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Abstract

The hydrodynamic models that have recently been developed to investigate the nature of flow around coherent, rigid inclusions in simple
shear reveal two contrasting patterns with eve-shaped and bow-tie shaped separatrix, eventhough all the models are based on Navier-Stokes
Law. In order to find the cause of this variance, this paper reviews the existing models in the light of different boundary conditions imposed on
individual models. Scrutiny of the models reveals that inclusion—matrix systems, when considered infinitely extended in space, develop eye-
shaped flows. However, those with finite dimensions essentially display bow-tie shaped flows. Using a finite element method (FEM), we
advance the study to show the additional effects of modelfinclusion dimension ratio (Pg) and model aspect ratio (Ag) under ditferent
boundary conditions. In the flow with bow-tie shaped separatrix, the regions of back fow define a nearly semi-cireular geometry when Dy, is
low (< 2). These regions assume a semi-elliptical shape with increasing Dy, The distance of stagnation points from the inclusion is found to
increase non-linearly with Dy, Model results suggest that transformation of a flow with eve-shaped separatrix to that with bow-tie shaped
separatris can occur due to increasing Ay under a specific boundary condition. Applying FEM results in geological situations thus requires
the appropriate choice of dimensional parameters of the model as well as the kinematic conditions imposed at the model boundaries.

Keywords: Hydrodynamic model s Viscous Aow; Sepamtrix: Simple shear FEM

1. Introduction

Under simple shear deformation, the presence of circular
rigid inclusions within a ductile matrix induces pertur-
bations in the flow, which results in two major flow types:
onge with eye-shaped separatrix and the other with bow-tie
shaped separatnx (Fig. 1; ef. Passchier and Soukoutis, 1993;
Passchier et al., 1993; Passchier, 1994; Bons et al., 1997).
Physical and numerical experiments suggest that the
geometry of porphyroclast tails (e.g. d-, o-, d-lypes) is
primarily controlled by the nature of low around inclusions
(Passchier and Simpson, 1986; Passchier and Soukoutis,
1993; Passchier et al.. 1993; Passchier. 1994; Bons et al..
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1997, Mandal et al., 2000; Bose and Marques, 2004).
Accordingly, there have been several atlempls Lo investigate
the different physical parameters that could control the flow
pattern (Masuda and Ando, 1988; Bjornerud and Zhang,
1995; ten Bnnk and Passchier, 1995; Masuda and Mizuno,
199¢; Jezek et al., 1999; Pennacchioni et al., 2000; Mandal
et al., 2001; Marques and Coelho, 2001; Taborda et al.,
2004; Mamques et al, 2005). Matrix rheology (Passchier,
1994 and inclusion—-matrix coherence (Pennacchioni et al.,
20001 have been identified as possible factors influencing
the flow pattern. Samanta et al. (2003) have shown that the
flow pattern changes from eye-shaped o bow-lie shaped
with increase in volume concentration of inclusion in a
multiple inclusion system. Using FEMs Marmgues et al
(2005) derived a variety of flow paths by varying the ratio of
shear-model width and inclusion diameter (5). Employing
very small values of this ratio (1.1-1.5) they have obtained
flow patterns, which do not conform to any of the previous
results. For example, their simulations yield multiple
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Flow with eve-shaped separatrix

Fig. 1. Two principal types of Aow amund a circular rigid inclusion under
simple shear flow with eye-shaped separatrix and fow with bow-tie shaped
sepuratn.

stagnation points in the flow. However, this type of flow
field 15 yet to be verified from physical expeniments and
explored in relation o geological features, such as
porphyroclast tails, commonly observed 1 natural shear
ZOTHES,

It follows from the above discussion that the flow pattern
around a rigid inclusion may show g wide wvariation
depending on the modeling appmach and choiee of
boundary conditions (Bons et al., 1997). In this paper, we
thus review the existing continuum maodels, and from there
deduce the physical basis for the development of eyve-shaped
and bow-tie shaped flow pattern in a single-inclusion/matrix
system under natural conditions. The study 15 advanced o
demonstrate the effects of matrix:inclusion volume pro-
portion, model geometry and boundary settings on the
nature of flow around a circular, coherent inclusion.

