An evolutionary rough partitive clustering

Sushmita Mitra *

Madhine Intelligence Unit, Indian Statistical Institme, 203, Barrackpore Trimk Road, Kolkara 70008, India

Reived 30 September 2003; received in revised Fform 16 April 2004
Avvailable online 8 June 2004

Abstract

An evolutionary rough e-means clustering algorithm is proposed. Genetic algorithms are employed to tune the
threshold, and relative importance of upper and lower approximations of the rough sets modeling the clusters. The
Davies-Bouldin clustering validity index is used as the fitness function, that is minimized while arriving at an optimal
partitioning. A comparative study of its performance is made with related partitive algorithms. The effectiveness of the
algorithm is demonstrated on real and synthetic datasets, including microarray gene expression data from Bioinfor-

matics.
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1. Introduction

A cluster is a collection of data objects which
are similar to one another within the same cluster
but dissimilar to the objects in other clusters. The
problem is to group N patterns into ¢ desired
clusters with high intra-class similarity and low
inter-classy similarity by optimizing an objective
function. Clustering of data is broadly based on
two approaches, viz., hierarchical and partitive.
The hierarchical approach proceeds by construct-
ing a dendrogram, in a top-down or bottom-—up
manner, and has been found to be computation-
ally expensive. In partitive algorithms, the goal is
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to find a partition for a given value of ¢. In this
article we restrict ourselves to partitive clustering.

In the c-Means algorithm (Tou and Gonzalez,
1974), each cluster is represented by the center of
egravity of the cluster. This need not essentially
correspond to an object of the given pattern set. In
the c-medoids algorithm (Kaufman and Rous-
seeuw, 1990), on the other hand, each cluster is
represented by one of the representative objects in
the cluster located near the center. Partitioning
around medoids (PAM) (Kaufman and Rous-
seeuw, 1990) starts from an initial set of medoids,
and iteratively replaces one of the medoids by one
of the non-medoids if it improves the total distance
of the resulting clustering. Although PAM works
effectively for small data, it does not scale well for
large datasets. Clustering large applications based
on randomized search (CLARANS) (Ng and Han,
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1994), using randomized sampling, is capable of
dealing with the associated scalability issue.

Saft computing is a consortium of methodolo-
oies that works synergistically and provides flexi-
ble information processing capability for handling
real life ambiguous situations (Zadeh, 1994). Its
aim is to exploit the tolerance for imprecision,
uncertainty, approximate reasoning, and partial
truth in order to achieve tractability, robustness,
and low-cost solutions. Recently wvarious soft
computing methodologies have been applied to
handle the different challenges posed by data
mining (Mitra and Acharya, 2003), involving large
heterogeneous datasets. The main constituents of
soft computing, at this juncture, include fuzzy lo-
zic, neural networks, genetic algorithms and rough
sets.

In this article we present a partitive clustering
algorithm in the soft computing framework.
Rough sets (Pawlak, 1991) are used to model the
clusters in terms of upper and lower approxima-
tions. Genetic algorithms (GAs) (Goldberg, 1989)
are used to tune the threshold, and relative
importance of upper and lower approximation
parameters of the sets. The Davies—Bouldin clus-
tering validity index is used as the fitness function
of the GA, that is minimized. This resulis in
optimal generation of clusters for each value of c.
The performance of the algorithm, along with re-
sults for related clustering algorithms, are pro-
vided on real and synthetic datasets including
microarray gene expression data from Bioinfor-
matics.

Section 2 describes the different partitive clus-
tering algorithms compared. These include PAM,
CLARANS, fuzzy c-means and fuzzy c-medoids,
followed by a note on the clustering validity index
used to determine optimal clustering. The evolu-
tionary rough c-means algorithm is presented in
Section 3. The effectiveness of the method is
demonstrated on different datasets in Section 4.
Finally, Section 5 concludes the article.

