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Abstract

The problem of image object extraction in the framework of rough sets and granular computing is addressed. A mea-
sure called “rough entropy of image™ is defined based on the concept of image granules. Its maximization results in
minimization of roughness in both object and background regions; thereby determining the threshold of partitioning.
Methods of selecting the appropriate granule size and efficient computation of rough entropy are described.
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1. Introduction

It has been argued, both from philosophical
and theoretical points of views, that information
eranulation is essential to human problem solving,
and hence has very significant impact on the design
and implementation of intelligent system. Zadeh
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(1997) identified three basic conceptis that underlie
the process of human cognition, namely, granula-
tion, organization, and causation. “Granulation
involves decomposition of whole into parts, orga-
nization involves integration of parts into whole,
and causation involves association of causes and
effects’.

A pranule is a clump of objects [points), in
the universe of discourse, drawn together by
indistinguishahility, similarity, proximity, or func-
tionality. Granulation leads to information com-
pression/summarization. In situations involving
incomplete, uncertain, or vague information, it
may be difficult to differentiate different elements
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and instead it is convenient to consider granules,
ie., clump or group of indiscernible elements,
for performing operations. Granular computing
{Gr(C) may be regarded as a unified framework
for theories, methodologies and techniques that
make use of such granules in the process of prob-
lem solving.

Recently, rough set theory (Pawlak, 1991) has
become a popular mathematical framework for
eranular computing. The focus of rough set theory
is on the ambiguity caused by limited discernibility
of objects in the domain of discourse. 1ts key con-
cepts are those of object ‘indiscernibility” and “set
approximation”. The primary use of rough set
theory has so far mainly been in generating logical
rules for classification and prediction (Skowron
and Rauszer, 1992) using information granules;
thereby making it a prospective tool for patiern
recognition, image processing, feature selection,
data mining and knowledge discovery process
from large data sets. Use of rough set rules based
on reducts has significant role for dimensionality
reductionffeature selection by discarding redun-
dant features; thereby having potential application
for mining large data sets (Komorouski et al.,
1999} As far as rough set theoretic image process-
ing is concerned, there is hardly any investigation
reported so far. However, in related areas like pat-
tern analysis/clustering mention may be made of
the studies of Wojcik (1987), and Pal and Mitra
(2002). While rough sets are used in (Wojcik,
1987) for describing image features for analysis,
they are used in a part in (Pal and Mitra, 2002)
for initializing EM algorithm in conjunction with
minimal spanning tree (MST) for clustering with
application to multi spectral images.

In the present article we demonstrate an appli-
cation of rough sets and granular computing for
object extraction (Gonzalez and Woods, 2002)
from gray scale image. In gray scale images bound-
aries between ohject regions are often ill-defined.
This uncertainty can be handled by describing
the different objects as rough sets with upper
{outer) and lower (inner) approximations. The set
approximation capability of rough sets is exploited
in the present investigation to formulate an entropy
measure, called rough entropy, quantifying the
uncertainty in an object-background image. This

has been done by defining an image as a collection
of pixels and the equivalence relation induced par-
tition as pixels lying within each non-overlapping
window over the image. With this definition the
roughness of various transforms {or partitions) of
the image can be computed using image granules,
ie.. windows, of different sizes.

Maximization of the said rough entropy
measure minimizes the uncertainty arising from
vagueness of the boundary region of the object.
Therefore, for a given granule size, the threshold
for object-background classification can be ob-
tained through its maximization with respect to
different image partitions. A guideline for selecting
the appropriate granule size from gray level distri-
bution is given, as well as a way of computing the
rough entropy efficiently only in one pass (or scan)
of the image. Effectiveness of the method is dem-
onstrated on different kinds of images.

2. Rough entropy measure of an image
2.1, Rough set

Let .« = {{/, 4} be an information system, and
let 8C 4 and X' C U. We can approximate the
set X using only the information contained in B
by constructing the lower and upper approxima-
tions of X If Y C U, the sets {x & U:[x]z C X
and {xe Uilx]lsNA #£ 0}, where [x]z denotes
the equivalence class of the object x € U relative
to Iy (the equivalence relation), are called the B-
fower and B-upper approximations of X in U They
are denoted by BY and BY, respectively. The ob-
jects in BY can be certainly classified as members
of X on the basis of knowledge in B, while objects
in BY can only be classified as possible members of
X on the basis of B. These are illustrated in Fig. |
where the sets of dark-gray granules represent
lower approximation, while those of both dark-
eray and light-gray granules together denote upper
approximation. Therefore, a rough set is nothing
but a crisp set with rough representation.

