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1. Introduction

Evolutionary techniques have been used for the purpose

of single-objective optimization for more than three
decades [1]. But gradually people discovered that many
real world problems are naturally posed as muli-
objective. Now a day’s multi-objective optimization is no
doubt a very popular topic for both researchers and
engineers. But still there are many open questions in this
area. In fact there is not even a universally accepted
definition of “optimum”™ as in single objective
optimization, which makes it difficult to even compare
results of one method to another, because normally the
decision about what the “best” answer is corresponds to
the so called (human) decision-maker.

Since multi-criterion  optimization requires
simultaneous optimization of multiple often competing or
conflicting criteria (of objectives), the solution to such
problems is usually computed by combining them into a
single criterion optimization problem. But the resulting
solution to the single objective optimization problem is
usually subjective to the parameter settings chosen by the
user [2], [3]. Moreover, since usually a classical
optimization method is used, only one solution
(hopefully a Pareto-optimal solution) can be found in one
simulation run. So, in-order to find multiple Pareto-
optimal solutions, evolutionary algorithms are the best
choice, because it deals with a population of solutions. It
allows to finding an entire set of Pareto-optimal solutions

in a single run of the algorithm. In addition to this,
evolutionary algorithms are less susceptible to the shape
or continuity of the Pareto front.

The rest of the paper is organized as follows. Section
2 gives a bref description of evolutionary algorithm.
Section 3 addresses the key concept of multi-objective
evolutionary algorithm. The different approaches of
MOEA and their merits and demerits are the subject of
section 4. A discussion of the future perspectives is
oiven in section 3. Section 6 concludes the article. Some
applications of multi-objective evolutionary algorithms
are also indicated.

2. Evolutionary Algorithms

Evolution is in essence a two-step process of random
variation and selection [4]. It can be modeled
mathematically as x[r+1]=s(v({t])), where the
population at time t, denoted as aft]. is operated on by
random variation v, and selection to give rise 1o a new
population x[#+1]. The process of evolution can be
modeled algorithmically and simulated on a computer.
The modeled algorithm is known as evelurionary
algorithms (EAs). Evolutionary compuiation is the field
that studies the properies of these algorithms and similar
procedures for simulating evolution on a computer. The
subject is still relatively new and represents an effort to
bring together researchers who have been working in
these and other closely related fields.
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In essence, the EAs are used to describe computer-
based problem solving algorithms that use computational
models of evolutionary processes as key elements in their
design and implementation. A variety of evolutionary
algorithms have been evolved during the last 30 years.
The major ones are 1) Genefic algorithms, i) Evolution
strategies, 1) FEvolutionary  programming and iv)
Genetic  programming. Each of these constitutes a
different approach, however they are inspired by the
same principle of natural evolution. They all share a
common conceptual base of simulating the evolurion of
individual structures via processes of selection, mutation,
and crossover. More precisely, EAs maintain a
population of structures that evolve according to mles of
seleciion and other operators, which are referred to as
senetic operators, such as crossover and mutarion. Let us
have a discussion about all these evolutionary al gorithms.

2.1. Genetic Algorithms

A genetic  algoritlvn developed by JH. Holland
(1973)[5][1] is a model of machine learning, which
derives its behavior from a metaphor of the processes of
evolution in nature. GAs are executed iteratively on a set
of coded chromosomes, called a population, with three
basic genetic operators: selection, crossover and
mutaiion. Each member of the population is called a
chromosome (or individual) and is represented by a
string. GAs use only the objective function information
and probabilistic transition rules for genetic operations.
The primary operator of GAs is the crossover. The figure
Ishows the basic flow diagram of a GA:
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Figure 1. Basic structure of genetic algorithm

Vol 2, No I, April 2004

Evolutionary strategies (ES) were developed in Germany
by LRechenberg and H.P.Schwefel [6-8]. It imitates
mutation, selection and recombination by using normally
distributed mutation, a deterministic mechanism for
selection (which chooses the best set of offspring
individuals for the next generation) and a broad
repertoire of recombination operators. The primary
operator of the ES is mutation. There are two variants of
selection commonly used in ES. In the elitist variant, the
‘W parents individual for new generation are selected
from the set of both ‘W’ parents and ‘A’ offspring at old
generation. This is called plus strategy (4R,

It parent individuals do not take part in the selection,
then ‘@’ individuals of the next generation are selected
from *A' offspring, which is called comma strategy and
denoted as (,A). The notation (u 4 A) is used to
subsume both selection schemes. Shows the basic
principle of ES.

Algorithm
Begin
t=10
initialize P,
evaluate P,
while (termination condition not satisfied) do

begin
t=1+1
select P, from Py,
mutate P,
evaluate P,

end

end

2.3 Evolutionary Programming
Fogel (1960) proposed a siochastic optimization strategy
similar to GAs called evolutionary programming ( EP)[9].
EP is also similar to evolutionary strategies (ESs). Like
both ES and GAs, EP is a useful method of optimi zarion
when other techniques such as gradient descent or direct
analytical discovery are not possible. Combinatorial and
real-valued funcrion optimizafion, in  which the
optimization surface or fitness landscape is "rugged”,
possessing many locally optimal solutions, are well
suited for evolutionary programming. The basic EP
method involves 3 steps (repeat until a certain number of
iterations is exceeded or an acceptable solution is
obtained):
* (enerate the
randomly.
¢ [Each solution is replicated into a new popularion.
Each of these offspring solutions are mutated
according to a distribution of megarion types,
ranging from minor to extreme with a continuum
of mutation types. The severity of muwration is

initial population of solutions
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judged on the basis of the functional change
imposed on the parenis.
¢ FEach affspring solution is assessed by computing
it's firness. Typically, a stochastic tournament is
held to determine N solutions to be retained for the
Population of solutions, although this s
occasionally performed deterministically. There is
no requirement that the Population size be held
constant, however, not that only a single offspring
is generated from each parent.
It should be pointed out that EP typically does not use
ANy CrossoVver as a genetic operator.

2.4 Genetic programming

Genetic programming (GP) was introduced by John Koza
(19923[10-12]. GP is the extension of the genetic model
of learning into the space of programs. That is, the
objects that constitute the popularion are not fixed-length
character strings that encode possible solutions to the
problem at hand, they are programs that, when executed,
are the candidate solutions to the problem. These
programs are expressed in genetic programming as parse
trees, rather than as lines of code. Thus, for example, the
simple program a+ &*¢ would be represented as:

+
A

a =
o
b ¢

or to be precise, as suitable data structures linked
together to achieve this effect. Because this is a very
simple thing to do in the programming language LISP,
many genetic programmers tend to use LISP. There are
strai ghtforward methods to implement GP using a non-
LISP programming environment also.

The programs in the Population are composed of
elements from the function set and the terminal set,
which are typically fixed sets of symbols selected to be
appropriate to the solution of problems in the domain of
interest.

In GP the crossover operation is implemented by
taking randomly selected subtrees in the individual's
iselected according to fitness) and exchanging them. It
should be noted that GP usually does not use any
mutation as in genetic operator.

3. Multi-objective evolutionary algorithms
Multi-objective optimization methods as the name
suggests, deal with finding optimal solutions to problems
having multiple objectives [13]. So in this type of
problems the user is never satisfied by finding one
solution that is optimum with respect to a single criterion.

