation.
A function node is selected with probability .. ¢ and a terminal
node is selected with probability if,,,.. e+ s = L.

Alter mutation, a decision 1s made as 1o whether the mutated
tree will be retained or ignored. This procedure is repeated i
times for the selected individual. The basic steps of the point
mutation are schematized in Algorithm Mutation.

Algorithm Mutation

Step 1) Randomly pick an individual (C)
for mutation (from the old popula-

tion).

Compute unfitness probability g,

=1.2.--+,¢ of C using {3).

Select a tree (7)) of {J with

Roulette wheel selection using .,

= e,

Step 2)

Step 3)

Step 4) Randomly select a node from ¥,
with probability of selecting a
function node g.; and that of a
terminal node i, for point muta-
tiomn.
Step 5) If the selected node is a function
node, replace it with a randomly
chosen function node (having the
Otherwise, replace
it with a randomly chosen terminal
node.
Repeat Step 4) and Step 5) for %
of the total nodes in 7,.
Evaluate the fitness [, of the
mutated tree and fitness [. of
the original tree using 50% of
training samples of the :th class.
If f,.. = [, then evaluate again f,,
and [, using the remaining 50% of
training samples of the +th class.
1f f.. » f. then accept the mutated
tree, else retain it with proba-
bility 0.5.
Step 10) Repeat Step 3) through Step %) =
times.

same arity).

Step &)

Step T)

Step B)

Step 9)

F. Termination of GF

The GP is terminated when all & training samples are clas-
sified comectly by a classifier (an individual of the GP popula-
tion) or a predefined number A7 of generations are completed.
If all of the N training samples are correctly classified by the
GP. the best individual {BCF) of the population is the required
optimum classifier CF. Otherwise, when the GP is terminated
after completion of M generations, the best individual { BCF) of
the population is passed through an OR-ing operation 1o obtain
the optimal classifier CE.

The best individual { BCF) 1s selected as follows,

Lethit{f}  number of correctly classified training samples
by the classifier {. The individual which scores the maximum
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hit 15 considered the best classifier BCE. If more than one indi-
vidual score the same hit (maximuom), then the individual which
has the smallest number of nodes 1s chosen as the best individual
BCF.

. Improving Performance of Classifier with oR-ing

It 15 possible that the termmal GP populabon containg two
chromosomes {3 17 e lecanage] vo gl } and €
{TJ_E, TpHus R ,Il.j? such that Ti~ is good for a par-
ticular segment of the feature space, while 3.2 models well an-
other segment of the feature space. The overall performance, in
terms of misclassification, of ¢} and ¢ could be comparable
or different. In this case, combining /3, ' and f;* by OR-ing may
result in a much better classification tree. This is the principle
behind this OR-ing operation. The best individual BCF of the
GF run, which 1s unable o classily correctly all training sam-
ples 1s further srengthened by this operation. BCF 15 OR-ed in
a consistent fashion with every individual of the termmal pop-
ulation. From this set of (Or-ed) pairs, the best performing (in
terms of number of misclassifications) pair is taken as the op-
tmum classifier CE. However, OR-ing is 1o be done carefully.
MNext, we explain how the OR-ing 15 done. We introduce a set of

indicator variables b, i = 1.2 ___ ¢ for the best chromosome
BCF as
b= 1l TR ) = 0
=0, otherwise, where &< {12, ... e}

In other words, if the «th tree of BCF shows a positive re-
sponse for a sample %, then f; for that sample is 1; otherwise, it
is 0. Now, to combine the BCF with any other chromosome Oy,

J
we define another set of indicators o .+ = 1,2, .. ..cas

At = Lif1 (%) = 00
= 1. otherwise.

For notational clarity, we consider a set of indicators w¥ to
represent the combined classifier €145 using BCF and ()

ar = Abs ATyl Aob
W [rJHI EA n_if.j el KT'} Y (311 A rJ1.-|'r)
L!QI =il ahe Aly. o 500 .
Y (iil & f-','g'I Aol ooy A ,I) 5 (J_'Jz A (ij'l}
{r,;'r I:E-_ ) Ez cee iy E*g_l A A E*g_;[ Y -TJ,_.;I
£ (rl{! L Y L N A rl,'!+1 o 8 rii)
V [b; oot
r=1,4 i
The combined classifier ¢'F; s, thus, defined by

2,71 Given a data point x, (7T assigns a
class label o x as follows.