2. Clustering algorithms

In this section we describe the different partitive
algorithms used for clustering. Some of the pop-

ular methods include c-means and c-medoids
{(PAM). Scalable algorithms like CLARANS are
suitable for handling large datasets. Incorporation
of the fuzzy membership concept, in fuzzy c-means
and fuzzy c-medoids, enables appropriate model-
ing of real life overlapping data.

2.1 e-Means algorithm

The algorithm proceeds by partitioning N ob-
jects into ¢ non-empty subsets. During each par-
tition, the centroids or means of the clusters are
computed. The main steps of the c-means algo-
rithm (Tou and Gonzalez, 1974) are as follows:

e Assign initial means m; (also called centroids).

e Assign each data object (pattern point) X; to
the cluster U; for the closest mean.

¢ Compuie new mean for each cluster using

_ Z.‘E*EL-; X

leil

m; ; i1
where |c;| is the number of objects in cluster
L

e Iterate until criterion function converges, ie.,
there are no more new assignments.

2.2, Partitioning arownd medoids { PAM )

The algorithm uses the most centrally located
object in a cluster, the medoid, instead of the
mean. MNote that a medoid, unlike a mean, is
essentially an existing data object from the cluster.
It is closest to the corresponding mean. The basic
steps are outlined as follows:

e Arbitrarily choose ¢ objects as the initial med-
oids or seed points.

e Assign each remaining data object (pattern) to
the cluster for the closest medoid.

¢ Replace each of the medoids by one of all the
non-medoids (causing the greatest reduction in
square error), as long as the quality of cluster-
ing improves.

e lierate until the criterion function converges.

For large N and ¢, the c-medoids (Kaufman and
Rousseeuw, 1990) algorithm 5 computationally
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more costly than the conventional c-means.
However, in the presence of noise and outliers,
c-medoids is found to be more robust. This is
because of the inherent robustness of medoids, as
compared to means, with respect to noise.

2.3 Clustering large applications based on random-

ized search (CLARANS)

Large datasets require the application of scal-
able algorithms. CLARANS (Ng and Han, 1994)
draws a sample of the large data, with some ran-
domness, at each stage of the search. Each cluster
is represented by a medoid. Multiple scans of the
database are required by the algorithm. Here the
clustering process searches through a graph, where
each node is represented by a set of ¢ medoids.
Two nodes are termed as neighbors if they only
differ by one medoid. Hence each node has
c* (N —¢) neighbors.

The main steps are as follows:

o Initially, a node of ¢ medoids is chosen ran-
domly.

» Replace one of the ¢ medoids at random, by
selecting a neighbor node randomly.

¢ Assign data objects (pattern points) to the clus-
ter with the closest medoid, by calculating aver-
age distance for this node; this requires one scan
of the database.

e If the criterion function does not improve then
revert back to the old medoid (node):; else set
the current node to be the neighbor node.

¢ Repeat for a fixed number of times.

CLARANS has been experimentally shown to
be more effective than PAM. It enables the detec-
tion of outliers.

2.4 Fuzzy c-means (FCM )

This is a fuzzification of the c-means algorithm,
proposed by Bezdek (1981). It partitions a set of
N patterns {X;} into ¢ clusters by minimizing
the objective function

N [
=1

J= Z Z (pt)™ 1 X — ], (2)

where 1 <m' < oo is the fuzzifier, m; is the ith
cluster center, u; € [0, 1] is the membership of the

kth patiern to it, and | - | is the distance norm,
such that
N o
P ZL—:{E'_*:'% (3)
> i ()
and
| ;
= — 4
My . g\ (4
= (i)

Wi, with dy = ||Xi —m||°, subject to 35,y = 1,
Yk, and 0 < E:I_-M'w = N, ¥i. The algorithm pro-
ceeds as follows.

(i) Pick the initial means m;, i = 1,..., c. Choose
values for fuzzifier m' and threshold e Set the
iteration counter ¢ = 1.

(ii) Repeat Steps (iii)—(iv), by incrementing ¢, until
[a(f) — palt—1)| > e

(iii) Compute p, by Eq. (4) for ¢ clusters and N
data objects.
{iv) Update means m; by Eq. (3).