40

The principle of a multi-criterion optimization
procedure is different from that of a single criterion
optimization. In a single criterion optimization the main
ooal is to find the global optimal solutions. However, in a
multi-criterion optimization problem, there is more than
one objective function, each of which may have a
different individual optimal soluton. If there is a
sufficient  difference in  the optimal solutions
corresponding to different objectives then we say that the
objective functions are conflicting to each other. Multi-
criterion optimization with such conflicting objective
functions gives rise to a set of optimal solutions, instead
of one optimal solution. The reason for the optimality of
many solutions is that no one can be considered to be
better than any other with respect to all other objective
functions. These optimal solutions have a special name
called Pareto-optimal solutions following the name of an
economist Vilfredo Pareto. He stated in 1896 a concept
according to his name, known as “Pareto optimality™.

The concept is that the solution fo a mulii-objective
optimization problem is normally not a single value but
instead a setf of values also calfed the “Pareio sei”. Let
us illustrate the Pareto optimal solution with the time &
space complexity of an algorithm shown in the following
figure. In this problem we have to minimize both time as
well as space complexity.

The point ‘p’ represents a solution, which has a minimal

F Y

Pareto-optimal front

A J

Time
Figure 2. Pareto optimal solutions

time, but the space complexity is high. On the other hand,
the point ‘r’" represents a solution with high time
complexity but minimum space complexity. Considering
both objectives, no solution is optimal. So in this case we
can’t say that solution *p’ is better than ‘r’. In fact, there
exist many such solutions like ‘g’ also belong to the
Pareto optimal set and one can't sort the solution

according to the performance metrics considering both
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objectives. All the solutions, on the curve, are known as
Pareto-optimal soluiions.

From the figure-2 it is clear that there exist
solutions, which does not belong to the Pareto optimal
set, such as a solution like ‘t". The reason why ‘" does
not belong to Pareto optimal set is obvious. If we
compare ‘t" with solution “q’, 't is not better than ‘g’
with respect to any of the objectives. So we can say that
‘1" is a dominared solution or inferior solution.

Now we are clear about the optimality concept of
multi-criterion. Based on the above discussions, we first
define conditions for a solution to become dominated
with respect to another solution and then present
conditions for a set of solutions to become a Pareto-
optimal set.

Let us consider a problem having m objectives (say

; ; l

j'!-,e:],?,,fi,_____,m and m=1). Any two solutions ur‘ )
2

and u(‘ ) {having ‘t" decision variables each) can have

one of two possibilities-one dominates the other or none

: ; 1). ; g
dominates the other. A solution urt ) is said to dominate

the other solution HLEJ

true:

, if the following conditions are

(h

I. The solution u" " is no worse (say the operator -

denotes worse and = denotes better) than um] in all
2
objectives, or f!- Lu“JJ = fi-tull‘“" WWi=123...m.

(h (2).

2. The solution w™ " is strictly better than w ™" in at

(1)

least one objective, or fﬂ-(u Jp-ft-tur‘zjjfnr at

leastone,ie{1,2.3,.. .m}.

If any of the above condition is violated, the solution

u“Jdoes not dominate the solution umj_ If u“J

)
dominates the solution u(‘"J . then we can also say that
e ®m W

is dominated by u” ", 0
2 . ;
ur‘ ], or simply between the two solutions, u
non-dominated solution.
The following definitions ensure whether a set of
solutions belongs to a local or global Pareto-optimal set:

is non dominated by

(1) is the

Local Pareto-optimal set
If for every member u in a set 5, 3 no solution v

satisfying "““"‘“m =g, where £ is a small positive
number, which dominates any member in the set 5, then
the solutions belonging to the set S constitute a local
Pareto-optimal set. The definition says that if we
perturbing the solution # in a small amount then the
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resultant solution v dominates any member of that set
then the set is called local Pareto optimal set

Global Pareto-optimal set

If there exits no solution in the search space which
dominates any member in the set 5, then the solutions
belonging to the set § constitute a global Pareto-optimal
sel.

Difference between non-dominated sei & a

Pareto-optimal set

A non-dominated ser is defined in the context of a sample
of the search space (need not be the entire search space).
In a sample of search points, solutions that are not
dominated (according to the previous definition) by any
other solution in the sample space constitute the non-
dominated set. A Parefo-opiimal sef is a non-dominated
set, when the sample is the entire search space. The
location of the Pareto optimal set in the search space is
sometimes loosely called as the Pareto optimal region.

From the above discussions, we observe that there
are primarily two goals that a multi-criterion optimization
algorithm must try to achieve:

. Guide the search towards rhe global Parero-

opiimal region, and

2. Maintain population diversity in the Pareio-

opfimal front.
The first task is a natural goal of any optimization
algorithm. The second task is unique to multi-critedon
optimization.

Multicriterion optimization is not a new field of
research and application in the context of classical
optimization. The weighted sum approach, e-perturbation
method, Goal programming, Tchybeshev method, min-
max method and others are all popular methods often
used in practice [14]. The core of these algorithms, is a
classical optimizer, which can at best, find a single
optimal solution in one simulation. In solving muld-
criterion optimization problems, they have to be used
many times, hopefully finding a different Pareto-optimal
solution each time. Moreover, these classical methods
have difficulties with problems having non-convex
search spaces.

Evolutionary algorithms (EAs) are a natural choice
for solving multi-criterion optimization problems because
of their population-based nature. A number of Pareto-
optimal solutions can, in principle, be captured in an EA
population, thereby allowing a user to find multiple
Pareto-optimal solutions in one simulation run. Although
the possibility of using EAs to solve multi-objective
optimization problems was proposed in the seventies.
David Schaffer first implemented Vector evaluated
senetic algorithm (VEGA) in the year 1984, There was
lukewarm interest for a decade, but the major popularity
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of the field began in 1993 following a suggestion by
David Goldberg based on the use of the non-domination
concept and a diversity- preserving mechanism. There
are vardous multi-criterions EAs proposed so far, by
different authors.

4. Different Approaches of MOEA

Following popular approaches have been used by

different researchers for multi-objective optimization,

each one having its merits and demerits.

¢ Weighted-sum-Approach (Using randomly generated
weights and Elitism)

* Schaffer’s Vector
(VEGA)

¢ Fonseca and Fleming's Muli-Objective Genetic
Algorithm (MOGA)

*  Horn, Nafploitis, and Goldberg's Niched Pareto
Genetic Algorithm (NPGA)

o Zitzler and Thiele’s Strength Pareto Evolutionary
Algorithm (SPEA)

*  Srinivas and Deb's Non-dominated Sorting Genetic
Algorithm (NSGA)

o Vector-optimized evolution strategy (VOES)

¢ Weight-based genetic algorithm (WBGA)

¢  Sharing function approach
¢ Vector evaluated approach

¢ Predator-prey evolution strategy (PPES)

¢ Rudolph’s Elitist  multi-objective
algorithm (REMOEA)

¢ Elitist non-dominated
(ENSGA)

* Distance-Based Pareto genetic algorithm (DBPGA)

¢  Thermodynamical genetic algorithm (TGA)

¢ Pareto-archived evolution strategy (PAES)

Evaluated Genetic Algorithm

evolutionary

sorting  genetic  algorithm

4.1. Weighted-Sum Approach

This approach was proposed by Ishibuchi and Murata in
1996[15]. Here they used randomly generated weights
and elitism. Let us see how this method works with the
help of the following algorithm. Suppose there are m

objective functions f!-,izl,lfi,..__,m. Our task is to

optimize (i.e. maximize) all these objective.

