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Abstract

This article describes a clustering technique that can automatically detect any number of well-separated clusters which may
be of any shape, convex and/or non-convex. This is in contrast to most other techniques which assume a value for the number
of clusters and/or a particular cluster structure. The proposed technique is based on an iterative partitioning of the relative
neighborhood graph, coupled with a post-processing step for merging small clusters. Technigues for improving the efficiency
of the proposed scheme are implemented. The clustering scheme is able to detect outliers in data. It is also able to indicate
the inherent hierarchical nature of the clusters present ina data set. Moreover, the proposed technigue is also able to identify
the situation when the data do not have any natuwral clusters at all. Results demonstrating the effectiveness of the clustering

scheme are provided for several data sets.

Kevworgs: Graph partitioning; Hiemrchical clusters; Mon-convex clusters; Relative neighborhood; Unsupervised pattern classification;

WVariable number of clusters

1. Introduction

Clustering [1-4] is an exploratory data analysis tool that
deals with the task of grouping objects that are similar
to each other. It has applications in a wide domain viz.,
pattern recognition, biological sciences, social sciences,
psyvchology, data mining, etc. Clustering in N -dimensional
Euclidean space " is the process of partitioning a given
setof n points into a number, say K, of groups (or, clusters )
based on some similarity/dissimilarity metric. Let the set
of 1 points {x1, X2, ..., X, } be represented by the set X and
the K clusters be represented by ¥x = {1, O, ., Cr ).
Then, in general,

Ci#d fori=1,....K
CNC=0 fori=1,.. K j=1..Kandi#J
and

K
UC.. =X
i=1
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Many types of clustering algorithms have been developed,
the prominent among them being the partitional meth-
ods, hierarchical methods and graph theoretic methods.
Typical examples of the three methods are the well-known
K-means algorithm, single linkage and the minimal span-
ning tree-based algorithms, respectively [1,5]. Some more
recent clustering algorithms may be found in Refs. [6-9].
Other algorithms are currently being developed that are
appropriate for large data sets [10,11].

The first task prior to clustering data involves identifving
whether or not there is any cluster structure. For example, a
data set where all the values are drawn from a uniform dis-
tribution or from any unimodal distribution will not exhibit
natural groupings. The task of assessing whether a data set
has inherent structure in it is called estimating its clustering
tendency. Once it is determined that clustering needs to be
performed, identifying a good clustering method becomes
a challenge. Most of the clustering algorithms often require
the number of clusters to be specified a priori. For exam-
ple, the K-means algorithm and the single linkage method
require the a priori specification of the number of clusters,
which may not be feasible to do in many real-life situa-
tions, The minimum spanning tree { MST) method uses the
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concept of inconsistent edges to get around this problem.
However, the definition of inconsistency has been found to
be problem specific, and may often require the knowledge
about the shape of the clusters [12]. Several other methods
also assume the geometry of the data; typically the clus-
ters are assumed to be convex in nature. For example, the
algorithms based on minimization of squared error crite-
rion assume hyperspherical clusters of approximately equal
sizes.

As an extension to the MST-based methods, and in or-
der to overcome its limitations [13], the concept of relative
neighborhood of a finite planar set [14] has been proposed.
This has been used for designing graph theoretic clustering
algorithm in Refs, [15,16]. Although the above concept is
intuitively appealing, as it is based on the visual perceptual
model, it has not received much attention. The algorithm in
Ref. [15] is based on the relative neighborhood graph, and is
able to detect well-separated clusters. However, it requires
the specification of a parameter &, and the performance of
the algorithm depends heavily on the proper choice of .
This is explained in the next section, and experimentally
demonstrated in Ref. [16]. In this paper. we also use the
concept of relative neighborhood for designing a cluster-
ing algorithm, which we call CLUSTER, that is able to de-
tect non-overlapping clusters of any shape without requiring
the number of clusters to be known a priori. The algorithim
works in an iterative manner, successively partitioning the
data set until a termination criterion is met. It is able to pro-
vide several levels of clusters in an hierarchy, one nested
within the other, up to the level that is natural to the given
data set. This is in contrast to the method in Ref. [16], which
works in a single pass by finding the connected subgraphs
in the region of mfluence graph, and is unable to provide the
cluster hierarchy, Moreover, this is also in contrast to the
hierarchical clustering schemes like the single linkage and
complete linkage al gorithms which generate all possible lev-
els of clusterings, irrespective of whether the data naturally
exhibits them or not.