Note that for py; € [0, 1] the objective function
of Eq. (2) boils down to the hard c-means case,
whereby a winner-take-all strategy is applied in
place of membership values in Eq. (3).

2.5 Fuzzy c-medpids

This is a fuzzification of the c-medoids algo-
rithm and is outlined as follows (Krishnapuram
et al_, 2001):

{i) Pick the initial medoids m;, i =1,...,c.
{ii) Repeat Steps (iii)—{iv) until convergence.
(iii) Compute py fori=1,... . candk=1,... N
{iv) Compute new medoids
m; = X

a1

where

N

g=arg min > ()" X, - XJP  (5)

1€ 6N
LAY =
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refers to that j for which the minimum value of
the expression is obtained.

MNote that this boils down to the hard e-medoids
with i, =1, if i = g, and to u, = 0 otherwise.

2.6, Clhutering validity index

The clustering algorithms described in Sections
2.1-2.5 are partitive, requiring prespecification of
the number of clusters. The results are dependent on
the choice of ¢. There exist validity indices to eval-
uate the goodness of clustering, corresponding to a
given value of ¢. In this article we compute the
optimal number of clusters ¢ in terms of the
Davies-Bouldin cluster validity index (Bezdek and
Pal, 1998).

The Davies—Bouldin index is a function of the
ratio of the sum of within-cluster distance to be-
tween-cluster separation. The optimal clustering,
for ¢ = ¢y, minimizes

| & S(UL +S(U)
I; r?ff{ (U, U)) } (6)

for 1<k, /< c. In this process, the within-cluster
distance S(LU}) is minimized and the between-
cluster separation J{Uy, U)) is maximized. The
distance can be chosen as the traditional Euclidean
metric for numeric features.

3. Evolutionary rough c-means

Here rough sets are used to represent clusters
in terms of upper and lower approximations.
However, the relative importance of these
approximation parameters, as well as a threshold
parameter need to be uned for good partitioning.
The evolutionary rough c-means algorithm em-
ploys GAs to optimally tune these parameters.
The Davies—Bouldin index is used as the fitness
function to be minimized. Various values of ¢
are used to generate different sets of clusters,
and GA is employed to generate the optimal
partitioning.

A | Grahwiptions|
|

Upper
f'r \ J Approcimation

F K -"I 1 Lower
2 | Approcimation

\
) - Actual Set
Fy

Fig. I. Lower and upper approximations in a rough set.

3.1 Rough set preliminaries

The theory of rough sets (Pawlak, 1991) has
recently emerged as another major mathematical
tool for managing uncertainty that arises from
egranularity in the domain of discourse—that is,
from the indiscernibility between objects in a set.
The intention is to approximate a rough (impre-
cise) concept in the domain of discourse by a pair
of exaet concepts, called the lower and upper
approximations. These exact concepts are deter-
mined by an indiscernibility relation on the do-
main, which, in turn, may be induced by a
given set of atiributes ascribed to the objects of
the domain. The lower approximation is the set
of objects definitely belonging to the vague con-
cept, whereas the upper approximation is the set of
objects possibly belonging to the same. Fig. |
provides a schematic diagram of a rough set.

3.2, Rough c-means

In the rough c-means algorithm, the concept of
c-means is extended by viewing each cluster as an
interval or rough set (Lingras and West, 2002). A
rough set ¥ is characterized by its lower and upper
approximations BY and EBY respectively. This
permits overlaps between clusters. Here an object
X, can be part of at most one lower approxima-
tion. If X; € 8Y of cluster ¥, then simultaneously
X, €BY. If X; is not a part of any lower
approximation, then it belongs to two or more
upper approximations.
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Adapting Eq. (1), the centroid m; of cluster U; is
computed as

E ! A E - X
N e BLy NyedB Ly —BU;)
m Wiow 50, T Wep —5rr
' ZJ{*-:BI A -
Wiow (50— otherwise,
ALy

where the parameters wiy, and wy, correspond to
the relative importance of the lower and upper
approximations respectively. Here |BLU| indicates
the number of pattern points in the lower
approximation of cluster U;, while |BL; — BUj| is
the number of elements in the rough boundary
lying between the two approximations.