Algorithm

. Generate the initial population randomly.

2. Compute the value of the m objectives for each
individual in the population. Then determine which
are the non-dominated solutions and store them in a
separate population that we will call evernal to
distinguish it from the current population, which we
call current.

42

3. If n represents the number of non-dominated
solutions in external and p is the size of current,

then we select p —m pairs of parents using the
following procedure:

® The fitness function used for each individuoal is
flx= Wi ~f| () + Wo -_j"z(.rj +.ouMyy - i () Ge
nerate m random number in the interval [0, 1] i.e.
FlsFyseeees Ty - The weight values are determined as

follow
LN
al {rl +ry oty }
Yi=123...m. This ensure that all W; =0,
i=123...,m and that W s Wo oWy = L.
® Select a parent with probability

Sy = f iy (current)
P e current {f ()= f i, (cuerrent) } ]

where [

plx)=

i is the minimum fitness in the cumrent

population.
4. Apply crossover to the selected p-—n pairs of
parents. Apply mutation to the new solutions
oenerated by crossover.
5. Randomly select n solutions from exernal. Then
add the selected solutions to the p-—n solutions

cenerated in the previous step to construct a
population of size p.

6. Stop if a pre-specified stopping criterion is satisfied

ie.g., the pre-specified maximum number of
senerations has been reached). Otherwise, return to
step 2.

Merits & Demerits

The advantage of this method is, it's computational
efficiency, and its suitability to generate a strongly non-
dominated solution that can be used as an initial solution
for other techniques.

lis main demerit is the difficulty to determine the
weights that can appropriately scale the objectives when
we do not have enough information about the problem,
particularly if we consider that any optimal point
obtained will be a function of such weights. Still more
important is the fact that this approach does not generate
proper Pareto-optimal solutions in the presence of non-
convex search spaces regardless of the weights used.
However the incorporation of elitism is an important
aspect of this method.
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4.2. Schaffer’s Vector Evaluated Genetic

Algorithm (VEGA )

David Schaffer (1984)[16-18] extended Grefenstette’s
GENESIS program  [Grefenstette [1984] to  include
multiple objective functions. Schaffer’s approach was o
use an extension of the simple genetic algorithm (SGA)
that he called the vecior evaluaied genetic algorithm
(VEGA), and that differed from the SGA in selection
only. This operator was modified so that at each
generation a number of sub-populations were generated
by performing proportional selection according to each
objective in turn. Thus for a problem with k" objectives,
‘K’ sub-populations of size N/k would be generated
(assuming a total population size of N). These sub-
populations would be shuffled together to obtain a new
population of size N, on which the GA would apply, the
crossover and mutation operators in the usual way.
Figure 3 shows the structural representation of this
process. Schaffer realized that the solutions generated by
his system were non-dominated in a local sense, because
their non-dominance was limited to the current
population, and while a local dominated individual is also
clobally dominated, the converse is not true [Schaffer
1985]. An individual who is dominated in one generation
may become dominated by an individual who emerges in
a later generation. Also he noted a problem that in
senetics is known as “speciation’ (i.e. we could have the
evolution of ‘species’ within the population which excel
on different aspects of performance). This problem
arises because this technique selects individuals who
excel in one dimension of performance, without looking
at the other dimensions. The potential danger doing it is
that we could have individuals with what Schaffer calls
“middling” performance in all dimensions, which could
be very useful for compromise solutions, but that will not
survive under this selection scheme, since they are not in
the extreme for any dimension of performance (i.e. they
do not produce the best value for any objective function,
but only moderately good wvalues for all of them).
Speciation is undesirable becanse it is against our goal of
finding a compromise solution. Schaffer tried to
minimize this speciation by developing two heuristics —
the non-dominated  selection  hewristic (a wealth
redistribution scheme), and the mate selection feuristicla
cross breeding scheme).

In the non-dominated selection heuristic, dominated
individuals are penalized by subtracting a small fixed
penalty from their expected number of copies during
selection. Then the total penalty for dominated
individuals was divided among the non-dominated
individuals and was added to their expected number of
copies during selection.

But this algorithm failed when the population has
very few non-dominated individuals, resulting in a large
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fitness wvalue for those few non-dominated points,
eventually leading to a high selection pressure. The mate
selection heuristic was implemented by the following
procedure:

Initially select an  individual randomly from the
population. Then the corvesponding mare was selected as
the individual, which has moximwn Euclidean distance

Sfrom i,

Initialize the
Population
Evaluate for Evaluate for Evaluate for
—p|  objective Objective | .. Objective
function f, Function £, Function £,
Select Nk Select Nk Select N/k
sul- s h- suh-
population population |~ population
Based on f, Based on £ Based on £y

.

Combinad all the sub-
population

.

Suffle entire
population

v

Crossover

.

Mutation

v

Is performance
satisfactory ?

Figure 3 Schematic Representation of VEGA

But it failed too to prevent the participation of poorer
individuals in the mate selection. This is because of
random selection of the first mate and the possibility of a
large Euclidean distance between a champion and a less
fitted solution. Schafer concluded that the random mate
selection is far superior than this heuristic.
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Merits & Demerits

The main advantage of this algorithm is its simplicity i.e.
this approach is easy enough to implement. Richardson et
al.(19893[19] noted that the shuffling and merging of all
the sub-populations corresponds to averaging the fitness
components associated with each of the objectives. Since
Schaffer used proportional fitness assignment, these
fitness components were in turn proportional to the
objectives themselves. Therefore, the resulting expected
fitness corresponds to a linear combination of the
objectives where the weights depend on the distribution
of the population at each generation as shown by
Richardson et al.

The main consequence of this is that when we have a
concave trade-off surface certain points in concave
regions will not be found through this optimization
procedure in  which we are using just a linear
combination of the objectives, and it has been proved that
this is true regardless of the set of weights used.
Therefore, the main weakness of this approach is its
inability to produce Pareto-Optimal solutions in presence
of non-convex search spaces.

4.3. Fonseca and Fleming’s MOGA

Fonseca and Fleming (19933[20-22] implemented
Goldberg’s suggestion in a different way. Let us first
discuss what is Goldberg's suggestion about Pareto
ranking.

Goldberg proposed the Pareto ranking scheme in
(1989), where a solution ‘x’ at generation ‘t’ has a
corresponding  objective vector x,, and ‘n’ is the
population size, the solution’s rank is defined by the
following algorithm.

Algorithm

curr_rank = 1

m=n

While n =0 do
Fori=1....m
do
If %, is non-dominated
Rank (x, t) = curr_rank
enddo
For i=1,.....m
do
If rank (%, t)=curr_rank
Remove x from population
n=n-1;
enddo
curr_rank = curr_rank +1
m=n

endwhile

44

This means, in Pareto ranking, the whole population

is checked and all non-dominated individuals are
assigned rank ‘1", Then remove these individuals from
the population, which has rank *1’. Again detect all non-
dominated individual from the rest of the population and
assign rank 2. In this way the procedure goes on till all
solutions have been assigned the required rank.
But in MOGA, the whole population is checked and all
non-dominated individuals are assigned rank *1°. Other
individuals are ranked by checking the non-dominance of
them with respect to the rest of the population in the
following way.