2. Graph theoretical clustering based on relative
neighborhood

In this section, we first describe the concept of relative
neighborhood graph (RNG) [14]. This is followed by a
detailed description of the clustering algorithm proposed by
Urgubart [15] that is derived from the RNG.

2.4 Relavive neighborhood graph

Let X be a set of points represented as X =
{xp, %, ..., X, }. Two points x and x, are said to be relative
neighbors if the following condition holds:

d(xp, 2 ) = man (a0 ) dxg. 2 )],

WxkEX k #iQj. (1}

Fig. 1. Relative neighbors and the hme. x and x; are relative
neighbors if there are no points that lie within the line.

Intuitively this means that two points are said to be relative
neighbors if they are at least as close to each other as they
are to any other point. Or, in other words, there is no other
point that is closer to x {or, x;) than x; (or, x;). This is
depicted in Fig. 1. Here, x,,x; are relative neighbors if there
is no point that lies in the lune formed by these two points
{the shaded region). A graph formed by joining each pair
of points that are relative neighbors is called the RNG.

2.2 Clustering based on fimited neighborhood set

Theregion of influence of two points v, and x, in the RNG,
denoted by Rave(x.x; ), formed by applyving the definition
in Eq. (1) is given as

Ravelx,x)
={x: max[d{x,x)d{x,x)]) < dix,x) i £ 7 (2)

In Ref. [15], an additional parameter & has been considered,
and the region of influence & is enhanced as follows:

R, xp,0) = Renc(x,x ) {x s min[df{x, ), d(x), x)]
< dix.x ) i #j} (3)

Here o is called the relative edge consistency. Fig. 2 shows
the shape of a typical region of influence. The clustering
algorithm based on this and other definitions of region of
influence (for example in Ref. [16] )is given as follows [13].

Fori=1ton
For j=i + 1 to n
Determine the region of influence R{x.x,)
If Rix.x ) {X — {x.x} =0
Add the edge connecting x.x;
EndIf
End For
EndFor
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Fig. 2. A typical region of influence.

Determine the connected components of the connected
graph. These are identified as clusters.

In Ref. [15], results have been provided showing the abil-
ity of the above algorithm in correctly clustering several data
sets. However, it can be easily observed that this algorithm
is going to fail to vield proper clusters even in many ob-
vious cases, For example, let x and p be two points which
obviously lie in different clusters. However, this will be not
detected as such if there happens to be no point lving in the
region of influence of this pair for some value of 7. This
can obviously be the case for very sparse clusters that are
reasonably close to each other. It may be argued that

CLUSTER(RNG =(X.E))
Begin

Sorted E = Sort E in ascending order of edge weights
Sorted E = Eliminate duplicates in Sorted E

Min = Sorted E[1], Max = Sorted E[m")

strated in Ref. [16] for several data sets which have obvious
clusters. As an extension of the method described in Ref.
[15], Osbown and Martinez [16] have defined some empir-
ically fixed regions of mfluence {in contrast to the method
of Ref. [15] where the region of influence is a factor of the
distance between a pair of points) for clustering a data set.
It is shown to perform reasonably well for several data sets.
However, with the coordinates of the regions fixed a priori,
this is also expected to fail under conditions similar to the
one mentioned above. Moreover, the method in Ref. [16] is
not able to provide hierarchical clustering, which can often
be a desired feature.

In the following section, we describe the clustering algo-
rithm proposed in this paper. Analogous to the algorithms
described in Refs. [15,16], this method uses the concept of
RMNG, and is not able to detect touching or overlapping clus-
ters. It is able to produce hierarchical clustering as in Ref.
[15], while being more robust.

3. The proposed clustering method

The proposed clustering scheme is based on the succes-
sive thresholding of the NG until a termination criterion is
attained. The algorithm called CLUSTER is provided be-
low. Here RNG = (X, E) denotes the RNG of the data set
X, where the vertices of the graph are the points in X, and
E is the set of edges in the RNG. Let the weight of an edge
€, connecting points x; and x, be equal to dix.x), the
distance between them, and let m be the cardinality of E.