The algorithm is outlined as follows.

e Assign initial means my; for the ¢ clusters.

e Assign each data object (pattern point) X; to
the lower approximation |8 or upper approx-
imation |[BU| of cluster U;, by computing the
difference in its distance &(X, m;) —d( X, m;)
from cluster centroid pairs m; and m,.

o If d(Xi.m)—dX.m) is less than some
threshold then X; € BU; and X, € BU; and X,
cannot be a member of any lower approxima-
tion, else X, 8L, such that distance
d{ Xy, m;) s minimum over the ¢ clusters.

e Compute new mean for each cluster U using
Eq. (7).

e lterate until convergence, ie., there are no more
new assignments.

The expression in Eq. (7) boils down to Eq. (1)
when the lower approximation is equal to the
upper approximation, implying an empty bound-
ary region. It is to be noted that a major disad-
vantage of this algorithm is the involvement of too
many user-defined parameters.

3.3 Evolwtionary optimization
In this articke we employed an evolutionary

approach to compute the optimal values of the
parameters involved. It is observed that the

performance of the algorithm is dependent on
the cheoice of wy, wy and threshold. We

if BU, — BU, # 0,

(7

allowed wyp =1 —wiw, 05 <wy <1 and 0 <
threshold < 00.5.

It is to be noted that the parameter threshold
measures the relative distance of an object X; from
a pair of clusters having centroids m; and m;. The
smaller the value of threshold, the more likely is
X; to lie within the rough boundary (between
upper and lower approximations) of a cluster. This
implies that only those points which definitely
belong to a cluster (lie close to the centroid) occur
within the lower approximation. A large value of
threshold implies a relaxation of this criterion,
such that more patterns are allowed to belong to
any of the lower approximations.

The parameter wy,, controls the importance of
the objects lying within the lower approximation
of a cluster in determining its centroid. A lower
Wigw implies a higher wy,, and hence an increased
importance of patterns located in the rough
boundary of a cluster towards the positioning of
its centroid.

GAs are used to determine the optimal values
of the parameters wy,, and threshold for each ¢
{number of clusters). Each parameter is encoded
using ten bits in a chromosome. The value of the
corresponding Davies-Bouldin index is chosen as
the fitness function to be minimized. Crossover
and mutation probabilities of p. = 0.8 and p, =
0.02 were selected for a population size of 20
chromosomes.

The main steps of the algorithm are provided
below.

(1) Choose the initial means m; for the ¢ clus-
ters.

(ii) Initialize the population of chromosomes
encoding parameters threshold and wy,,,.
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(iij) Tune the parameters by minimizing the
Davies—Bouldin index [expression (6)] as the
fitness function for the GA, considering ob-
jects lying within the lower approximation
of each cluster.

{iv) Assign each data object (pattern point) X;
to the lower approximation |[BU; or upper
approximation |BU,| of cluster U;, by com-
puting the difference in its distance
d( Xy m;)— d(Xi.m;) from cluster centroid
pairs my; and m;.

(v) If d(X¢,m;) —d{ X, m;) is less than some
threshold then X, € BU, and X, € BU,
and X; cannot be a member of any lower
approximation, eke X;e BU; such that
distance &{ X, m;) is minimum over the ¢

4. Results

The different clustering algorithms were imple-
mented on four benchmark datasets, viz., synthetic
data Pai, speech data Vowel, large data Forest
Cover, and gene expression data Colon Cancer.
Table 1 provides the results obtained with the
different algorithms. The optimal number of clus-
ters and the corresponding minimum value of the
Davies—Bouldin index are given in the last two
columns respectively.

4.1 Synthetic data

The synthetic data Pat consists of 417 pattern
points in the two-dimensional space £ — F5 as
depicted in Fig. 2(a). There are two linearly non-
separable pattern classes. The figure is marked
with classes 1 () and 2 ((5).