For example, an individual x; at generation t, which
is dominated by p;" individuals in the current generation.
lts current position in the individual's rank can be given
by

Rank(x;, )=1+p;"
After completing the ranking procedure, then it is time o
assign the fitness to each individual. Fonseca and
Fleming proposed two method of assigning fitness.

o  Rank-based fitness assignment method

*  Niche-formation methods.

Rank-based fitness assignment is performed in the
following way [ 1993]

. Sort population according to rank

2. Assign fitness to individuals by interpolating from
the best (rank 1) to the worst (rank n = N) in the
usual way, according to some function, usually linear
but not necessarily.

3. Average the fitness of individuals with the same
rank, so that all of them will be sampled at the same
rate. This procedure keeps the global population
fitness constant while maintaining appropriate
selection pressure, as defined by the function used.

As Goldberg and Deb have pointed out, this type of
blocked fitness assignment is likely to produce a large
selection pressure that might produce premature
convergence. To avoid this, Fonseca and Fleming use the
second method (ie. Niche-formarion method) 1o
distribute the population over the Pareto optimal region,
but instead of performing sharing on the parameter
values, they have used sharing on the objective function
values.

Merits & Demerits

The main advantage of MOGA is that it is efficient and
relatively easy to implement. The performance of this
method is highly dependent on the sharing factor (G-
However Fonseca and Fleming have developed a good
methodology to compute such a value for their approach.



45 Intemational Journal of Computing & Information Sciences

4.4. Horn,

NPGA
Horn, Nafploitis, and Goldberg [23][24] proposed the
NPGA based on Pareto domination towrnament and
equivalence class sharing.

Nafploitis, and Goldberg’s

Pareto domination tournament

This is basically a tournament selection scheme based on
the Pareto dominance. In this selection scheme, a
comparison set comprising of a specific number (1) of
individuals is picked at random from the population at
the beginning of each selection process. Two candidates
for selection are picked at random from the population.
Each of the candidates is then compared against each
individual in the comparison set. If one is dominated by a
comparison set and the other is not, the later is selected
for reproduction. If neither or both are dominated by the
comparison set, then we proceed to the second technique.

Equivalence class sharing

Since both individuals are same i.e. either dominated or
non-dominated, it is likely that they are in the same
equivalence class. So in this case we choose the “best fit”
by the following procedure.

We choose the niche radius (G,...) and according to
that radius, candidates which have the least number of
individuals in the population are the “best fit”. The
following fizgure-4 shows how this procedure work: here
we are maximizing along x-axis and minimizing on the

y-axis.
A
Eaquivalence Class Region
i Candidate |
Candidate 2
o
Niche Radius o, O

L

Fig. 3 Equivalence Class Sharing

In this case the two candidates for selection are not
dominated by the comparison set. So by niche count this
shows that candidate | is best fit.
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Here t,,,, is chosen only once for a particular generation
‘t". After generating the new population apply the genetic
operator similar to other methods.

Algorithm

. Initialize the population size of n.

2. Choose a ty,, size of chromosome randomly from the
current population.

3. Randomly pick up two chromosomes from the
current population.

4. Select n individuals based on the following
procedure: Compare the two chromosome with ty,,
for non-domination by the former definition. If one is
dominated and other is non-dominated then select the
non-domination one. If both are non-dominated or
dominated then by niche formation method then
choose the best one.

5. Apply crossover and mutation to give the new
popul ation.

6. Test whether the performance criteria is satisfied or
not, if not then goto step 2 otherwise step 7.

7. Stop.

Merits & Demerits

Since this approach does not apply Pareto selection to the
entire population, but only to a segment of it at each run,
its main advantages are that is very fast and that it
produces good non-dominated fronts that can be kept for
a large number of generations.

The performance of this method is highly dependent
on sharing factor (Guy.) and the good choice of
tournament size (ly..) and complicated to implement.

4.5. Zitzler and Thiele’s Strength Pareto

Approach (SPEA)
Zitzler and Thiele’'s[25-27] suggested this approach with
the combination of elitism and concept of non-
domination. The following procedure gives the details:

At every generation they are maintaining an external
population called EXTERNAL-storing a set of non-
dominated solutions discovered so far beginning from the
initial population. This external population participates in
genetic operations.

The fitness of each individual in the current
population and in the external population is decided
based on the number of dominated solutions. Specifically
the following procedure is adopted. First of all combine
the external population and current population. Then
assign the fitness to all the non-dominated solutions
based on the number of solutions they dominate.
Generally the highest fitness is assigned to the non-
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dominated solutions having more dominated solution in
the combined population. After generating a population
for next generation, it is required to update the external
population. The updating procedure is as follows:

For each individual in the current population, check
whether it is dominated by, both current population and
external population. If it is not dominated by both then
add this individual to external population (EXTERNAL).
Then all solutions dominated by the added one are
eliminated from extemal population. In this way the
external population is updated in every generation. The
following algorithm shows the idea:

Algorithm

. Initialize the population of size n.

2. Determine all the non-dominated solutions from
current population and store them in a separate
population called EXTERNAL.

3. Combine the external with current population and
assign the fitness to individuals according to how
many solutions it dominates.

4. After assigning the fitness to all the individuals,
select n individuals for next generation.

5. Apply crossover and mutation to get the new

population of size n.

Update the EXTERNAL population.

Test whether the performance criterion is satisfied or

not. If not then goto step 3.0therwise stop.

e

Zitzler and Thieles[253] solved the (/1-Knapsack
problem using this approach. They have reported betier
resulis than other methods.

Merits & Demerits

The main merits of this method are that, it shows the
utility of introducing elitism in evolutionary multi-
criterion optimization. Since this method does not use
sharing factor Gy & L, a5 in the MOGA and NPGA;
this facilitates good advantages.

There exists a multi-objective problem where the
resulting Pareto-optimal front is non-convex. In that case
GA's success to maintain  diverse Pareto-optimal
solutions largely depends on fitness assignment
procedure. This method does not converge to true Pareto-
optimal solutions, because this method uses the fitness
assignment procedure, which is very sensitive to concave
surface.

4.6. Srinivas and Deb’s Non-dominated
Sorting Genetic Algorithm (NSGA)

Non-dominated GAs varys from simple GAs only in the
way the selection operator in used. The crossover and
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mutation operators remain as usual [25-30]. Let us
discuss the selection operator they proposed.

For selection, two steps are needed. First, the
population is ranked on the basis of an individual’s non-
domination level and then sharng is used to assign
fitness to each individual.

Ranking individuals based on non-

domination level

Consider a population of size n, each having m (=I)
objectives function values. The following algorithm can
be used to find the non-dominated set of solutions:

Algorithm
Fori=1 ton do
Forj=1 to n do
If (j != i) then
Compare solutions x'' and
x" for domination using two
conditions for all m objectives.
if for any j , x"' is dominated by x"',
mark x"' as dominated
endif
endfor
endfor

Solutions, which are not marked “dominated”, are non-
dominated solution. All these non-dominated solutions
are assumed to constitute the first non-dominated front in
the population. In order to find the solutions belonging to
the second level of non-domination, we temporarily
disregard the solutions of the first level of non-
domination and follow the above procedure. The
resulting non-dominated solutions are the solutions of the
second level of non-domination. This procedure is
continued till all solutions are classified into a level of
non-domination. It is important to realize that the number
of different non-domination levels could vary between |
o n.