Lo I
Wiy otk

If 4, 1 and f:_..I ¢, for all j /1 and i,
o f1.2.... ¢} then x < class i.

In this way, if the population has ¥, chromosomes then we
will get T3, 1 12,008, — 1) combined classifiers.
The combined classifier which correctly classifies the maximum
number of tmining samples, 15 taken as the resultant classifier
CE

H. Conflict Resolution

The resultant classifier CE thus obtained, is now ready for
validation with the test data set. For a test data point x, 1o make
an unambiguous decision, we need T3 (%) > Dandf e (=] < 0
(or g = 1and wjmp = N, 4 = L2 - - for some &, & €
. P

However, it can happen that more than ong tree of CF show
positive responses. In this case, we face a conflicting situation.
To resolve it, we use a set of heuristic rules followed by a
welghting scheme. The heunstic mule-based scheme desenbed
next is a slightly modified version of the rule proposed by
Kishore et af. [12].

Extraction of the Rufes: The classifier CFis used to classify
all & training samples. The objective of the heunstic rules is 1o
identify the rypical situations when the classifier cannot make
unambiguous decisions and exploit that mfomation o make
decisions. Letye, be the number of unclassified training samples
of class 1 for which either two or more trees or none of the tees
of CF show positive response. For each such unclassified sample
et = 13, -0y, we compule a response VECLOr vy inow
dimension as follows:

g = 1, i Pl ) = 0
L

=gy

U, otherwise; &

As an illustration, consider a four-class problem, where a
tramming sample 7z from class 118 not classified by CF, be-
cause more than one tree show positive responses. Suppose V-,
T4y, and Ty show positive responses, and 7 shows a negative
response for the training example. Then, the corresponding re-
sponse vector vi- will be (1 001 137, Similarly, if a traiming
sample vy of class 1 is unclassified because all wees show neg-

atve responses, Le. fiise ) < 0¥ = 1 2,--- . then the
TEsponse veclor vy 1s {0 000y,
If there are « classes, then there can be al most

f.o= (2% — «) possible distinet response vectors when the
classifier fails to make a decision. Let these vectors be
Vo= v = 1,2.--- L] Cleary, v; £ V. The classifier
may produce a particular vector v, for severa! data points from

class j. If this is so, then v; represents a rvpical conflicting
or ambiguous sitwation for class | when the classifier cannot
make a decision. Simee several trammg data points generated
the same mesponse vector, vy, 10 1s hkely that those traming
points came from some particular area of the input space and
the classifier failed 1w model that area correctly. These points
are expected (bul not necessarily) to form a cluster in the input
space. Therefore, for a rest data point x, if CF fails 10 classify
unambiguously and the response vector comesponding o X
matches v, then it may be reasonable 1o classify X to the jth
class. We call v a rule for conflict resolution. 'We emphasis
that unless v, is supported by a sufficient number of instances,



we should not use +, as a rule for conflict resolution for class
i In other words, the number of cases from class § for which
the mesponse vector v 15 produced should be large. Suppose,
of the w; unclassified samples, v, is obtained for ry; Gmes. We
may use a threshold & on vy to decide on the acceptance of v,
as a ruke. Using such a threshold, v may also become a rule
for adifferent class, but a particular v; should be used as a rule
for only one class.

So, fora ¥y & ¥V, we find the class & for which rp i k)
15 the maximum. Then, ¥; 15 vsed o epresent a rule only for
class &. The difference of our rules from those of Kishore er al.
[12] is that authors in [ 12] used a threshold on the percentage of
traming samples o pick up the rules, while we threshold on the
number of samples. The reason for such a choice, as explained
earlier, is that if any v, is supported by a reasonable number of
points £, it should be considered a rule, and thus & s indepen-
dent of the size of A,

The heunste rules are denved from the behavior of the clas-
sifier when it fails. So unless there are sufficient number of
failure cases, the rules may not be useful. Based on a few ex-
periments with the training data we decided 1o use it 200 A
better strategy would be to use a vahidation set to decide on the
value of 1.

If the classifier fails o classify a pattern unambiguously
and that pattern produces a response vector which matches
a heuristic rule, then the class corresponding o that rule 1s
assigned 1o that pattem. If there is no heurdstic rule for that
response vector, then the weight-based scheme discussed next
is used o assign a class to the pattem. If there is no heuristic
rule at all, then we directly use the weight-based scheme.