Msize of SortedE = m */
[*size of Sorted E =m" */

if { Max < 2Min) return{ X'} /* cannot cluster X further */
FirstOrder = First Ovder Difference of SortedE
Mie., FirstOrder[i] = SortedE[i + 1] — Sorted E[i] */
[*size of FirsiOrder =m' — 1 %/
FirsiOrder=Sort FirstOrd er in ascending order

= Firssdreder|1]+ Firssrderm” —1]

and Sorted E[ j] = 2Min

Ih
thresk = Sorted £ j] such that SortedE[ [ + 1] — SortedE[j] =0, j=1.2,... (m" —1)

if (thresh not found ) return(X') /* cannot cluster X further */
RNG' = RNG — {ay|d,; > thresh} /*thresh is called the splitting threshold */
Component = connected components in RNG' /*Each element of Component is

itself an RNG %/

if (| Component| = 1) return{.X') /* cannot cluster X further */
if (| Component| = /| X| ) retwn{ X} /* Overfragmentation of X' |X'| denotes cardinality of X' */
else CLUSTER( Comparent, ) for { = 1 to | Component|.

End

increasing & should be able to resolve this problem. How-
ever, this may, in turn, lead to splitting of natural clusters.
The failure of the method in Ref. [135] has also been demon-

CLUSTER is based on the assumption that if x; and x;
are relative neighbors, and they belong to two distinet clus-
ters, then dix,x) > d{x,xp) for all &, such that xy is in
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Fig. 3. An example showing that although the distance ab is greater
than thresh, the cluster will not be split.

the same cluster as x,. Therefore, the purpose is to identify
an appropriate threshold, such that relative neighbors whose
separation exceeds the threshold are put in separate clusters,
while those whose separation is smaller than the threshold
are put in the same cluster. Note that if this is done in a sin-
gle pass, then a situation may arise when two distinct clus-
ters are erroneously merged together because of the pres-
ence of another cluster that is significantly separated from
the other two, and which increases the threshold value. In
order to avoid this, CLUSTER is applied iteratively, while
keeping the threshold value adaptive, which is computed
using the Component under consideration. MNote that, al-
though the methods in Refs. [15,16] also implicitly use such
athreshold, the differences ave: (i) the technigque in Ref. [16]
operates in a single pass, and is, therefore, unable to indicate
the nested, or hierarchical, clusters, and (ii) the parameters
are fixed a priori in Ref. [15], which may not work equally
well for all the data sets.

Below we outline some characteristics of the CLUSTER
algorithm as well as suggest some improvements to its basic
structure:

& The above algorithm terminates under the following con-
ditions:

When the inter-cluster relative neighbors are close
to each other (the condition Max < 2Min in
CLUSTER).

An appropriate thresh (2= 2 Min) is not found.
When only one cluster is formed by the algorithm,
i.e., |Component| = 1. This can happen in spite
of finding a suitable thresh. For example, consider
Fig. 3 that shows a part of the RNG corresponding
to a set of points X'. Here points a and & are con-
nected directly, as also through the set of remain-
ing points. Assume that theesh is so chosen as to
break only the direct link between a and &, How-
ever, these two points will still remain connected,
and X will not be split further.

& The above algorithm is guaranteed to terminate. This will
surely happen when the clusters comprise two points.
However, suchan overfragmented condition will not arise
in practice, since the algorithm will terminate well before
that.

TR | %)
el e o

Fig. 4. Clusters obtained in an hiemrchy.

& The above algorithm gives rise to hierarchical clusters be-
cause of the recursive call to CLUSTER. This is demon-
strated in Fig. 4. Here X' denotes the entire data set. Let
us assume that in the first pass, & connected components
{denoted by Xy, X2... .. A ) ave found. In the second pass,
each of these X)%s, § = 1,....&, may be further divided
into si components. Mote that it is not necessary that all
the components can be partitioned further. For example,
it may not be possible to partition X5 any further, while
this may be possible for the other components. This pro-
cess continues until none of the components can be par-
tittoned any further. The user may also desire to stop at
some given level of the hierarchy.

& The number ofclusters is determined automatical by by the
method, and this is equal to the number of Componenis
formed on termination of the algorithm. It may be men-
tioned in this context that for a data set of size i, the rule
of the thumb states that the maximum number of clusters
that may be present is approximately /i, Hence, a stop-
ping criterion is kept which checks for this condition, and
terminates accordingly.

e Very small clusters may be formed as a consequence
of the above algorithm. A condition may be included
which checks the size of a component, and if it is
smaller than some threshold {which may be prespec-
ified or kept adaptive), then it is merged with the
nearest component cluster Component . unless the thresh-
old value at which the small cluster got partitioned out
is larger than A times the Max value of Component,
where 4 = 2. In our experiments, we have kept 4 = 3,
although we have tested with several other values as
well. This can effectively inhibit the formation of very
small clusters because of some minor variation in the
distances.