The roughness of a set X with respect to B can
be characterized numerically (Pawlak, 1991) as
R, =1- E.i-: This means if roughness of the set
X is 0 then X is crisp with respect to B, and if
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Fig. I. Rough representation of a set with upper and lower
approjimations,

R, = 0 then Xis rough (i.e., Xis vague with respect
to #). For details one may refer to Pawlak (1991),
Skowron and Rauszer (1992) and Komorouski
et al. (1999).

2.2 Image as a rough sei

In gray scale images boundaries between ohject
regions are often ill defined because of grayness
and/or spatial ambiguities (Pal, 2001). This uncer-
tainty can be handled by describing the different
objects as rough sets with upper {or outer) and
lower {or inner) approximations. Here the con-
cepts of upper and lower approximation can be
viewed, respectively, as outer and inner approxi-
mations of an image region in terms of granules.

Let the universe U be an image consisting of a
collection of pixels. Then if we partition U into a
collection of non-overlapping windows {of size
m ¥ n, say), each window can be considered as a
granule &. In other words, the induced equivalence
classes {,.,, have mxn pixels in each non-over-
lapping window, Given this granulation, object re-
gions in the image can be approximated by rough
sets.

Let us consider an object-background separa-
tion (a two class) problem of an M= N, L level
image. Let prop(8) and prop() represent two
properties (say, gray level intervals 0,1,....T and
T'+1,T+2,....,L —1) that characterize back-
ground and object regions, respectively. Given this
framework. object and background can be viewed
as two sets with their rough representation as
follows:

The inner approximation of the object (Oy):

0, = {UGJP_‘, =T, ¥=1..,mn and

P; is a pixel belonging to CF,}_
Quter approximation of the object {Or):

E‘rr={ G.3j.i=1,..., mn st P> T,

where P; is a pixel in G,}_
Inner approximation of the background { By):

B, = {LJC..‘JLF‘_.l T, ¥i=1,...,mn, and

P; is a pixel belonging to G,}_

Quter approximation of the background (Br):
By = {UG“EUJ =1l,...,munst. P, T,

where P; is a pixel in G,}_

Therefore, the rough set representation of the
image (ie., object Oy and background By) for a
given [, depends on the value of T

Let the roughness of object O and background
B4 be defined as

,_lo,| _[orl - log

o = —— = =
|Or| |0y (1)
Re — 1 By |Br| — |8y
gy =l ——=—=—— =,
|Br] |8+

where |@] and |0 are the cardinality of the sets
Oy and Or, and |B,] and |By| are the cardinality of
the sets By and By, respectively.

2.3, Rough entropy measure

Rough entropy (RE) of an image can be defined
as

REr = — %[Ru, log,(Ro,) + Ry, log(Ry, ). (2)
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Fig. 2. Plot of rough entropy For various values of roughness of
the ohject and background.

Its plot for various values of Ry, and Ry, is
shown in Fig. 2.

(1) The value of RE+ lies between 0 and 1.

{2) RE; has a maximum value of unity when
Ry, = Ry, = 1/e, and minimum value of zero
when Ru-l., R_g;. = {ﬂ ].]'

{3a) Since the boundary pixels are common for
both object and background, we have
Op — 0, =B — B, = Q,, say. Therefore,

R”ﬁl = R_g:, B iff |Qr| = |§T|

Under this condition, the distribution of
REy on the diagonal (joining (0,0} and
(1,1)) is shown in Fig. 3, where RE attains
a maximum value of unity at Ry =
Rﬂr = ].I."IE'.

(3b) When |Oy] < |By|, then Ry, > Ry, and
|24 = | By, then Ry, < Ra,.
In either case, REy will decrease from its
maximum value of unity and will reach a
value of zero at (0,09, (0,13, (1,0) and {1,1)
in the (Ry,, Ry, ) plane (Fig. 2).

3. Object extraction minimizing roughness

Let us describe a method of object enhance-
ment/extraction based on the principle of minimiz-
ing the roughness of both object and background
regions, i.e., maximizing RE4. As explained in Sec-
tion 2.2, one can compute for every T the RE4 of
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Fig. 3. Plot of rough entropy for the values (0, 0) to (L 1) on the
diagonal of Fig. 2 {ie., when £, = f5,).

the image, representing the background and object
regions (0,._., Ty and (TH+1,..., L —1), respec-
tively, and select the one for which RE; is maxi-
mum. In other words, select

T = arg max RE;.

as the optimum threshold to provide the object-
background segmentation. Note that maximizing
the rough entropy to get the required threshold
basically implies minimizing both the object rough-
ness and background roughness.