Fitness assignment
In this approach the fitness is assigned to each individual
according to its non-domination level. An individual in a
higher level gets lower fitness. This is done in order to
maintain a selection pressure for choosing solutions from
the lower levels of non-domination. Since solutions in
lower levels of non-domination are better, a selection
mechanism that selects individuals with higher fitness
provides a search direction towards the Pareto-optimal
region.

Setting a search direction towards the Pareto-
optimal region is one of the two tasks of multi-objective
optimization. Providing diversity among current non-
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dominated solutions is also important in order o get a
oood distribution of solutions in the Pareto-optimal front.
The fitness assignment is performed in two stages.

. Assigning same dummy fitness to all the solutions of

a particular non-domination level.

2. Apply the sharing strategy.
Now we discuss the details of these two stages:

First, all solutions in the first non-dominated front
are assigned a fitness equal to the population size. This
becomes the maximum fitness that any solution can have
in any population. Based on the sharing strategy, if a
solution has many neighboring solutions in the same
front, its dummy fitness is reduced by a factor and a
shared fitness is computed. The factor depends on the
number and proximity of neighboring solutions. Onee all
solutions in the first front are assigned their fitness
values, the smallest shared fitness value is determined.

Thereafter, the individuals in the second non-
domination level are all assigned a dummy fitness equal
to a number smaller than the smallest shared fitness of
the previous front. This makes sure that no solution in the
second front has a shared fitness better than that of any
solution in the first front. This maintains a pressure for
the solutions to lead towards the Pareto-optimal region.
The sharing method is again used among the individuals
of second front and shared fitness of each individual is
found. This procedure is continued till all individuals are
assigned a shared fitness.

After the fitness assignment method, use a stochastic
remainder roulette-wheel selection for selecting N
individuals. Thereafter apply the crossover and mutation.
Shared fitness is calculated as follows:

. - - 1
Given a set of n; solutions in the 1"

non-dominated

front each having a dummy fitness value f|. the sharing
procedure is performed in the following way for each
solution § = 1L2.3,..., ny.

[. Compute a normalized Euclidean distance measure

with another solution j in the 1" non-dominated front, as
follows:

I (i) ]
L _ i)
I —
|Z -rlu Alu
| LETR ] e LES ]
‘v r=1 _rll.l -4 =

where ‘P’ is the number of variables in the problem. The

far) L)
and X,

d, =

b
parameter's Xx 3 “are the upper and lower

bounds of variable x .

2. This distance d; is compared with a pre-specified
parameter Gy, and the following sharing function value
is computed:
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o [ﬂrg /a.\'.l'mre' }2 d !ﬁfl'.f = @ chare

shil el s )=
J 0, etherwise

3. Increment j. If j<=n,, go to step | and calculate

shid;). If j=n,, calculate niche count for i solution
as follows: m, =Z .'rh[du.}
=l

(iv). Degrade the dummy fitness f, of i* solution in the
1" non-domination front to calculate the shared fitness,

’ _h

f; .asfollows: f, =
m

L]

This procedure is continued for all i=1,2,3...,n,

,

and a corresponding f. is found. Thereafter, the smallest

value f,""of all in f, the I" non-dominated front is

found for further processing. The dummy fitness of the
next non-dominated front is assigned to  be

fia=f"" —&  where g is a small positive number.

The above sharing procedure requires a pre-specified
parameier G,y which can be calculated as follows:

r — ¥
d.\'.l'f:fre' = njl"lll"dllq g 1
where q is the desired number of distinct Pareto-optimal
solutions. Although the calculation of 0. depends on
this parameter g, it has been shown that q =10 works well
for many test problems.

Merits & Demerits

The main advantage of this method is that it can handle
any number of objectives, and that does sharing in the
parameter value space instead of the objective wvalue
space, which ensures a better distribution of individuals,
and allows multiple equivalent solutions.

Some researcher’s point out that it is inefficient than
MOGA, if we consider both computational efficiency of
the Pareto fronts produced. Another disadvantage is that
it is more sensitive to G-

4.7. Vector-Optimized Evolution Strategy

(VOES)
VOES was suggested by Frank Kursawe (1990)[31] for
multi-objective optimization. Here the fitness assignment
scheme is similar to the VEGA, but Kursawe's algorthm
used a number of other aspects from nature.

Using a diploid chromosome, each having a dormant
and a recessive string represents the solution. Two
different solution vectors (each with a decision variable
vector X and the corresponding strategy parameter vector
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o) are used as an individual in a population. Thus an
individual ¢ results in two objective vector evaluations:

(1) fﬁ , calculated by using the decision variable of the

dominant genotype and (i) f,, calculated by using the
decision variables of the recessive genotype. Let us see
the procedure of fitness evaluation and selection scheme:

Let m be the number of objective functions. Then
the selection process is completed in n steps. For each
step a user defined probability is used to choose an
objective. This vector can either be kept fixed or varied
with generations. If the m™ objective function is chosen,

the fitness of an individual § s computed as a weighted
average of its dominant objective value (f,) and

m

[
L

F'=(2/3)f,0, + 130,
For each selection step, the population is sorted
according to each objective function and the best

recessive objective value (f,. ), ina 2 : Iratio.

{{n—l},.-"n}m portion of the population is chosen as

parents. This procedure is repeated *n’ times, every time
using the survived population from the previous sorting.
Thus the relationship between A and [ is as follows:

p=((m=1)/m)" -4

All new p solutions are copied into an extemal set.
Which stores all non-dominated solutions found since the
beginning of the simulation run. After new solutions are
inserted into the extemal set, a non-domination check is
made on the whole external set and only new non-
dominated solutions are retained. If the size of the
external set exceeds a certain limit, a niching mechanism
is used to eliminate closely packed solutions. This allows
maintenance of diversity in the solutions of the external
sel.

Merits & Demerits

We observe that this algorithm performs a domination
check to retain non-dominated solutions and a niching
mechanism to eliminate crowded solutions. These
features are essential in a good MOEA. Since Kursawe
has not simulated it for multi-objective optimization, it
remains a challenging task to investigate how this
algorithm will fare in more complex problems. Because
of its complications it is not much used by current
researchers.

4.8 Weight-based Genetic Algorithm

(WBGA)
Hajela and Lin {1993)[32[33] proposed a weighi—based
cenetic algorithm for multi-objective optimization. As
the name suggests, each objective function f is

multiplied by a weight w,. A GA string represents all
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decision variables x; as well as their associated weights

w,. The weighted objective function values are then

added together to calculate the fitness of a solution. Each

individual in a GA population is assigned a different

weight vector. The key issue in WBGAs is to maintain

diversity in the weight vectors among the population

members. In WBGASs the diversity in the weight vectors

is maintained in two ways:

* A niching method is used only on the sub-string
representing the weight vectors.

o  Carefully chosen subpopulations are evaluated for
different predefined weight wvectors, an approach
similar to that of VEGA.

Sharing function approach
In addition to n decision variables the user codes a
weight vector of size M in a string, the weights must be
chosen in a way so as to make the sum of all weights in
every string one.