& The above scheme will not merge small clusters which
are at a significant distance from the other points in the
data set. These points may effectively be considered as
outliers or noise, which should be removed from the data
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set before further processing. Thus, the said scheme is
able to detect such noisy points as well.

o [t may be seen that the complexity of one pass of CLUS-
TER is Nmlogm), where m is the number of edges
in the RNG. This is due to the observation that the
complexity is guided mainly by the two sorting rou-
tines. The initial sorting on the E array is of complexity
(N mlog m). The next sorting on FirstOrder is of com-
plexity (4 m' log m"), where m" = m. Hence, the overall
complexity is (N mlogm). Although, the sorting routine
for Sorted E is invoked for every call of CLUSTER, this
can be easily eliminated as follows. All subsequent calls
of CLUSTER. can effectively use the sorted array of the
first pass after suitably retaining only those distances
that are relevant to the Component, for the particular
invocation of CLUSTER.

& The complexity of the method may be further reduced if
the task of sorting the edges in £ can be eliminated, and
the size of FirstOrder can be reduced. In this context it
may be mentioned that the edge weights that are very
close to each other can be effectively treated as same, and
can be clubbed together. However, this clubbing should
ensure that edges between clusters are retained separately.
A suitably small discretization of the values between Min
and Max, defined as a fraction of Max — Min, may be
done for this purpose. Let us denote this fraction by 4.
Then the maximum number of possible discretizations
{or, the maximum number of values in SorredE ) is 1/d.
Obwviousty, for improved performance 1/4 <€m. Using this
discretization, for each edge weight, the interval in which
it lies can be directly computed, hence eliminating the
need for sorting the weights. Again, since this reduces the
size of Sorted £, the size of FirstOrder is also likely to
be reduced, thereby reducing the time required to sort it.

» The RNG of a set of points may be computed in ({n')
complexity, where n is the size of the data set, by the
method proposed in Ref, [16]. Hence, the overall com-
plexity of the clustering algorithm is (" + mlogm) =
).

4. Experimental results

The effectiveness of the clustering algorithm is demon-
strated on eight data sets of different characteristics. The
data sets ave first described followed by a detailed descrip-
tion of the results and their analysis. For the experiments,
clusters of size less than 5% of the size of the data set are
merged. The value of & is kept equal to 0,001, i.e., the range
[Min, Max] is discretized into 1000 intervals. We have also
experimented with other values of & viz., 0.005 and 0.01
with similar results. As mentioned earlier, the value of A
{used for detecting outliers while merging small clusters) is
kept equal to 3 for the experiments, However, we have tried
different values of A in the range of 2-10 without having
any change in the results.

Table 1
[rescription of the data sets

[hata Mumhber Mumher Mumhber
of points of dimensions of clusters

Normal 00 2 3

RO 42 2 2

ADS | 557 2 3

ADS 2 417 2 2

Encirde 200 3 2

Concentric 2000 [ 2

Concentric_noisy 3002 6 2 4+ 2 outlier

paoints
Uniform 1000 3 nane
4.1 Dara sets

This section describes the data sets used for the exper-
iments. Table 1 summarizes the number of points, dimen-
sions and the number of clusters in each data set.

Nomnal: This is a two-dimensional, three class data
generated using a mixture of three Gaussian distributions
with equal a priori probabilities of each class (= { ). The data
set has 300 points {see Fig. 5). The parameters of the three
normal distributions are

0.0 15 0.0
= s = and =
0.0 00 3.5
[001 0.0 001 00
I= , da= and
|00 1.0] 00 10
(10 00 ]
Iy=
00 0.0

RCI: This data set is taken from Ref. [17]. It consists of
two clusters which have significantly different sizes. Fig. 6
demonstrates the data set.

ADSE: This data set is shown in Fig. 7. As can be seen
from the figure, it has one cluster totally surrounding two
smaller clusters. There are 557 data points here. The cluster
boundaries are seen to be highly non-linear, although the
classes are separable.