The original data consists of two classes, viz., C,
and 5, as shown in Fig. 2(a). Davies—Bouldin

Mo, of clusters Davies—Bouldin index

clusters.
{vi) Compute new mean for each cluster U; using
Eg. (7).
(vii) Repeat Steps (ili}{vi) until conver-
2ence.
Table 1
Comparative performance of clustering algorithms
Drata Clustering algorithm
PAT e-Means
PAM
CLARANS

Fuzey c-means
Fuzey c-medoids
Evolutionary rough c-means

VOWEL c-Means

PAM

CLARANS

Fuzey c-means

Fuzey c-medoids
Evolutionary rough c-means

FOREST COVER c-Means

PAM

CLARANS

Fuzey c-means

Fuzey c-medoids
Evolutionary rough c-means

COLON CANCER c-Means

PAM

CLARANS

Fuzey c-means

Fuzey c-medoids
Evolutionary rough c-means

] 0408
I 0413
(] 0410
12 .43
I 0.240
I 0419

0.757
.53
0.547
0.7
0.691
0517

053
0.531
0.532
053
0.502
0.560

= IR B I R R R

0.646
0.780
0,700
0.742
0.732
0.646

[RJ B T I BV T B Y B ]
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Fig. 2. Datasets (a) Pat and (b) Fawd.

validity index was used to determine the optimal
number of clusters in each case. The results are
provided in the first row of Table 1. The corre-
sponding map of the patterns, along with the
centroids (mean or medoid, marked by a rectan-
gle), are illustrated in Fig. 3({a)—(e) for different
clustering algorithms.

Fig. 3{a)+{c) depict the results with algorithms
c-means, PAM and CLARANS, forming ten
clusters (five from each class). Fuzzy c-means in
Fig. 3(d) splits class ) into seven partitions,
resulting in a total of twelve clusters. Fuzzy o-
medoids in Fig. 3(e) leads to six partitions from
class (, for a total of eleven clusters. Note that,
unlike means, the medoids in Fig. 3(b), (c) and (e)
correspond to patterns from the original dataset.

Fig_ 3if) illustrates the generation of ten clusters
{five from each class) by the evolutionary rough o-
means algorithm, with wy,, and threshold evolved
to be 0.97 and 0.34 respectively. The results are
comparable to that obtained by the other algo-
rithms in Fig. 3{a}{c). It is therefore able to effi-
ciently model the highly non-linear decision
regions with a lower number of clusters.

4.2 Speech daia
The Vowel data consists of a set of 871 Indian

Telugu vowel sounds (Pal and Mitra, 1999), ut-
tered by three male speakers in the age group of

30-35 years, in a Consonani—Vowel-Consonant
context. The three features £, & and £ corre-
spond to the first, second and third vowel format
frequencies obtained through spectrum analysis of
the speech data. Fig. 2(b) shows the six vowel
classes ), a, i, u, ¢, o, marked with symbols **dia-
mond”" Cplus”, Cupper triangle’ | Ceivele”, Vswar”,
“pentagon”, respectively. The boundaries of the
classes in the given data set are highly fuzzy.

The second row of Table 1 provides the results
with the different algorithms for Vowel data. Fig.
4a)—e) illustrate the corresponding 3D maps for
these algorithms. The centroids are marked by
rectangles in each figure. Fig. 4(f) depicts the
output map generated by the evolutionary rough
c-means algorithm, with optimum values of
Wigw = 0.97 and threshold = 0.41. The optimized
Davies-Bouldin index is found to be the minimum
with the evolutionary rough c-means algorithm
for this fuzzy (overlapping) data. The inherent
roughness in this clustering mechanism handles the
uncertainty (ambiguity) among the six overlapping
classes in an appropriate manner. All the other
algorithms result in less than six clusters, leading
to a clubbing of one or more classes.