2. Review of continuum models

In this discussion we consider only those models that
describe the flow patterns around circular, coherent rigid
mclusions under bulk shear flow. With the help of an
analybocal solutnon of the velocity functions, based on
Navier—5Stokes equations, Masuda and Ando (1988)
determined particle paths amound a ngid inclusion. The
expressions of the velocity functions were derived for a
model with the following kinematic conditions at the model
boundaries (Fig. 2ua)

n=1, v=0w=0atz=5 (la)
u==]l,v=0,w=0az=-—5 (1h)

where i, v, woare velocity components along the Cartesian
co-ordmate axes, x. v and z, respectively, and the model is
considered as being deformed by shear y=1 along x-axis on

the xz plane. Considering that the inclusion rotates al an
angular speed of halfl the bulk shear rate (Jeffery, 1922;
Ghosh and Ramberg, 1976; Passchier, 1986), the welocily
conditions at the inclusion-matrix interface can be given by

i==—zg10, v=0andw =x/10atr =1 2

where r s the inclusion radius. Based on the solid harmonic
functions (Lamb, 1932) they have determined the velocity
field around a fixed inclusion, and then added it with that of
a rotating melusion, the expression of which is as follows:
Z x

i = — W, Vi = ﬂ, Wy = W f:’;}l

The wvalues of the wvelocily components becomes
negligibly small at the model boundaries (z= +5), and so
Masuda and Ando (1988) assumed that the flow pertur-
bations due to rotation of ngid inclusion vanishes at the
model boundary. Following this theoretical approach they
obtained particle paths around a rigid inclusion under bulk
shear, which is chameterized by eye-shaped separatnx
(Fig. 2a). In this Qow there 15 no stagnation points defining
the boundary of flow reversal on the central plane parallel w
the bulk shear plane, which s also evident from Eqg. (3)
representing the perturbations by the rigid rotbon of
inclusions. The perturbatons due to a stationary inclusion in
simple shear flow do not contnbute w0 motion of particles
across the shear-parallel central plane (see eqgs. (4) and (5) of
Masuda and Ando (1988)).

ten Brink and Passchier (1995 ) presented results obtaimed
from computer simulations, demonstrating the streamline
patterns around a circular ngid body. A rectangular (aspect
ratio: 3) model was chosen for the simulation, where its
width is 1.5 times the inclusion diameter. It appears that the
deformation conditions at the model boundanes were set
similar to that occurring in ring shear (see Bons et al., 1997).
In this case the shear profile at the lateral boundaries of the
model may deviate from that of homogeneous simple shear.
In contrast w the model of Masuda and Ando (1988), their
model develops a flow pattern with bow-tie  shaped
separatrix (Fig. 2b). The stagnation points are located at a
distance of nearly 0.5 times the inclusion radius. The width
of the hyperbolic separatrix occurring between uni-
directional and reversing flow paths altaing a maximum
vilue of about 0.5 the inclusion radius (Fg. 2b).

Employing the FEM, Masuda and Mizuno (1996) studied
the flow patterns around circular rigid inclusions consider-
ing both Newtonian and non-Newtonian matrices. They
considered finite models with length and width 2.68 times
the mclusion diameter. A Canesian co-ordinate reference,
xv, 18 chosen at the inclusion center with the x-axis parallel
to shear direction. The boundary conditions for the velocity
components follow:

Al the model boundary,

w = yand v = 0, (taking far = field shear strain rate v = 1)

(4
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(a) Masnda and Ando, 1988
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Fig. 2. {a) Flow amund a rigid inclusion in numer cal model under simple shear (after Masuda and Ando, [988). Initial model with geometrical considerations
{above) and particle paths with eye-shaped separatrix (helow). (h) Mumerical simulation of displacement vectors (amows) in Aow amund a circular rigid
inclusion under dextral shear {after ten Brink and Passchier, 1995). Note bow-tie shaped separatrix {dashed lines) in the fow. The initial model was rectangular,
and detormed by giving shear displacements at the upper and lower boundaries, simulating the condition as in ring shear. {c) Eye-shaped fow patterns in
models with matrix of power-rheology (after Masuda and Mizuno, 19961 », stress exponent. Note that the fow pattern does not change significantly with

incressing n.