Weighting Scheme: The classifier CF is used to classify all
training samples. Now, we compute a matrix A = [o;] of di-
mension ¢ ¥ ¢, where a;; 15 the total number of cases such that
the instance is from class 1, but the fth tree of classifier CF shows
a positive response, e, Yiix) = 00% C class 7. In other words,
iz, gives the number of data points from class § for which the
tree T; gives a positive response. Consequently, diagonal ele-
ments of A represent the number of cases correctly classified
and the off-diagonal elements represent the number of misclas-
sified cases by the wees. For an ideal classifier, the sum of all
diagonal elements will be & and the sum of all ofi-diagonal el-
ements will be zero.

MNoww, A
all classes except class & for which T:ix) = 00 8o, 4, gives
the number of data points from other classes which are wrongly
classified to class @ by tree V). A; represents the false positive
cases. The classifier CF will make mistake for these 2; cases.
If A, = Max; A, then the tree T can be held most (or at least,
significantly) responsible for the misclassification reported by
the classifier CF.

Fora row ¢ in A, thedifference [+, between the total number
i ;) of patterns of class + and the diagonal element «;; indicates
the number of cases from class i for which tree 't did not predict
the result correctly. In other words, ree; is related 1o how tree T;
failed to represent its own class. yve; represents the false negative
cases. Let vy
of the poor performance of classifier CE

}::=1 i gives the number of data points from
=1

M, wreg: then the fth tree 15 also adeleminant
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Therefore, for atree ¥}, we define a weight 1, that provides
the relatve importance of the tree in making a comect prediction
as follows.

For the sth tree 5 of the CF, we compute

. s
wy =l —=wr,

; A4y
Total number of training samplesi¥) = 3""_ N,
' (4)
wr, & |10 1], These weights {wy ) can be used for resolution of
conflict, when necded.

For a test data point %, if we find that CF identifies a conflict
between classes [ and & (in other words, both 1) and ¥ give
positive responses), then X is assigned 1o class &, if wg o owy;
otherwise, ¥ s assigned woclass [ Note that, this weight scheme
is different from the one used by Kishore et al. [12].

We recommend using the heunsie rules first becanse each
heuristic rule represents a typical mistake, a scenano repre-
sented by an adequate number of data points. Moreover, as
pointed out by Kishore et al. [12], the weight-based scheme has
some limitations. It cannot assign a class label, of none of the
Taxd =004 =1,2 -, Also, in some cases, it may happen
that for x < ¢lasa &, 0% = 0 and for another tree ¥iix) = 10,
i S dowith s,
by the weight scheme. S0, we suggest Lo use the heunsuc rules
first. If the heuristic rule cannot resolve the conflict, the weight
scheme should be used.

It 15 possible that neither the weight-based scheme nor the
heuristic rule is able to assign a class label 1o a test data point
This must not be viewed as a disadvantage, but rather a dis-
tnct advantage. The classifieris able tosay “don’tknow™ when
faced with very unfamiliar examples. This is better than giving a
wrong class. Moreover, if there are too many such “don’t know™
cases, then these indicate that ether the traiming set used was
not a sufficient representative of the population that generated
the data, or the identified classifier 15 4 poor one. S0, a redesign
of the classifier is required.

MNote that the OR-ing operation, the heunstic rule generation,
and computation of the weights are done only once after the GP
termimales. Consequently, the additional computation mvolved
for the postprocessing, as we shall see later, 15 much less than
the time required for the GP to evolve. The complete algorithm
is now schematized in Algorithm Classifier.

. Then, x will be misclassified to class §

Algorithm Classifier
BEGIN
Let gem =11, A, =0, hit. =1
f# Nily  higlesl kil of that generation
and */
o hit, = highest hir £i11 that
generation #/
Initialize population of size P for GP
while (geu < M AND M, < V)
if (pen < My
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Evaluate fitnessz of esach
individual using (1)

else
Evaluate fitness of each
individual using (2).

end if

Find the best indiwvidual (f,.],

Rily = fedbifen ).

1f fhity = kit bt = hat, and
BT = Fw .

end if

Perform Breeding /= perform all
genetic operations #/

g =g+ 1. S+ go to the next
generation =/

end while

if {hit, N) O BOF 7+ if all
training samples are classified
correctly /

elsze do or-ing operation.

end if

Extract Heuristic rules and Compute
weights -f'-'.u;} using (4).