W, = I-l.'r._l."l[E W, ]

Otherwise if only a few Pareto-optimal solutions are
desired, a fixed set of weight vectors may be chosen
before hand and an integer variable x  can be used to

represent one of the weight vectors, w" .
A solution x" is then assigned a fitness equal to the
weighted sum of the normalized objective function

values computed as follows:

Fa®)= Y w20 £, Y= - £7)

In order to preserve diversity in the weight vectors, a
sharing strategy is proposed:

- L0 S
dj'j - |x W _1'"_

The sharing function .'rh[dj.j }is computed with a niching
parameter G,y,... Next calculate the shared fitness F g

Algorithm
. For each objective function j, set upper and lower
bounds as .f‘l‘_“m and _f;lml )

For each

[

solution  §=1,2,3,..., n.calculate  the

distance

with all solutions kK =12,3...,n. Then calculate the
sharing function values as follows:

d. ., =
shid,, }:{ i "fg fd, <o

0, otherwise
Thereafter, calculate the niche count of the solution i as

n, = Zsh[a’lk ).

share share



449 Intemational Journal of Computing & Information Sciences

3 For each solution i=12,...,nfollow the entire

procedure below.
Assign fitness F according to F(x') calculate the

shared fitnessas F, =F, /n_ .

When all population members are assigned fitness F,
the proportionate selection is applied to create the mating
pool. Thereafter crossover and mutation operators are
applied on the entire string, including the sub-string

representing x .

Merits & Demerits

Since a WBGA uses a single—objective GA, not much
change is needed to convert a simple GA implementation
into a WBGA one. Moreover, the complexity of the

algorithm (with a single extra variable x ) is smaller

than other multi-objective evolutionary algorithms.

The WBGA uses a proportionate selection procedure
on the shared fitness values. Thus, in principle, the
WBGA will work in a straightforward manner in finding
solutions for maximization problems. However, if
objective functions are to be minimized, they are required
to be converted into a maximization problem. Moreover,
for mixed types of objective functions (some are to be
minimized and some are to maximized), complications
may arise in trying to construct a fitness function.

Weighted sum approaches share a common difficulty
in finding Pareto-optimal solutions in problems having
non-convex Pareto-optimal region. Thus, a WBGA may
also face difficulty in solving such problems.

Vector evaluated approach

This approach is similar o VEGA. First a set of K
different weight vectors w, (where k= 12.. K are
chosen. Thereafter, each weight vector wy is used to
compute the weighted normalized fitness for all n
population members. Among them the best n/K
members are grouped together into a subpopulation.
Perform selection, crossover and mutation on p, to create
a new population of size n/K, if k <K, increment k by
combine all

one and go (o Otherwise,

subpopulations to create the new population p=uUp, .

step-2.

If Ipl < n, add randomly created solutions to make the
population size equal to n.

Merits & Demerits

Asin any weight-based method, knowledge of the weight
vectors is also essential in this approach. This method is
better in complexity that the sharing function approach,
because no pair-wise distance metric is required here.
There is also no need for keeping any additional variable
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for the weight vectors. However, since GA operators are
applied to each subpopulation independently, an adequate
subpopulation size is required for finding the optimal
solution corresponding to each weight wvector. This
requires a large population size.

By applying both methods in a number of problems,
investigators concluded that the wvector-evaluated
approach is better that the sharing function approach.

4.9. Predator-prey evolution
(PPES)

Laumanns et al. (1998)[34] suggested a multi-objective
evolution strategy (ES), which is different from any of
the methods discussed so far. This algorithm does not use
a domination check to assign fitness to a solution. Instead
the concept of a predator-prey model is used. Preys
represent a set of solutions (x", i=1,2,3.. ,n) which are
placed on the vertices of a undirected connected graph.
First each predator is randomly placed on any vertex of
the graph. Each predator is associated with a particular
objective function. Thus at least M predators are
initialized in the graph. Secondly, staying in a vertex, a
predator looks around for preys in its neighboring
vertices. The Predator catches a prey having the worst
value of its associated objective function. When a prey
x" is canght it is erased from the vertex and a new
solution is obtained by mutating {and recombining) a
random prey in the neighborhood of x". The new
solution is then kept in the vertex. Afier this event is
over, the predator takes a random walk to any of its
neighboring vertices. The above procedure continues in
parallel {or sequential) with all predators until a pre-
specified number of iterations have elapsed.

strategy

Merits & Demerits

The main advantage of this method is its simplicity.
Random walks and replacing worst solutions of
individual objectives with mutated solutions are all
simple operations, which are easy to implement. Another
advantage of this algorithm is that it does not emphasize
non-dominated solutions directly. Experimentally shown
that the algorithm is sensitive to the choice of mutation
strength parameter and the ratio of predator and prey. No
explicit operator is used to maintain a spread of solutions
in the obtained non-dominated set.

4.10. Thermodyanamical genetic

algorithm (TDGM)
Kita et al. ( 1996) [33] suggested a fitness function, which
allows a convergence near the Pareto-optimal front and a
diversity-preservation among obtained solutions. The
fitness function is motivated from the thermodynamic
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equilibrivm condition, which comesponds to  the
minimum of the Gibb's energy F, defined as follows:

F=(E}-HT,
where {E} is the mean energy, H is the entropy, and T is

the temperature of the system. The relevance of the
above term in multi-objective optimization is as follows.
The mean energy is considered as the fitness measure.
The second term HT controls the diversity existent in the
population members. In this way minimization of F

means minimization of {E} and maximization of HT. In

the padance of multi-objective optimization, this means
minimization of the objective function (converzence
towards the Pareto-optimal set) and the maximization of
diversity in obtained solutions. Since these two goals are
precisely the focus of an MOEA, the analogy between
the principle of finding the minimum free energy state in
a thermod ynamic system and the working principle of an
MOEA is applicable.

Algorithm

. Select a population size N, maximum number of
generations ¢ and an annealing schedule T'(f)

(monotonically non-increasing  function) for the

temperature variation.

Set the generation counter t={0 and initialize a

random population P{t) of size N.

3. Using crossover & mutation operator, create the
offspring population Q(t) of size N from P(t).
Combine the parent and offspring populations
together and call this

R(t)=P(t)wQ(t).

]

4. Create an empty set P(t+1) and set the individual
counter { of P(t+1) to one.

5. For every  solution je R(t),  construct
P'(t, j)=P(t+1)U{j}land calculate the free
energy fitness of the ;" member as follows:
F(j) =(E(D)=T®)Y H, () where

(E(_j})zz E, JP*U. ;}| and the entropy is
defined as H, [_f}=—ZP," log P* . The term P
is the proportion of bit ‘1" on the locus k of the
population P(¢, j).

After all 2N population members are assigned a
fitness, find the solution % R(t)which will

minimize F given above . Include j=e R(t+1).
6. If i< N, then i=i+1 and go tostep 5.
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7. 0If t=t then t =¢+1 and go to step 3.

max ¥

The term E, can be used as the non-dominated rank of
the k* solution in the population P’(t, j).

Merits & Demerits

Since both parents and offspring populations are
combined and the best set of N solutions are selected
from the diversity preservation point of view, the
algorithm is an elitist algorthm.

The TDGA requires a predefined annealing
schedule To(t)- It is interesting to note that this
temperature parameter acts like a normalization
parameter for the entropy term need to balance between
the mean energy minimization and  entropy
maximization. Since this requires a crucial balancing act
for finding a good convergence and spread of solutions,
an arbitrary T(t) distribution may not work well in most
problems.