3.1 Choice of granule size

As can be seen, the determination of T* by
maximization of rough entropy or minimization
of roughness depends on the granule size. A choice
of granule size can be made from gray level distri-
bution of the image by selecting a value approxi-
mately equal to the minimum of half the width
of base regions corresponding to all the peaks in
the histogram. This will allow the algorithm to
take into account the local information (details)
of all the regions, as indicated by different peaks
in the histogram, and facilitate the detection of
the smallest region. Any granule larger (or smaller)
than this may result in losing some desirable re-
gions (or detection of spurious undesirable re-
gions) by the decrease (or increase) in the value
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of T*, assuming that the regions of interest corre-
spond to lower side of the histogram. The details
of the selection procedure are shown in Section 4
with histograms of different images.

3.2 Algorithm for threshold selection

Following is the algorithm for efficient imple-
mentation of the aforesaid methodology for select-
ing T%.

Let max_gray and min_gray be the maximum
and minimum gray level values of the image,
respectively. Let granule; represent a window of
mx»n pixels. Let total number of granules be
total_no_granule.

Initialize: Four integer arrays namely ofject
lower,  object_wpper,  background lower,  back-
ground_upper each of size (max gray — min _gray+
1) to zero.

Step 11 fori =1 to total_no_granule
max_granule, = maximum gray value of
pixels in granude;
min_granule; = minimum  gray value of
pixels in granule;
(a) for max_granule; < [ < max_gray
object_Tower(f) = object_lower(f) + 1
(b) for min_granule; < j < max_gray
object__ upper(f) = object_upper(j) + 1
(c) for min_gray < [ = min_granule,
hackground lower(j) = background _
fower(f) + 1
(d) for min_gray = j = max_granule;
hackground _upper( ) = background
upper(f) + 1
Step 22 for ! = min_gray to max_gray
object_roughness(l) = 1 — [object_lower( 1)/
obfect_upper()]
hackground _roughness(i)
= 1 — [hackground lower(])/
hack ground _upper( )]
Rough _entropy )
= —[§] x [object_roughness(l)
log (object_roughnessi({))
+ hackground _roughness()
log | hack grownd_roughness({))]
Step 3 Threshold{optimal)
= arg max [rough_entropi)].

Remark. Given the max_gray and min_gray val-
ues, the computation of rough entropy (and hence
the algorithm) requires only a single scan of pixels
in the image, since max_granule; and min_granule,
are computed exactly once for each i Therefore
the computational complexity of the algorithm is
same as that of histogram computation.

4. Experimental resulis

The effectiveness of the methodology for object
extraction hased on rough entropy (Eq. (2)) is
demonstrated on three different types of images.
These are: (i) a text image (TEXT), (ii) a blocks
image (BLOCKS), and (iii) a remote sensing image
(CALCUTTA). The details of the images are as
follows: The TEXT image (Fig. 7Ta)) is of
1003 x 2249 pixels and scanned from a news letter
of IAPR. The BLOCKS image (Fig. 8(a)) is taken
with a CCD camera when the blocks of different
shapes are placed on table and imaged. The size
of the image is 512 x 512 pixels. The CALCUTTA
image is an IRS-1A image, which was taken using
the scanner LISS-11 {Linear Imaging Self Scanner)
in the range of wavelength 0.77-0.86 pm and it has
a spatial resolution of 36.25mx 36.25m. The
image is covering an area around the city of Cal-
cutta (Fig. ¥ a)). The image is of size 512x 512,
Due to poor illumination, the actual object classes
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Fig. 4. Histogram ol the TEXT image, minimum estimated
base width is 3 between gray levels 105 and 135
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Fig. 5. Histogram of the BLOCKS image, minimum estimated
base width is 68 between gray levels 150 and 218,

present in the input image are not visible clearly;
therefore an enhanced version of the input image
highlighting the different object regions are shown
in Fig. 9(a) for convenience.

At first we discuss about the selection of the
granule size (window size) for the computation of
rough entropy on these images. The histograms
(Figs. 7-9) of all these images are himodal. For
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Fig. 6. Histogram of the CALCUTTA image, minimum
estimated base width is 8 between 16 and 24 gray level.

the TEXT image (Fig. 4) the base width of each
region is approximately 30 levels. Therefore, as
mentioned in Section 3, we take the granule size
as 15 x 15 (half of the smaller base width).
Similarly for the BLOCKS image (Fig. 5) the
widths of the regions at the base are 100 and 68
approximately. Therefore, a granule for this image
can be of size 34 x 34. For the CALCUTTA image
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Fig. 7. Thresholds by maximizing rough entropy using granule of dilferent sizes on TEXT image: (a) original, {(b) threshold = 169,

granule size = 15 = 15, {¢) threshold = 171, granule size

10= 10, (d) thresheld

168, granule size = 19 =19,
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{Fig. 6) the widths being 8 and 30, 4 x 4 is a choice
of the granule size.