Algorithm Breeding [3Z]
BEGIN
Let f4, = 10 /+ [ = Dopdalion sler of the

next population =/
while (I, /1 /+ " Tupulalion «iwe s/
Select one of the operators from

reproduction, crossowver and mutation
with a probability p., p: and pu.,
respectively.

If {operator = reproduction)
select an individual using
fitness-proportion selection

method and perform the

reproduction operation. Now,

L =il
end if

If {({operator = crossover)

select two individuals using
tournament selection method
and perform crossover. Now,
W= 2.

end if

/# MNote that, if I, becomes -1,
then reject the second offspring
after crossover operation. =/

If (operator = matation)
select an indiwvidual randomly and
perform mutation. Now, I, =1.,+1.

end if

end while
END

I Validation of Classifier

After obtaining the classifier CF, it is necessary to validate it
against test data sets. Each test data point x is classified by the
classifier CE For a pattern x, there are three possible cases.

Case 1) For only one tree T,(x) = 0 and for all other trees
Tiiz] = 0, # 7 orin case of the combined classi-
fier afier OR-ing operation, onfy one 4; = 1 and all
other ey = [k 7 % 4 In this case, class 4 is assigned
o the pattern x. This is the simplest case that does
not require further operations.
For more than one tree T3(x) = 0 or more than one
g5 oare 1. Each tree for which T(x! = Dora; = 1
is called a competitive tree. To resolve this conflict
or to assign only one class wo the pattern x, we first
ry o use the hewristic rufes. If iU cannol assign a
class then we apply the weight-based scheme. Also,
if there is no heuristic rule available, then we directly
use the weight-based scheme. As an illustration, in
a four-class problem, ket Ty(x) < 0, Tnix) < 0,
Taix) = (band Ty(x) > (b In this case, Ty and
Ty are the compettive trees and, hence, the vector
v will be {00 1 137 | If there exists a heunstic rule
(10117 which assigns class 4, j € [1,2,3,4},
then that class 1s assigned 1o the pattern . Oth-
erwise, the weight-based method will be tded. If
aryp ooy, then class 3 will be assigned o x, else
class 4 will be assigned. Note that weights and rules
will be computed only when the classifier CF makes
mistakes on the training data set. So if CF makes
100% correct classification of the training data then
weights and rules will not be available.
For all trees T{x) < Uorall w, 0 In this case,
none of the trees can recognize the pattem x. Soonly
the heuristic rules may resolve this situation. Here,
all components of the vector v are zero. If there is a
null { vector whose all componenls are zerm) heuristic
rule that maps w class i, then class §1s assigned o
the pattern x. Otherwise, no class will be assigned to
x, and 1t becomes a “don’t know™ case.

Case 3)

IV. EXPERIMENTAL RESULTS
We have used five data sets for trmining and validating our
methodology. These are all real data sets, named, [RIS [29],
WEBC[30]. BUPA [ 30]. Vehicle [30], and RS-DATA [31]. WBC,
BUPA, and vehicle data sets are extensively studied in [23].

A. Data Sets

) IRIS Data: This is the well-known Anderson’s Inis data
sel [29]. It contains a set of 150 measurements in four dimen-
sions Laken on Iris flowers of three different species or classes.
The four features are sepal length, sepal width, petal length, and
petal width. The data set contains 50 instances of each of the
three classes. We used tenfold cross validation 1o estimate the
misclassification error.

21 Wisconsin Breast Cancer (WBC): 1t has two classes with
6949 instances. Sixteen of the instances have missing values and,
hence, we removed them. All reported results are computed on
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TABLE 1
[MFFERENT CLASSES AND THEIR FREQUERCIES FOR RS Dara
Clasara equencics
Farest " THYHT
Trler #5072
Agrimlcur: IS
Bave grouns] T400
fitass 1251%
Tlrbian arca LIEGS
Shavlow 3UT
Clands Fall
‘Total A0 b4
TABLE 1
FIvE [T SETS
Nanwal | Mool Ma ol Sige of the data sl and
Lrata Set | closses | Features closawize diztribntion
IRI% 3 4 L50 (=50 1 50 | 50)
WO 2 4 AR5 [= 444 + 235
HUPA U ] 443 [= 145 + 200
Velicle 1 18 B4l [— 2184 2174 2154 199
RS-DaTA & 7 262144 [soe Table I)

the emaining 683 data points. Each data pomt is represented by
ten attrbutes. Misclassification error rates were estimated vsing
tenfold cross validation.