Ad the surface of inclusion,
w=wyandy = —wx (5)

woand v are velocity components along the x- and y-axis,
respectively. They have shown that w, rotatbon rate of
spherncal inclusion, will be 0.5y, irespective of matrix
rheology. In the FEMs there were 504 tnangular elements
with 36 nodes on the perphery of the area and on the
periphery of inclusion. In each triangular element, the
velocily components were expressed in terms of linear
functions as

v=a+bx+cy (6

v=d+ex+fy (6b)

a, b,oooooamwe ungue constants for each tnangular element,
which need 0 be determined employing FEMs (details
given in Masuda and Mizuno (1996)). Models with n=1
develop particle paths with an eye-shaped separatrix
(Fig. 2¢), which i reasonably consistent with that of
Masuda and Ando (1988). Models with n>>1 show similar
flow patterns around rigid inclusions, albeit there are some
quantitative changes in the flow with increasing n. In models

with n=3, particles located at a distance of 1.07R (R:
inclusion radius) show close paths intersecting the central
ling paralke] to the shear direcion at a distance of 2038, On
the other hand, for n=35, a particle at a distance of 1.058
deseribes a close path imlersecting the central line at a
distance of 1.77R. However, the overall pattern of particle
paths does not vary dramatically with increasing n, e, non-
linearity in matrix rheology. According to the FEMs of
Masuda and Mizuno (1996) the flow pattern around a ngid
sphere is charactenzed by eye-shaped separatrix, immespec-
tive of matrix rheology, in contrast o the model of ten Brink
and Passchier (1995 demonstrating the flow pattem with
bow-tie shaped separatrix. They infer, with the help of an
analytical solution for the flow field (eq. (25) of Masuda and
Mizuno, 1996), that there cannot be any stagnation points
even if the model 1s considered large in its lateral exient

Pennacchioni et al. (2000) investigated the natwre of flow
around a circular g inclusion in FEMs for both Newtonian
and non-Newtonian rtheology of the matrix. The models have
been developed considenng Navier-Stokes equations:

pVu—=Vp =0 (7a)
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and the equation of continuily:
Vu=10 (7h)

They have employed FEMs in two dimensions. The models
are based on the first quadrant of the Cartesian space
considered at the center of inclusion, taking into account a
square region with the side length five tmes the inclusion
radius (Fig. 3a). The mregion is meshed incloding 2204
quadrilateral elements and 2108 nodes. In the present
discussion we consider therr models containing coherent
mclusions, whichrotate with a velocity half the bulk shear mte.
Their models always vield streamline pattermns with bow-lie
shaped separatrix (Fig. 3a). The streamline patterns do not
vary significantly with increasing value of stress exponent (n).
Flow with eye-shaped separatnx develops only when a slip
condition s imposed at the inclusion—matrix interface. It thus
appears that the results of Masuda and Mizuno (1996) and
Pennacchioni et al. (2000) do not converge, even though both
the analyses deal with power law rheology of the matnx.