Experiments were conducted with these granu-
lar sizes, as well as with other values, to demon-
sirate the effectiveness of the aforesaid selection
criterion. The results are as follows.

The image TEXT is seen to be clearly seg-
mented into text and back ground portions as
shown in Fig. 7(b), with threshold value 169 which
is determined with granule size of 15x 15, The
other two results which are obtained with window
sizes 10 10and 19 = 19 are shown in Fig. 7(c) and
{d) corresponding to thresholds 171 and 168, As
explained in Section 3.1, increase in granule size
is seen to reduce the value of T, and vice versa.
Since the histogram has a wide smooth flat valley
between two major peak regions, the resulting
threshold image does not have significant visual

[E¥]
LM
LM

change even for a large variation of granule size
from 10x= 10 to 19x= 19.

For the image BLOCKS, the algorithm is able
to partition the blocks as object from background,
with a threshold at 99 obtained with granule size
of 34x 34 (Fig. 8(h)). Increase (or decrease) in
egranule size, as expected, decreases (or increases)
the value of 7% (e.g., 86 for Fig. 8(c) and 104 for
Fig. 8(d) corresponding to granules of 36x 36
and 29 x 29). Since the object regions (blocks) here
correspond to upper part of the histogram, the de-
crease in the T value from 99 to 86 resulted in the
detection of more spurious regions {(dots). On the
other hand, increase in T* value from 99 to 104 al-
most on the flat valley could not make significant
change in the output image.

Unlike the above two images, the image CAL-
CUTTA has many more object regions. However,

C

d

Fig. 8. Thresholds by maximizing rough entropy using granule of dilferent sizes on BLOCKS image: {a) eriginal, (b) threshold =99,

granule size = 34 = M (c] threshold = 86, granule size = 36x 36, (d) threshold

104, granule size = 29 = 29,
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Fig. 9. Thresholds by maximizing rough entropy using granule of dilferent sias on CALCUTTA image: (a) original,
{b) threshold = 30, granule size =4 x4, (¢) threshold = 26, granule size = 6 = 6, (d) threshold = 33, granule size = 2= 2,

considering it as a two class {object and back-
ground) problem, different segmented resulis are
shown. The output shown in Fig. 9b) corresponds
to granule size of 4 x 4 which produced a threshold
of 30. The other two outputs, Fig. %c) and (d), are
due to threshold 33 with granule size 2 x 2 and
threshold 26 with granule size 6x 6, respectively.
Like the previous two images, the T* value in-
creases/decreases with decreasefincrease in granule
size. Here we can see that while all the three output
images are able to segment the water bodies (rep-
resented by the lower peak region in the histo-
egram) from the rest of the objects, increase in T*

value to 33 introduces more spurious (undesirable)
regions (Fig. 9(d)), whereas decrease in T value to
26 fails to detect some useful regions (e.g., airport
runways, roads, canals) as object (Fig. 9¢c)). This
justifies the selection of 30 as the more appropriate
threshold, and hence the choice of granule size
4x4.

5. Conclusions

Rough entropy of an image is defined using the
concept of image granules. Based on this measure,
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a method of extracting object regions from an im-
age is described by minimizing both object and
background roughness. Here granules carry local
information and reflect the inherent spatial rela-
tion of the image by treating pixels of a window
as indiscernible or homogeneous. Maximization
of homogeneity in both object and background re-
gions during their partitioning is achieved through
maximization of rough entropy; thereby providing
optimum results for object-background classifica-
tion. The guideline described for the choice of
granule size from gray level distribution is seen
to be appropriate. Extension of the algorithm to
multi-class segmentation problem may constitute
a part of future investigation.

It may be mentioned here that there exist some
definitions of rough entropy useful for other appli-
cations. For example, the one defined by Beaubouef
et al. (1999) is applicable to relational database and
the one of Dintsch and Gediga (1998) for optimal
egranulation and feature selection. Reports are also
available on image entropy measures and object
extraction where image entropy is defined based
on both histogram (Pun, 1981) and co-occurrence
matrix ( Pal and Pal, 1989) making use of the global
and local information of image. Use of logarithmic
and exponential gain functions in this regard is
explained in (Pal and Pal, 1991).
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