31 BUPA Liver Disovders (BUPA ) 1t consists of 345 data
points in six dimensions distributed o two classes on liver
disorders. Performance of our methodology on this data s de-
termined using tenfold cross vahidation.

4) Vehicle Data: This data set has 846 data points dis-
tnbuted in four classes. Each data point is represented by 18
attrbutes. Here also, we used tenfold cross vahdation.

5) RS-Data: It 15 a Landsat-TM3 satellite image of size
BIZ2 x 812 (= 26244 pels) caplured by seven sensors
operaing in different spectral bands [31]. With each spectral
band/channel, we get an image with inlensiies varying between
0255, The 512 = 512 ground truth data provide the actual
distribution of classes of objects captured in the image. From
these images, we produced the labeled data set with each pixel
represented by a seven-dimensional feature vector and a class
label. Each dimension of a feature vector comes from one
channel and the class label comes from the ground truth value.
The class distnbution of the samples 15 given in Table 1. We
used only 200 random points from each of the eight classes as
traming samples. In other words, out of 262 144 data points,
we considered only 1600 instances for trainng.

The five data sets are summoarized in Table 11,

B. Results

The expenments have been performed vsing Lilgp [32] on
Alpha server DS10. The computational protocols which ane

TABLE 11
CoMMON PARAMETERS FOR ALL DATA SETS
FParameters Values
T'robability of crosacver opcration, p. 0.75
Prabahility of reproduction operation, p,. ol
Frabahility of tation ocperation, gn 013
Pmbahility of relecting & fiumetion noda during
vrossgver apenalion, gr n.s
Irobability of selecting 2 terminal node during
ORRROTEY ADETAR BN, 0y n.2
Fratulaling of selecling a [uwciien noeds denog
mutation operation, ga,s 0.4
Frobability of selecting 2 terminal node during
T RALIO DY RTALTON, ton .1
T af the vatal nodes of 2 tree wsed o poin® mutacion, w1 2%
Toucmamenl sive, T T
Threshold for defining henriatic rulen, A il

TABLE IV
[MFAERENT PARAMETERS USED FOR IDNFFERENT DATA SETS

Iats met F # | My Ul | e,
[ L] g & 10 L LI VI I 11
R P T 1Y I SR [ B T )

HLFA LA T 1 I LR [ B Y1 )
Vehiele [ 7000 | & [ 1l | T TE | LA
Hs R LI - T T I O = I L)

common Lo all data sets are given in Table 11 The data specific
parameters are listed in Table IV oas follows:

F population size;

5] number of sleps for step-wise leaming;

M, total number of generations for step-wise learning;

M total number of generations the GF 15 evolved;

P maximum allowed depth of a tree;

iy, maximum allowed number of nodes for an individual.

We use following indices to describe the performance:
Fre average percentage of commectly classified test samples
OVET Len Tuns;
average misclassification mcluding unclassified points
(emor rate) on the Lest sel over Len runs

For each of the first four data sets, we used the following
computational protocol. We make a tenfold random partitioning
of the data and make two GP runs on each fold with a different
mnitial population but keeping all other GP parmmeters the same.
This process 1s then repeated five tmes, each with a different
tenfold partitoning of the data. In this way, we make en GP

-

runs, cach mvolving a tenfold validation. (Note that, here each
GF run essentially imvolves ten runs, cach with one of the ten
folds). This helps o compare our results with other reported
results.

Inthe case of the RS dataset, we do not use ten fold validation
Lo keep the results consistent with other results reported in the
literature [31]. For this data set, as used by other authors, we
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TABLE V
PERFORMANCE EVALUATION FOR [RIS, WBC, anp BUPA Data
Methods | IRIS W.R.C. BUPA
Foy(%0 1 tiere sl FEML] F1To— ad F.%) | mape ail
Il 06.67 | 00333 | G008 | 06,15 | 00485 | DAA0G | 6087 | D39T | 00364
R2 QR.00 P 00200 | GU04E [ 9666 | ODARIE [ 0010 | 6850 | 03101 | 00231
3 9567 | 0OLS | 0000 | 8715 [ 00281 | 00026 | 0955 | 0.3007 | 0.0208
R4 9733 | 00267 | 0048 | $Hidl D39 [ 00055 | 6991 [ 03009 | apig2
TABLE VI both OR-ing and (then) weight-based scheme could improve