Mandal et al. (2001} have shown the flow pattermn around
a ngid inclusion embedded in an infinitely extended viscous
medium. Based on Jeffery’s theory, they have descenbed
velocity functions for flow around an elliptical inclusion.
Considering the bulk deformation in simple shear, the
expressions of the functions follow:

n= % [2(xeD = BC) + Ex]y + 1y

2Axy T [ E+ 2a'*C + 26D
T BRE+ ay o al * (8a)
v = =X [2aD — 8C) — Ey]x
2Axy 7 [E+2d°C +26°DY
T BEE ¥ a2 2 e ¥ (Bb)

where a'=+va+ 4, =+ +4 and A=a'Ft. The

{a) Pennacchioni et al., 2000
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Fig. 3. {n) Consideration of a quarter finite element model {nbove) by Pennacchioni et al. (2000). Radius of inclusion, r= L., and 1, are velocity components
along.xy and 1y axes of the Cantesian coomdinate axes chosen at the center of inclusion. i, and i, are tangential and nommal velocity components, respectively, at
the houndary of inclusion, which rotates at an angular velocity of /2, ¥ is the rate of bulk shear. Displacement conditions are shown in terms of 1y and s at the
maodel boundaries . Corres ponding flow pattem (bow-tie shaped) isshown below. Solid circles mark stagnation points. (h) Particle paths in numerical model run
hased on a velocity function foran infinitely extended matrix (Mandal et al., 2001 ). {¢) Streamline pattems in models of Bons etal. { 1997 junder three boundary
conditions shown in terms of velocity components parallel and perpendicular to the shear direction, s, and 1, and pressure p. P is the constant backgmund

pressure.
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parameters in Egs. (8a) and (8b) have the following
CAPress1ons:

2 a — b ) 2 a' — b
(= 2 2 ! d 'd = 2 2 ! e
(a=— b) i (a~ — b) b

2 (@ — by 4 la + b)*
T= [ﬂ! _b,!}! a'h' ; - ) g
B=_{n+b}!, CzﬂzmﬁufH;}:f~

8 Ha* + b))
(a + b)’ a + 5 :
E=—:¢;T, =T[ﬂ+b}l'

With the help of the velocity functions (Egs. (8a) and
(8b3) they have simulated the flow around o ngid inclusion
in simple shear (Fig. 3b). The flow pattem s charactenzed
by eye-shaped separatnx, which 1s similar to that shown by
Masuda and Ando (1988). In Eg. (8b) the wvelocity
component at nght angle o the shear direction cannot be
zem on the shear-parallel central plane (1e. v =0) for x> 0.
It is thus possible to infer analytically that a circular
mnclusion embedded in oan infinitely extended matrix,
subjected to a far-field homogeneous shear, cannot have
any stagnation points, which are required for the flow with
bow-te shaped separatrix. This can be shown analyucally
again using Lamb’s theory. Using the theory, Happel (1957)
derived the wvelocity functions of flow around rigid
inclusions as a function of volume concentration of
inclusions. In the case of very low concentrations, the
expressions i polar coomdinates can be wnllen as:

O {C R

1 s ;
1~”=;|:1 —(i:) ]'}"rum}ﬂ—;r (9b)

where a 15 the radins of melusion. The last term in Eg. (9b)
represents the ngid motation component of bulk shear.
According to Eg. (9b), the velocity of particles across the
central line parallel w the shear direction (=0} cannot be
zero for any finite value of v, which is required to define the
stagnation points in g Qow with bow-tie shaped separatrix. It
thus appears from Happel’s analysis also that the fow
around a eireular inelusion will be essentially charme terized
by eye-shaped separatrix.

The work of Bons et al. (1997) demonstrates that the
contrasting flow patterns develop due to differences in the
boundary conditions imposed on the models. They have
considered square inital models, contaiming an inclusion
with a diameter 1/12th the model dimension, and effective
viscosity 100 times that of the matnx. Two paramelers were
considered at the boundary: background pressure and
velocity vectors, which can be independently set at the
boundaries of FEMs. The three conditions are as follows
(Fig. 3¢): (1) the model 1s deformed by homogeneous shear
displacement at its four boundaries as 15 done in shear box

experiments. (2) The model involves shear-parmallel dis-
placement component at the model boundaries parallel o
the bulk shear, and no shear-across velocily component at
the other pair of model boundanes, and imposes a constant
background pressure acting as normal stress o all the model
boundanes. This simulates an inclusion-matnx  system
where simple shear boundary conditions are mmposed at
infinity from the mclusion. (3) The shear-parallel model
boundaries are subjected to the condition as in condition 1
but the side boundaries are kept under a normal stress equal
to 4 constant background pressure and there 15 no velocity
across the shear direction such a8 1o a nng shear apparatus.
Bons et al. (1997) have shown that flow with eye-shaped
separatrix develops only under boundary condition 2, which
15 considered to be the best approximate for the solution of
the case of inclusion within an infinitely extended matrix.
Flows with bow-lie shaped separatrix are obtained in the
other two conditions (Fig. 3e).