4.11. Pareto-archived evolution strategy

(PAES)

Knowles and Corne (2000) suggested a MOEA, which

uses an evolution strategy. In its simplest form, the PAES

uses a (l+1)- ES. The main motivation for using an ES
came from their experience in solving real world
telecommunications network design problem.

At first, a random solution x; (call this a parent)
is chosen. Using a normally distributed probability
function with zero mean and with fixed mutation strength
then mutates it. Let us say that the mutated offspring is
Cy. Now both of these solutions are compared and the
winner becomes the parent of the next generation. The
main crux of the PAES lies in the way that a winner is
chosen in the midst of multiple-objectives.

Al any generation t, in addition to the parent P,
and the offspring C,, the PAES, maintains an archive of
the best solutions found so far. Initially, this archive is
empty and as the generations proceed, good solutions are
added to the archive and updated. However a maximum
size is always maintained. First the parent P, and the
offspring C, are compared for domination. It generates
three scenarios:

e [f P, dominates C, the offspring C, is not accepted and
a new mutated solution is created for further
processing.

e [f C, dominates P, the offspring is better than the

parent. Then solution C, is accepted as a parent of the

next generation and as copy of it is kept in the
archive.

If both P, and C, are non-dominated to each other,

then the offspring is compared with the current

archive:
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®  The offspring is dominated by a number of the
archive. This means this is not a worth candidate,
s0 the parent P, again mutated to find new
offspring for further processing.

®= The offspring dominates a member of the
archive. Then the dominated members are
deleted and the offspring is accepted. The
offsping becomes the parent of the next
oeneration.

®  The offspring is not dominated by any member
of the archive and it also does not dominate any
member of the archive. In this case, it belongs to
that non-dominated front in which the archive
solution belongs. In such a case the offspring is
added to the archive only if there is a slot
available in the latter.

The acceptance of the offspring in the archive does not
qualify it to become the parent of the next generation.
This is because as for the offspring C,, the current parent
P,is also a member of the archive.

To decide who qualifies as a parent of the next
ceneration, the density of solution in their neighborhood
is checked. The one residing in the least crowded area in
the search space qualifies as the parent. If the archive is
full, the above density-based comparison is performed
between the parent and the offspring to decide who
remains in the archive. The density calculation is
different from the other methods we have discussed so
far.

Each objective is divided into 2 equal divisions,
where *d’ is a user defined depth parameter. In this way,
the entire search space is divided into (2)* unique, equal
sized M dimensional hypercubes. The archived solutions
are placed in these hypercubes according to their
locations in the objective space. There after the number
of solutions in each hypercube is counted. If the offspring
resides in a less crowded hypercube than the parent, the
offspring becomes the parent of the next generation.
Otherwise the parent solution continues to be the parent
of the next generation.

Algorithm (Single iteration)

Parent, P, offspring C, and an archive A,. The archive
is initialized with the initial random parent solution.

. If C is dominated by any member of A . set
P F (A, is not updated). Process is complete.

i+l T i
Otherwise, if C,dominates a set of members from
Ay

D(C,)={ilie A,,C, <i}, perform the following
step.
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AJ :A.l JII'ID{CJ}
AJ =AJ U{C-}
P C

i+1 = i
Process is complete. Otherwise go to step 2.

2. Count the number of archived solutions in each
hypercube. The parent P, belongs to a hypercube

having n, solutions. While the offspring belongs o

a hypercube having n, solutions. The highest count

hypercube contains the maximum number of

archived solutions.
It |A,; ~ N, include the offspring in the archive or
A=A ulCand P

1+l
return. Otherwise (if |AJ| =N ), check if C, belongs
to the highest count hypercube. If yes reject C,, set
P

1+1

=winner(C,,P) and

=P, and return. Otherwise replace a random
solution r from the highest count hypercube with C;:

AJ = AJ .I'If{r}
A] = }'l] L {CJ .}
P, =winner(C,,P)

The  process is  complete. The  winner

I:C‘ o }chmses C.if n.<n,.
Otherwise it chooses P,

Merits & Demerits

The PAES has a direct control on the diversity that can
be archived in the Pareto —optimal solutions step-2 of the
algorithm emphasizes the less populated the hypercubes
to survive, thereby ensuring diversity. Choosing an
appropriate value of d can control the size of these
hypercubes. In addition to choosing an appropriate
archive size (n), the depth parameter d, which directly
controls  the hypercube size, is also an important
parameter.

4.12. Rudolph’s Elitist Multi-objective

Evolutionary Algorithm (REMOEA)
Rudolph (2001 )[36][37] suggested, but did not simulate,
a multi-objective evolutionary algorithm that uses
elitism. MNewvertheless, the algorithm provides a useful
plan for introducing elitism into a multi-objective EA. In
its general format, parents are used to create offspring
using genetic operators. Mow there are two populations:
the parent population P, and the offspring population Q.
The algorithm works in three steps as follows:
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Algorithm

. Create the parent population P, to create an offspring
population . Find non-dominated solutions of (J,
and put them in Q% Delete Q% from @, or (, = Q)
0% Set P'=0'=0.

For each ¢ & 0% find all solutions ps P, that are
dominated by g, put these solutions of P, in a set

Dyg). 1If |DLqJ| =0, carry out the following:

)

F, =F, [D(g)
P =P'Uig}
Q*=Q%{q)

Otherwise, if Dig) = 0 and g is non-dominated with
all existing members of Pyfr), then perform the
following:

Q'=Q'ulq}. 0*=0*/q)
=PUP. ¥
.Pj+,| < ft, then fill P.; with elements from the

following sets in the order mentioned below until

Pt+1)=(0"0%0,).

3. Form a combined population P,

Merits & Demerits

Rudolphs has proven that the abowve algorithm with a
‘positive variation kernel’ of its search operators allows
convergence (of at least one solution in the population) to
the Pareto-optimal front in a finite number of trials in
finite search space problem. However, what was not been
proved is a guaranteed maintenance of diversity among
the Pareto—optimal solutions. If a population—based
evolutionary algorithm converges to a single Pareto-
optimal solution, it cannot be justified for its use over
other classical algorithms. What makes evolutionary
algorithms attractive is their ability to find multiple
Pareto-optimal solutions in one single run.

4.13. Elitist Non-dominated Sorting

Genetic Algorithm (ENSGA)
Like Rudolph's algorithm, in ENSGA, the offspring
population ), is first created by using the parent
population P,. However, instead of finding the non-
dominated front of Q, only, first the two populations are
combined together to form R, of size 2N. Then a non-
dominated sorting is used to classify the entire population
R, Though it requires more effort than ), alone, but
allows a global non-dominated check among the
offspring and parent solutions. Once the non-dominated
sorting is over, the new population is filled by solutions
of different non-dominated fronts, are at a time. The
filling starts with the best non-dominated front and
continues with solutions of the second non-dominated
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front, followed by the third non-dominated front, and so
0.