PERFORMANCE EVALUATION FOR VEMICLE AND RS DaTa

Wl el s Yeliicl: [i% dala
BB e | 80| e sl
1] GRb | OA1ET | Dls] TG | DL2RAT | LOLER
Bw?2 BE2A [ 0ALPT | 00207 | TR0 | 0.2557 [ DO51%
17w BEAN [ U411 | 00245 | Vil | 02307 [ 00648
Towd LTS [ O3R2E | 00232 | 80000 | 0.1954 | DO2RD
Rwh .63 [ 04057 | 00220 | TEL0 | 0.2310 [ D052
Howls FTWTE VI VI S0 LV WO D S 00 1 B A D B B RN R

generale a training-test partition with 200 points from each class
for the training set and mest for the test set. Here also, we make
five such random training-test paritions and for each partition
we make two GF runs.

The average classification accuracy on the test data B, av-
erage misclassificaion emor mle i, and standard deviation
gl of error mates over ten runs for IRIS, WBC, and BUPA data
sels are given in Table V, and for vehicle and RS data, these are
shown in Table V1.

Table ¥ has four rows R1-R4, where R1 = without any
postprocessing method, R2 = with only OR-ing operation, R3 =
with OR-ing and (then) weighting scheme and R4 = with only
weighting scheme.

Table VI has six rows, where Rwl = withoul any postpro-
cessing method, Rw2 = with only OR-ing operation, Rw3 = with
or-ing and then applying heuristic rules, Rwd = with OR-ing,
heuristic rules and then weighting scheme, Rw3 = with only
heuristic rules, and Rw6 = with only weight-based scheme.

The results alter each postprocessing operation (like OR-mg,
heuristic rules and weighting scheme) are given in order 1o pro-
vide a clear understanding of the performance of each posipro-
cessing method. The mean GP run time for each data set s given
in Table VIIL The GP run time in Table VI includes tme taken
for partitioning the data sets, evolving the GF, inputfoutput file
handling, post processing, and validation. As discossed eardier,
the postprocessing time is insignificant compared with the evo-
lution time of GF. Later, we shall report some illustrative values
for the vehicle data set.

For IRIS, 96.87% of the test data are classified comectly
without using any postprocessing methods. Afller OR-ing operi-
ton, we achieved 98% test accuracy. As there was no heuristic
ruke, we vsed only the weight-based scheme. Combination of

the test accuracy o 98.67% as shown in Tabke V. Without
Or-ing, the weight-based scheme alone can improve the result
o 97.33%. In average, a GF run required 8.4 s o complete
(Table VIII).

As an illustmbon, the (preorder) expressions of a classifier

(three trees) for the IRIS data are shown below:

e 1 (=i az)

e tree 20 (S —wg oW -TA—UAG0 8 ey ow2))
wy kg

o tree 3: o (a{ ay BADGER | w3360 120
Dol ra 350820 s 2y wgl)d
1. e, @y and py represent four features or attributes of
IRLS data.

Aler simplifying the above expressions, we can write the fol-

lowing rules: For a pattem x = [a, 7y oy, a0t
oy —my =0 orax € class 1;
o if (g — e s 1 s — Dy — wgsey — D.HG0 52
0= x = class 2;
o ifirc? 4 g 4+ 2360423 — 5.1398%0 — 121TH 31>
= =z & class 3.

In case of WBC data, 95.15% of the test data are classified
correctly without wvsing any  postprocessing method.  After
OR-ing operaton, the result improved o 96.66%. As there
wis no heuristic rule availlable, we used only the weight-hased
scheme. Table V' shows that with both OR-ing and (then)
weighting  schemes, we  achieved 97.19%  lest accuracy
(00281 % error rate). Without OR-ing operation, the weighting
scheme could improve the result to 96.41%. This data set has
been extensively studied in [23], where 33 non-GP classifiers
are compared. Table VI summanzes the emor rates reported in
[23]. For this data set, the emor mle for the 22 treefrule-based
classifiers and nine stabstical classifiers varied between
0.0308-0.0848 and (0L0337-0.0482, respectively [23]. For the
two neural networks, the error rates are 0.0278 and 00337, For
the proposed classilier, the emor rate 15 000281, So, for ths data
set our classifier performed better than 32 of the 33 classifiers.
One of the neural network classifiers performed better than
ours. Even for the five GP methods given in [20], the error rates
for this data set varied between 0.032-0.036. Thus, our method
also performed better than the five GP-based methods in [20].
The comparisons are summanzed in Table VI