We now attempt to understand the flow perturbations inan
infinitely extended inclusion—-matnx system from the physical
point of view. A homogencous, steady state shear flow can be
represented by o set of parallel particle paths and streamlines in
the matnx without any ngid inclusion (Fig. 4a). The presence
of an inclusion in the system would perturb the flow pathin the
radial directions as when a spherical body s sel ina stationary
fluid vielding radial streamlines (Fig, 4b). Understandably, the
radial perturbation would tend to be zero away from the body.
The resultant of the streamlines for homogeneous flow and the
perturbed one will be symmetneally distorted resulting in a
convexily perpendicular to the shear direction (Fig. 4¢). Now,
the spherical body, ifconsidered W be rotating in the stationary
medium, would induce additional tangential flow i its
neighborhood, forming concentric streamlines (Fig. 4d), as
given in Eg. (3) (Masuda and Ando, 1988). Thisimplies thatall
the particles lying along the shear-parallel central line will be
sel in motion at a nght angle to the shear direction. The
combination of homogeneous shear flow, radial flow and the
tangential flow is likely toresultin a set of closed streamlines
encased with open streamlines with convesxity away from the
center of the body (Fig. de). In this construction no particles
lying on the shear plane can remain stationary, defining
stagnation points as in the case of low patterns with bow-tie
shaped separatrix. A spherical body floating in an infinitely
extended matnx will necessanly show particle paths with eye-
shaped separatrix, which 15 also evident from the velocity
function given by Jeffery (1922 ) and Happel (1957). InSection
3 we attempt to explore and analyze probable factors leading
to flows with stagnation points in flow and thereby separatrix
with bow-tie shaped geometry.

3. Flow paiterns in FEMs
F.1. Model parameters

We ran expenments in FEMLAB software to simulate
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Fig. 4. Schematic il lustrations of perturbations in shear flow due to the presence of a rigid inclusion. () A set of pamllel lines representing streamlines of a

homogeneous shear How. (h) Radial streamlines of fow perturbations due to spatial occupation of a circular inclusion in a stationary Auid. () Parallel
streamlines are distoned into hi-convex shapes when the perturhations in (h) are added. {d) Circular streamlines for low induced by the rotational motion of a
rigid inclusion in a stationary fuid. (e) Streamline pattern obtained by superposing the streamlines in (¢} and (d) one over another.

flow pattems around a coherent, circular ngid inclusion, and
mvestigate how the choice of model parameters can lead to
varation in the nature of flow. The following pammetlers
have been considered in the simulations: (1) model/inclu-
sion dimension ratio (Dg), (2) aspect mbo of model (Ag).
and (3) boundary settings (Fig. 5). Dy is the ratio of side
length of square models and inclusion diameter, which s
used as a measure of the volume proportion of the inclusion.
We choose D to show how the flow patlermn can vary
depending on the volume proportion occupied by the
mclusion in the model (ef. Samanta et al., 2003; Treaguos
and Lan, 2004). The parameter Dy and the parmmmeter § of
Margues et al. (2005) may seem to be similar. However, Dy
is o be distinguished from §, as the latter is a measure of
confinement of the matrix in the direction perpendicular to
the bulk shear.