4.3, Large duata

The Forest Cover data (htipfikdd ics wei edul)
corresponds to the forest cover type for 3030 m
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Fig. 3 Synthetic pattern Pat(a) c-means, (b) PAM, (¢) CLARANS, (d) My c-means, (e) Ny c-medeids, and (0 evolutionary rough
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cells obtained from the US Forest Service (UUSFS) points) with 54 attributes, of which there are ten
Region 2 Resource Information System (RIS) quantitative variables (Elevation, Aspect, Slope,
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variables. There are seven forest cover types
corresponding to Spruce/Fir, Lodgepole Pine,
Pondercsa Pine, Cottonwood/Willow, Aspen,
Douglas-fir and Krummholz.

The clustering resulis for the different algo-
rithms on this data are provided in the third row of
Table 1. PAM generates exacily seven clusters.
The optimum values of w,,, and threshold were
evolved to be 0.9 and 0.01 respectively, with the
evolutionary rough c-means algorithm. This pro-
vided the second closest approximation to the
seven forest cover classes.

4.4 Gene expression data

Microarray analysis (Special Issue on Bioin-
formatics, 2002) consists of (i) extraction of
messenger RNAs from a biological sample, (ii)
conversion into DNA, (iii) labeling with fluores-
cent dyes, and (iv) washing over a pglass slide
bearing a grid spotted with DNA sequences from
known genes. The labeled sequences bind to
spots representing the genes from which the
messenger RNAs were transcribed. By analyzing
the location and intensity of the fluorescent sig-
nals, one can determine the level of activity for
each gene.

This can be used to generate the gene expression
matrix, where the rows represent individual genes
{features) and the columns are the individual
samples. Each cell contains a measure of the gene's
activity in the sample. Often genes with similar
profiles of activity (coexpressed) have related
functions or are regulated by common mecha-
nisms. Hence clustering of microarray data has
assumed great importance. Most of the literature,
in this direction, use hierarchical clustering.
However, it has been established that this tech-
nique is not very suitabhle for handling large data.
Hence we investigated the applicability of partitive
clustering on gene expression data.

The Colon Cancer data (hiepfimicroaaray.
princeton. eduloncology) is a collection of 62 gene
expression measurements from colon biopsy sam-
ples. There are 22 normal and 40 colon cancer
samples, having 2000 genes (features).

Gene expression data typically consists of a
small number of samples with very large number

of features, of which many are redundant. We first
did some initial clustering on the expression val-
ues, to detect those genes that were highly coex-
pressed {or correlated) in either of the two output
cases. In this manner, we selected 29 out of the
existing 2000 genes for further processing. This
was followed by clustering on the samples using
the different related algorithms. Results are pro-
vided in the last row of Table 1. The optimum
values of parameters generated by the evolution-
ary rough c-means algorithm was wy,, =092
and threshold = 0.39. In this case, the optimized
Davies—Bouldin index for the proposed algorithm
was also found to tie (with c-means) at the mini-
mum value.

5. Conclusions and discussion

We have described the formulation of an evo-
lutionary rough c-means clustering algorithm. The
relative importance of the upper and lower
approximations, and the threshold of the rough
clusters are optimized uwsing GAs. The Davies—
Bouldin clustering validity index is chosen as the
fitness function being minimized. Results are pro-
vided on real and synthetic datasets, including
microarray gene expression data.

The clusters are modeled as ¢ rough sets, ex-
pressed in terms of upper and lower approxima-
tions. However the optimal partitioning depends
upon the suitable choice of these regions. The
cluster center of Eq. (7) is reasonably affected by
the user-defined parameter values. These are
effectively tuned here, using GAs.

The results provided on microarray gene
expression data in the last row of Table | serve as
an interesting study from the point of view of
clustering in Bicinformatics as well. There exist
references in literature to the use of hierarchical
clustering in this domain (Special Issue on Bio-
informatics, 2002). we have tried to present some
insight into the use of different partitive clustering
algorithms in microarray data. It is found that the
evolutionary rough clustering algorithm performs
consistently over different benchmark datasets,
and particularly well over the Colon Cancer gene
expression data.
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