For the BUPA data, 60.87% test points are classified cor-
rectly withoutl vsing any postprocessing method. Afller OR-ing
operation, we achieved 68.99% 1est accuracy. Since we do not
gel any heuristie rule, we vsed only the weighting scheme. The
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TABLE VIl
CoMPARISON OF MEAN ERROR RATE m,, . WITH (OTHER APPROACHES
I}ata aeta WhHC HL.FA Yahwle
v method (15281 (1287 [T h
Five arher ©IF appeoaches "] W0 - OUOEE | OADE - e uaETe - e
Twrnly e '|'r\--|-l."r|||¢~. el imelb e [93] QLOA0R B OEE | QTS (43 0.R06 0 ART
Wone St ikl apyiroaches [AE DLOZET  DUOARE | 02800 00T 0.5 00k
Two M laweifiers [23] 0.027&,0,7337 0 329,0,330 0.3720,374
TABLE VIl TABLE IX
MEAn GP Run TME AVERAGE NUMBER OF HEURISTIC RULES OBTAINED FOrR Each Dara SET
Drala Bl ILIS | WRBC DBLTA | Velide RE-DATA Thvo 501 | IRIS | WDBC | DUTA | Vel | IS Daws
e [|||:-ur:|||ir|:m-.:] R I R | P S [ Y IRV L0100 oy ] 1 ] 42 3.7
Rhue 0 ] 4] 26 4.0

weighting scheme along with the OR-mng opermtion, provided
a lest accurmcy of 69.93%. In this case, the weighting scheme
alone can improve the recognilion accuracy W 69.91%. The
BUPA data set s also tested agamst 33 classifiers in [23] and
against five GP classifiers in [20]. The comparison reported
in Table VII shows that our method clearly outperforms other
OGP methods, the neural network methods and several other
mithods.

In case of the vehicle data set, we achieved only 48.63% clas-
sification accuracy without using any postprocessing scheme
(Table VI). The Or-ing operation could improve the resalt
Lo 58.23%. The average number of heunstic rules generated
without using OR-ing (w1 and afler using OR-ing (0,0 for
the vehicle and RS data sets are shown in Table IX. Using the
heuristic rules afler OR-ing operation, we gol 58.89% 1est accu-
racy. Combination of OR-ing, heuristie and weighting schemes
could improve the result from 48.63% 10 61.75%, that 1 an im-
provement of 13.12% . These results demonsirate the usefulness
of all postprocessing schemes. With only heuristic scheme and
welghting method, we get 58.63% and 56.90% sl accuracies,
respectively. The emor rates produced by our method are also
compared in Table VII with other 38 approaches. For this data
set the nme statistical classifiers perfornm much better then the
rest. Our method 1s quite comparable with the five GP-based
methods and the neural network-based classifiers. As shown in
Table VI, the mean GP run ume for the vehicle data 1s 9 min
12 s Without any postprocessing, the mean GF run tme 1s
9 min 6 s. So, the computational overhead for posiprocessing
operation 15 negligible (less than 2% ) compared with the mean
GP run time.

Table V1 also includes the results for the RS data set. For
this data set 709% test data are classified correctly without
using any postprocessing method. Table VI reveals that OR-ing
operanon improves the result by 3%. For the RS data set we
obtained on average 3.7 heuristic rules, if we do not use ORing
and 3.0 heuristic rules afler OR-ing (Table 1X). OR-ing and
heuristic rules can improve the recognition accuracy by 4.6%.
Combination of all three operations (OR-ing, heurstic rules,
and then weighting method) could improve the accuracy by
9.1%. Thus, we achieved 80% recognition accuracy with all
three operations. In Table VL we also included the results

with only weighting scheme and only bheunstic scheme just
for understanding of the effectiveness of each post processing
scheme. Using the maximum-likelihood (ML) method and
artificial neural networks, 79.03% and 79.56% lesl accuracies
are attained for this data set as reported o [31]. So, for this data
sel oo, the proposed GP classifier does a good job.