ADSZ: This data set is shown in Fig. 8. As can be seen
from the figure, it has two horseshoe-shaped clusters. There
are 417 points in this data set. The cluster boundaries are
again seen to be highly non-linear, although the classes are
separable.

Encirele: This is a three-dimensional data set having two
clusters. The data set is shown in Fig. 9. There are 200
points, with 100 in each class. One class is elongated while
the other class encircles the first around its middle.
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Fig. 6. RC! data set.

Concentric: This is a six-dimensional data set which con-
sists of a hypersphere swrounded by a concentric hyper-ring.
Fig. 10 shows the conceptual structure of the data set in
two dimensions. It has 3000 points, with 500 points in the
inner class, and 2500 points in the outer class. It is used
for demonstrating the effectiveness of the clustering scheme
for high-dimensional data sets, where the number of points
in the classes vary significantly. Moreover, it also demon-
strates that estimating the number of clusters for methods
like single linkage algorithms can be extremely difficult

especially for high-dimensional data sets, since a projection
of such data on a two-dimensional plane can hardly indicate
its nature. Fig. 11, which is a two-dimensional projection
of the six-dimensional data, underlines this fact. In order to
demonstrate the effectiveness of the technique in detecting
outliers, a few points were added to this data set which were
significantly separated from the other points. We call this
data set Corcentric_neis).

Liiform: This is a three-dimensional data set that is uni-
formly distributed in a unit cube. It has 1000 points. This
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Fig. 9. Encircle data set.

Fig. 1. A conceptual view of Conceniric,

data set has no natural clusters, and has been chosen because
of this particular characteristic.

4.2, Partitions obtained by the clustering method

The partitioning obtained for Normal is shown in Fig. 12
The values of Min, Max and thresh are 0003761, 1281093
and 0939181, respectively. On the first pass, three clusters
are formed. However, after subsequent calls to CLUSTER,
some small clusters are obtained (the maximum number of
points in these clusters is 4). While merging, it is found that

the splitting threshold for these clusters (e.g., it is 0.224714
in a particular case ) is close to the Max value of the closest
component (e.g., it is 0.197570 for the corresponding clos-
est component). Since 0.224714 < 3 x 0197570 (4 = 3),
hence these points are merged with the nearest cluster. For
RCI, the values of Min, Max and thresh are 2 236068,
24515301 and 24.504151, respectively. The final clustered
data is shown in Fig. 13, Note that the final partitioning is
again obtained after several recursive calls to CLUSTER
and subsequent merging of small clusters.

The clustered ADS | and ADS 2 ave shown in Figs. 14
and 15, The first data set is partitioned into three clusters of
sizes 33, 64 and 460, The three clusters thus formed could
not be split further in the next pass of CLUSTER. Similarly
ADSE 2 is split nto two clusters of sizes 194 and 223, and
these could not be split further in the subsequent pass of the
algorithm.

The three-dimensional Encircle data set is split into three
clusters in the first pass, of which two correspond to the
actual two clusters, and the third is a singleton cluster (the
point lying at the bottom of cluster 1 in Fig. 16). The val-
ues of Min, Max and rhresh are 0.007605, 2 488116 and
1794119, respectively. Some small clusters split out of
cluster 2 in subsequent calls to CLUSTER, while cluster 1
was not split further. After merging of small clusters, the
resultant partitioning of the data set is shown in Fig. 16.

For the six-dimensional Concentric data, two clusters
{which correspond exactly to the natural clusters in the data
set) are found automatically by the method. The values of
Min and Max are, respectively, 0.004019 and 1.226477, and
the threshold value is computed as 1.219746. Although the
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Fig. 11, Two-dimensional projection of Concentric data set
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Fig. 12 Clustered Normad.
range {Max — Min) is divided into 1000 intervals, the size elements to be sorted is reduced significantly. (The same
of the Soerted E and FirstOrder arrays were, respectively, was observed for the other data sets as well.) On recursive