Ap 15 8 parameter conceming reclangular FEMs, which is
used to investigate the effect of model geometry on the flow
pattern. We ke Ag as the ratio of model dimensions
parallel and perpendicular to the shear direction (Fig. 5a).
Maodel experniments were run imposing any of the following
three boundary settings (Fig. 5b): (4) homogencous shear
displacements, (b) unconstrained lateral boundaries, and (¢)
straight-out conditions. The first setting can be compared
with that adopted in shear box experiments, where the
model s deformed in simple shear by moving plates at its
four boundaries. Evidently, this condition does not match
with that in an infinitely extended inc lusion—=matnx system

being deformed under far-field simple shear, as the strain at
any finite distance from the inclusion will be essentally
heterogeneous, and will tend to be homogeneous only at
infinite distances. We have considered the second condition
to show the flow in models with lateral faces inoan
unconstrained state. In this case the lateral model
boundanies are not displaced by moving any plates, as
done in shear box experiments, and the flow at the edges
deviates from that of homogeneous simple shear. With this
condition we aim o investigate the perturbed Now around a
rigid inclusion confined between two parallel rigid plates
moving in opposite directions, where the setting at the
lateral boundaries is given in terms of a constant pressure. In
FEMLAB one can impose the straight-out condition at the
side boundanes of the model, which s expressed using
mathematical equations as:

tu =10 {100}
p=0 {10
1 is the unit tangent vector to the surface under

consideration. The condition given in Eg. (10a) implies
that flow at the model edges takes place nommal to the model
boundanes, showing no tangential velocity component. The
second equation (Eq. (10b)) indicates that the kel faces
of the model are free from any external pressure. The
velocity profile is thus likely to deviate from that of ideal
simple shear. This boundary condition is comparable with
that in ring shear (cf. Bons et al., 1997).
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Fig. 5. {a) Definitions of model parameters: y is the ratio of side length
square model (£, ) and inclusion diameter {£4) and Ag is the aspect ratio of
rectungular model. {b) Three boundary conditions employed in finite
clement models. The conditions are imposed in terms of velocity
components, & and v, pamllel and perpendicular to the shear direction
andfor pressune p.y is the mite of shear at the model boundaries.

3.2, Effects of modeliinclusion dimension ratio

We ran a set of expenments on square FEMs by varying
Dy employing the boundary condition (a), mentioned m
Section 3.1, The velocity condition at the inclusion-matnx
interface was imposed considenng that the ine lusion rotates
at a rate hall the bulk shear e, Expenmental runs show
that the flow pattemn strongly varies when the model o
inclusion dimension mtio (Dg) 18 changed. For a low
dimension ratio, ¢.g. Dp=2, the streamlines are character-
tzed by bow-tie shaped separatrix. Particles in a large part of
the model away from the inclusion move across the central
shear plane and reverse their movement direction (Fig. 6a).
Values less than 2 (e.g 1.2, 1.5, ete) also yield similar
patterns with the difference that the stagnation points are
located closer to the inclusion. The sepamtnx between
particles with unidirectional and reversal motion are nearly
circular in shape, and its width s about one third of the
model dimension. The distance of the stagnation points

from the inclusion center is 1.13 times the inclusion madios.
The flow geometry 1s similar to those observed in systems
containing inclusion in high concentrations (fig. 5 of
Samanta et al., 2003). With mcrease in Dy both the shape
of separatrix and the distances of the stagnation points vary
significantly. The streamlines corresponding to particles
with reverse motion become progressively narrower,
assuming a semi-clliptical shape. In addition, the distance
of stagnation points continuously increases with increasing
Dy (Fig. 6b).

It should be mentioned that the nature of variation of the
geometry of flow and location of stagnation points with Dy
(Fig. 6) is markedly different from that obtained by Marques
et al. (2005) by varying the pammmeter § (model width/
mnclusion diameter) (their figs. 7-9). However, it 15 o be
noted that m our simulatwons we showed the effect of Dy
with a constant aspect ratio of the model (=1) In the
models of Margues et al. (2005), the value of § was varied
by changing both the model width and inclusion diameter
but keeping the model kength constant. This implies that in
their analysis the model aspect mtio changed with changing
&. It thus appears that the variation in the flow pattern that
they assign only to &, perhaps meludes also the effect of
aspect ratio of the model. In Section 3.3 we discuss how the
aspect ratio can independently affect the flow keeping the
imclusion diameter constant.