In any learning scheme, when the training error attains the
minimum value, the generalization (test error) may not be the
best. In order o mvestigate this, the misclassification (ermor
rate) for the training and st sels inoa typical run for the vehicle
data are noted alter every 20 generations and displayed in
Fig. 2. Fig. 2 has four panels: (a) shows the error rates without
usmg any postprocessing scheme; (b) shows the emor mes
after OR-1ng; () depicts the ermor rates alter using OR-ing and
heuristic rules; and (d) shows the error rates afler using OR-ing,
heuristic rules, and weighting scheme. The solid lines with
triangular marks show the error rates for the training data. The
dotted lines display the error mtes for the test data, For Fig. 2(1)
and (b), we find that both raming and test error rates decrease
with generatiwoms, but for Fig. 2(c) and (d), we observe that
the best tmumng and test emor rates occur around generation
number 10, We have analyzed such plots for other data sets
as well. In most cases, we found that traiming error and Lest
error follow a consistent pattern and the tmiming and test errors
decrease with generatons. However, Fig. 2(c) and (d) suggests
that use of a validation set may further improve the classifier
performance.

So far, we have not investigated how different trees evolve
with generations. As an illustration, in Fig. 3, we show the per-
formance of the cight trees of a typical GP run for RS data.
Fig. 3(a) shows the performance of the trees in the first 20 gen-
erations and Fig. 3(b) shows the performance of trees from 20
generations 1o 520 generations. The performance has been mea-
sured as the matio of number of tmining samples correctly clas-
sified by a tree and the total number of training samples. Fig. 3
reveals that some trees stan exhibiting very poor performance
initially but improve faster than the trees which start with rel-
atively better performance. This demonstrates the effectiveness
of the concept of unfimess of the tee. Ltalso shows that the per-
formance of trees improve with generations.
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(d) OR-ing, heuristic rules, and weighting scheme are wsed.
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V. CONCLUSION

We have proposed a GP approach o design classifiers. It
needs only a singfe GP run to evolve an optimal classifier for
a multiclass problem. For a e-class problem, a multitree classi-
fier consists of ¢ trees, where each tree represents a classifier
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for a particular class. Unlike other approaches, we take an in-
tegrated view whene GP evolves considering performance over
all classes at a time.

Each tree recognizes pattems of a particular class and rejects
patterns of other classes. Trees are independent of each other
and each has an equal responsibility for classification, but all



trees are tied together through fimess evaluation of chromo-
somes which govems the evolution of GP. An individual is se-
lected according Lo its fitness value for genetic operation. How-
ever, its trees are selected according to their degree of unfimess.
In this way, we give more opporlunities 1o unfit trees o rec-
tify themselves by genetic operations (crossover and multation ).
AL the same time, we reduce the chance of unwanted dismp-
tion of already fit trees by the genetic operations. In the case of
crossover operation, we not only allow exchange of subtrees be-
tween trees meant For the same class but also complete exchange
of some treesdesignated for the same class. Our mutation opera-
tion is designed to reduce the destructive nature of conventional
L lon.

To obtain a better classifier we have proposed a new scheme
for OR-ing two individuals. We have used a heuristic rule-based
scheme followed by a weight-based scheme to resolve con-
flicting simations. The heuristic rules model typical situations
where the classifier indicates ambiguous decisions and try
to resolve them. The weight-based scheme assigns a higher
weight 1o a tree which is less responsible for making mistakes.

Our contributions in this paper are summarized as follows.

1) We proposed a comprehensive scheme for classifier de-
sign for multicategory problems using a mullitree concept
of GP. It is an integrated evolutionary approach where
classifier trees for all classes are evolved simultaneously.
For genetic operations, trees are selected on the basis of
their unfitness.

3) We proposed a modified crossover operation.

43 We nsed a new mutation operaton called nondestructive
directed point mutation.

5) An OR-ing operation is introduced 1o optimize the classi-

fier—this can be applied with any GP-based classifier.

We proposed a weight-based scheme for conflict resolu-

tion. This is & modified version of the scheme suggested

in Kishore et al. [12].

71 The heunstic rule of Kishore ef al. 1s also modified.

I
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We tested our classifier with several data sets and obtained
quile satisfactory results. Our future work will focus on reducing
the size of the trees and feature analysis simultaneously with
designing the classifier. We also want Lo investigate the wility
of the logical and other functions for designing classifiers.
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