481 and 480. This indicates that in practice, the number of calls to CLUSTER with each of the two clusters formed,
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it is found that although both are candidates to be clus- For example, for the inner class, although Max = 0.017861

tered { i.e., for both of them the condition Max = 2 Min was and Min = 0.003606, and thresh = 0.017226 was found,
met ), the number of clusters formed is one in each case. the cluster was not spilt. This effectively indicated that the
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Fig. 1. Clustered Encircle.
clusters formed after the fist pass could not be further split. 11161583, The remaining points are thereafter clustered
For the case of Concenrric_noisy, the outlier points are first into two groups at a threshold of 1.219746, which could

partitioned out into two groups with a threshold value of not be partitioned further. When attempting to merge the
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Fig. 17. Clustered Concentricnoisy data set projected in the fist two dimensions, The outlier points are marked. The inner black region
formed from “+" and the dots (*.") correspond to the two clusters identified by CLUSTER.

small clusters with the nearest cluster (which in fact is the
outer ring), it is found that the corresponding Max value
15 0821710, while the splitting threshold as mentioned ear-
lier is 11.161383. Since 11.161583 = 3 = 0821710, these
points are considered to be outliers, and not merged with
the nearest cluster. The clustered Corceniric_nois) data set,
projected on the first two dimensions, is shown in Fig. 17,
The inner black regions corresponds to one cluster, and the
dots correspond to the other cluster. The outlier points are
also marked.

In case of the Uniform data, the values of Min, Max
and thresh ave 0.004329, 0196130 and 0.171073, respec-
tively. In spite of a call to CLUSTER, and computation of
the threshold value mentioned above, the algorithm yields
only one cluster for this data set, indicating in effect that
it has no clustering tendency. This is expected since the
points are distributed uniformly in a unit cube. It may be
mentioned that even if the method were asked to find some
number, say K, of clusters in this data, it would terminate
with a message that the data cannot be clustered. This is cer-
tainly an intuitively appealing and a desirable characteristic
of the clustering algorithm. Note that most other clustering
techniques, e.g., the partitional methods like the K-Means,
will perforce partition the data set into the said number of
clusters.

5. Discussion and conclusions

A clustering technique, CLUSTER, based on an iterative
partitioning of the relative neighborhood graph has been de-
scribed in this article. It is able to automatically cluster the
data into an appropriate number of partitions. The clusters
need not be of any predefined shape, and may be both con-
vex and non-convex in nature. CLUSTER involves the iden-
tification of an appropriate threshold value, which is kept
adaptive, and computed based on the current partition be-
ing considered. Although the proposed clustering scheme
involves the setting of some parameters, it has been found
to be robust with respect to the values of these parame-
ters. As with other techniques based on relative neighbor-
hood graphs, CLUSTER is able to detect clusters that are
separated. The technique employs a post-processing step of
merging small clusters. However, points that ave outliers of
the data are not merged, even if they form very small clus-
ters of their own.

A characteristic feature of the method is that it is able
to provide an hierarchy of clusters, one nested within the
other, till it obtains compact clusters. No further divi-
sion of the clusters will subsequently take place. This is
in contrast to many other hierarchical clustering schemes
which provide all levels of the hierarchy, from one to n
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clusters, where i is the number of points in the data set.
These schemes generate all the levels of clustering, al-
though the data may not naturally exhibit all these levels of
clustering.

The effectiveness of the clustering technique has been ex-
tensively demonstrated for eight data sets having different
characteristics. The number of dimensions ranges from two
to six. One particular data set, Uniforn, s so chosen that
it does not have any inherent cluster structure. The scheme
CLUSTER is sutomatically able to identify this fact and
yields no clusters for this data set. Another data set, Con-
cenfric_neis), is chosen in order to demonstrate the robust-
ness of the scheme in the presence of noisy, outlier points.
The proposed scheme is able to identify that the small clus-
ters formed from these outlier points should not be merged
with the other clusters. Such small clusters may be ignored
or handled specially during further high-level processing of
the data.

As a scope for future work, we aim to extend the method
s0 that it can be equally effective in case of touching or over-
lapping clusters. This may prove to be a difficult problem
to handle, and therefore extremely challenging. A sensitiv-
ity analysis of the method, as well as extensive comparison
with some other schemes may constitute another important
direction of further research.

Acknowledgements

The author is grateful to the reviewer for the constructive
and helpful comments.