F, F F; F,s

P1+l Fl Fs F_ﬂ,

After non-
dominated sorting

Fieure 5. Structural representation of ENSGA

Since the overall population size of R, is 2N, not all
fronts may be accommodating in N slots available in the
new population. All fronts, which could not be
accommodated, are simply deleted. When the last
allowed front is being considered, there may exist more
solutions in the last front than the remaining slots in the
new population. Instead of arbitrarily discarding some
members from the last front, it would be wise to use a
niching strategy to choose the members of the last front,
which reside in the least crowded region in that front.

A strategy like the above does not affect the
proceedings of the algorithm much in the early stage of
evolution. This is because, early on, there exist many
fronts in the combined population. It is likely that
solutions of many good non-dominated fronts are already
included in the new population, before they add up to n.
It then hardly matters which solutions is included to fill
up the population. However, during the later stages of the
simulation, it is likely that most solution in the
population lie in the best non-dominated front. It is also
likely that in the combined population R, of size 2N, the
number of solutions in the first non-dominated front
exceeds N. The above algorithm then ensures that
niching will choose a diverse set of solutions from this
set. When the entire population converges to the Pareto-
optimal front the continuation of this algorithms will
ensure a better spread among the solutions. Following
shows the step-by-step format of algorithms.
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Algorithm

I. Combine parent and offspring populations and create

R, =P U Q, Perform a non-dominated sorting to R,

and identify different fronts: F;, i= 1,2,...efc.

Set new population P ;= 0. Set a counter i=/{.

Until IP u; | + F; < N, perform P ,.; = P .y & F, and

i =i+l

3. Perform the crowding-sort (F;, < «¢) procedure
(described below) and include the most widely
spread (V- 1P.0) solutions using the crowding
distance values in the sorted Fito P ..

4. Create offsprng Q. from P ,.; by using the crowded
tournament  selection,  crossover and  mutation
operators.

]

Let us see the
procedure:

following crowding-sort (F,<c)

f.  Call the number of solutions in Fasl = |IFL
Foreach i in the set, first assign ;= 0.

2. For objective function m = [, 2, ... M sort the set in
worse order of [, or, find the sorted indices vector: i"
= sort (f, , =)

3. For m= 12, M, assign a large distance to the
boundary solutions, or d" = dy" = == and for all
other solutions j= 2 to I-1, assign _

di" = dii" + (ful L") = Sl Tt W™ f™))
The index I; denotes the solution index of the j"
member in the sorted List.

Crowded Tournament Selection Qperator

The crowded comparison operator (<c¢) compares two
solutions and returns the winner of the tournament. It
assumes that every solution i has two atributes:

I. A non-dominated rank # in the population.

2. Alocal crowding distance (d;) in the population.
Based on these two attributes, we can define the crowded
tournament selection operator as follows: A solution {
win a tournament with another solution j if any of the
following conditions are true.

I If solution i has a better rank, i.e. r; < r.
2 If they have the same rank but solution { has a better
crowding distance than solution j, Le. r; = r; and &, >
.:{,-.
Hence, the one residing in a less crowded area (with a
larger crowding distance ;) wins. The crowding distance
d; can be computed in various ways. In the above we
have mentioned a method.

Merits & Demerits

The solutions are competing based on their crowding
distances, no niching parameter is required here (such as
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Ougane Deeded in the MOEA  NSGA's & NPGAs). In the
absence of the crowded comparison operator, this
algorithm also exhibits a convergence proof to the
Pareto-optimal solution set similar to that in Rudolph’s
algorithm, but the population size would grow with the
generation counter. The elitism mechanism does not
allow an already found Pareto-optimal solution to be
deleted. However when the crowded comparison is
used to restrict the population size, the algorithm loses its
CONVErgence property.

4.14. Distance Based Pareto Genetic

Algorithm (DBPGA)

Osyezka and Kundu ( 1995) [38][39] suggested an elitist
GA a distance—based Pareto genetic algorthm (DPGA),
which attempts to emphasize the progress towards the
Pareto — optimal front and the diversity along the
obtained front by using one fitness measure. This
algorithm maintains two populations, One standard GA
population P, where genetic operation are performed and
another elite population E, containing all non-dominated
solutions found thus far. The working principle of this
algorithm is as follows:

Algorithm

. Create an initial random population Py of size N and
set the fitness of the first solution as F,. Set
seneration counter t=().

If t=0), insert the first element of Py in an elite set Eq
={1}. For each population member j = 2 for t=0 and
j= 1 fort =0, pedform the following steps to assign a
fitness value.

Calculate the distance dj'* with each elite member k (
with fitness e, ", m=1,2....k) as follows:

]

Z [.[. e1|:|l:1:l' l.-:||1l:-i:l.]"|l [.eu:ll:l‘:l.].]2

{ky _
4 =

Find the minimum distance and the index of the elite
member closest to solution j:
d; ™" = min d;""',
ij i { k: dj-;]n.:lzdjmul}
If any elite member dominates solution j the fitness
of jis
F,= max [0, F(e™"- d™")
otherwise, the fitness of jis
F;= Fe""”) + d™
and j is included in E by eliminating all elite
members that are dominated by j.
3. Find the maximum fitness value of all elite members:
El
Fiw = Max F;
k=1
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All elite solutions are assigned fitness F.,.
4. If t < 1, or any other termination criteria is satisfied,
the process is complete. Otherwise go to step-3.
5. Perform selection, crossover and mutation on P, and
create a new population Py Set t = t+1 and go to
step-2.

MNote that no separate genetic processing is performed on
the elite population E, explicitly. The fitness Fiw. of elite
members is used in the assignment of fitness of solutions
of P,.

Merits & Demerits

For some sequence of fitness evaluations both goals of
progressing towards the Pareto-optimal front and
maintaining diversity among solutions are archived
without any explicit niching method.

Since the elite size is not restricted, so it will grow to
any size. This will increase the computational complexity
of the algorithm with generations. Here the choice of the
initial F, is important. The DPGA fitness assignment
scheme is sensitive to the orderdng of individual in a
population.

S5.Future research directions

Although a lot of work has been done in this area, most
of it has concentrated on application of conventional or
ad-hoc  techniques to cerain difficult  problems.
Therefore, there are several research issues that still
remain to be solved. Some of which are discussed here.

. Applicability of MOEA in more difficult real world
problems.

2. The stopping criteria of MOGA, because it is not

obvious to understand when the population has

reached a point from which no further improvement

can be reached.

Choosing the best solution from Pareto optimal set.

Hybridization of multi-objective EAs.

Although a lot of work has been done in this area but

the theoretical portion is not so much exploited. So a

theory of evolutionary multi-objective optimization

is much needed, examining different fitness

assignment methods in combination with different

selection schemes.

6. The influence of mating restrictions might be
investigated, although restricted mating is not very
widespread in the field of multi-objective EA.

b e e

6.Conclusion and Discussion

In this paper, we have described an overview of the EAs
such as EP, ES, GP & GA. Then the importance of EA in
Multi-objective optimization problems. We attempted to
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provide a comprehensive review of the most popular
evolutionary-based  approaches to  mulii-objective
optimization problems, also a brief discussion of their
advantages, disadvantages. Finally we discuss the most
promising area for future research.

Recently multi-objective Evolutionary algorithms are
applied in various fields such as Engineering design
problems, Computer networks, Goal Programming, Gas
turbine Engine controller design, and resource scheduling
etc [40-43].

Other hybridizations typically enjoy the generic and
application specific merits of the Individual MOEA
techniques that they integrate [44-47].
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