References

[1] ME. Anderberg, Cluster Analysis for Application, Academic
Press, New York, 1973,

[2] RO Duda, PE Hant, Pattern Classification and Scene
Amalysis, Wiley, Mew York, 1973,

[3] LT. Ton, R.C. Gomealez, Pattern Recognition Princples,
Addison-Wesley, Reading, MA, 1974,

[4] B.S. Eventt, Cluster Analysis, 3rd Edition, Edward Arnold,
London, 1993,

[5] Ak, Jain, RC. Dubes, Algorithms for Clustering Data,
Prentice-Hall, Englewood Cliffs, NI, 1988,

[6] E. Alsabti, 5. Ranka, V. Singh, An efficient k-means clustering
algorithm, in: [PPS: |lth International Parallel Processing
Symposium, |[EEE Computer Society Press, Silver Spnng,
MDD, 1998,

[7] E. Hartuv, R. Shamir, A clustering algorithm based on graph
connectivity, Inf, Process, Lett. (2000 175-181.

[8] P. Hansen, M. Mladenovie, J-Mems: a new local search
heuristic for minimum sum of squares clustering, Pattern
Recognition 34 { 2001 ) 405-413.

[9] C. Waong, C. Chen, M. Su A novel algorthm for data
clustering, Pattern Recognition 34 (3001) 425442

[10] P.5. Bmdley, UM. Fayyad, C. Reina, Scaling clustering
algorithms  to large  databases, in: Fourth Intemational
Conference on Knowledge Discovery and Data Mining,
August 1998, New York City, USA, AAAL Press, pp. 9-15.

[11] T. Zhang, R. Ramaknshnan, M. Livny, BIRCH: an
efficient datn clustering method for very large databases,
in: Proceedings of the 1996 ACM SIGMOD Intemational
Conference on Management of Data, Montreal, Canada, 1996,
pp. L3114,

[12] €. Zahn, Graph-theoretical methods for detecting  and
deserbing gestalt clusters, [EEE Trans. Comput. C-20(1972)
HE—86.

[13] 5. Theodoridis, K. Kowroumbas, Pattern Recognition,
Academnic Press, New York, 1999,

[14] G.T. Toussaint, The melative neighborhood graph of a finite
planar set, Pattern Recognition 12 {1980) 261 -268.

[15] K. Urguhart, Graph theomtical clustering hased on limited
neighborhood sets, Pattern Recognition 15 (1982) 173187,

[16] G.C. Osbourn, B.F. Martinez, Empirically defined regions of
influence for cluster analysis, Pattern Recognition 28 (1995)
17931806,

[17] A.M. Bensaid, L.O. Hall, 1.C. Berdek, LP. Clarke, M.L
Silbiger, 1A, Arrington, R.F. Murtagh, WValidity guided
(re jelustering with applications to image segmentation, [EEE
Trans. Furzy Syst. 4 (1996) 112-123,

About the Author—SANGHAMITRA BANDYOPADHYAY did her Bachelors in Physics and Computer Science in 1988 and 1991,
respectively. Subsequently, she did her Masters in Compiter Science from Indian Institute of Technology (IIT), Kharagpur in 1993 and
Fh.[. in Computer Science from Indian Statistical Institute, Calowtta in 1998, Cumently she is a faculty member at Indian Statistical Institute,
Caleutta, India. Dr. Bandyopadhyay is the first recipient of Or. Shanker Daval Sharma Gold Medal and Institute Sifver Medal for being
adjudged the best all round post graduate performer in 0T, Kharagpur in 1994, She has worked in Los Alamos National Laboratory, Los
Alamos, USA, in 1997, as a graduate research assistant, in the University of New South Wales, Sydney, Austmlia, as a post doctoral fellow,
and in the Department of Computer Science and Engineering, University of Texas at Adington, USA, as a faculty and researcher. Dr.
Bandyopadhyay received the Indian National Science Academy { [INSA ) and the Indian Science Congress Association (ISCA) Young Scientist
Awards in 2000, as well as the Indian National Academy of Engineering { INAE) Young Engineers” Award in 2002, Her research interests
include Pattem Recognition, Data Mining, Evolutionary and Soft Computation, Image Processing and Pamllel & [istributed Systems,



	an automatic shape independent-1.jpg
	an automatic shape independent-2.jpg
	an automatic shape independent-3.jpg
	an automatic shape independent-4.jpg
	an automatic shape independent-5.jpg
	an automatic shape independent-6.jpg
	an automatic shape independent-7.jpg
	an automatic shape independent-8.jpg
	an automatic shape independent-9.jpg
	an automatic shape independent-10.jpg
	an automatic shape independent-11.jpg
	an automatic shape independent-12.jpg
	an automatic shape independent-13.jpg