3.3, Effect of model aspect ratio

The flow pattern around an inclusion can change
significantly depending on the aspect mtio (Ag) of the
model. When Ag 15 low (=0.5), the flow shows eye-
shaped separatrix (Fig. 7a). With increase in model ratio
{Ag=1), stagnation points appear and the fow defines a
bow-tie shaped separatrix (Fig. 7b). The bow-tie shaped
flow becomes more and more prominent with further
mncrease in shear parallel model dimension (Fig. 7e). It
should be noted that this variation occurs even though
the model widthfinclusion diameter (ie. the § value of
Muarmgues et al., 2005) in both the models (Fig. 7b and ¢)
15 the same.

I4. Effects of mechanical conditions at model boundaries

In this section we demonstrate that the flow patlem can
be sensitive to dynamic conditions imposed at the model
boundaries, leading to contrasting types of flow. Let us first
consider models being deformed by simple shear. The
lateral faces of the models are kept unconstraimed and free
of any pressure from the ambience (e, boundary condition-
£ Under such a condition, particles show close paths in the
mode]l with aspect ratio 1. However, typical eye-shaped
geometry occurs only in the close neighborhood of the
inclusion (Fig. 8a). This boundary condition never produces
flow with bow-te shaped sepamtrix even when the model
dimensions are reduced keeping the aspect ratio fixed at 1.
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Fig. 6. {a) Flow pattems in model s with varying inclusion/model dimension mtio (Oy). Dy =2, 4and 10 (left toright). Models wen: deformed by homogeneous
shear displacement at the four boundaries of model, as done in shear box experiments (first condition shown in Fig. 5h). (h) Variation in the distaince of
stagnation points, nomalized to £, with increasing model/ine lusion dimension ratio (D).

However, eye-shaped flow becomes complex when the
aspect ratio of model 15 mereased to a eritical value (e.g.
Ar=2). Two vortices form on cither side of the inclusion,
which are somewhat elliptical in shape (Fig. 8b). The model
experments suggest that FEM can give rise to a variety of
flow patterns depending on the combination of dynamic
settings at the model edges and the model geometry.

We rman a series of simulations imposing  boundary
conditions as adopted in physical experiments, where the
model undergoes homogeneous shear with constmined
lateral boundaries (boundary condition-a). Under this
condition, fow with bow-tie shaped separatnx develop
(Fig. 8c). The hyperbolic streamlines become narrow and
the stagnation points move away from the inclusion with
mereasing model dimension (D), as shown in Section 3.3,
Under this condiion the flow pattern does not change with
varying aspect ratio of models (Fg. 8d).

Under the straight-out conditions (Egs. (10a) and (10b),
boundary condition-c) models show contrusting types of
flow patterns, depending on model aspect ratio, shown in
Section 3.3, Models with low aspect matio show eve-shaped
flow pattern (e.g. Fig. 7a), which transforms into bow-tie
shaped with increasing aspect mtio (e.g. Fig. Th.

4. Discussion

Several inclusion-associated structures, e.g. porphyro-
clast wils, drag folds, are often used for Kinematic analysis
in shear zone rocks. Passchier and Simpson (1986) have
shown elegantly how one can utilize - or §-type
porphyroclasts as shear sense indicator, considening their
stair-stepped wings. The stair-stepping in wing geometry of
d-type porphyroclasts depends on the type of flow around
the clasts (Passchier et al, 1993). For example, eye-shaped
flow patterns are likely o produce wings on either side of
the inclusion in the same plane, e there 5 no o stair-
stepping., On the other hand, bow-tie shaped flow forms
wings geomelry with stair-stepping, which can be utilized
for determination of the shear sense. Both swir-stepped and
non-stair-stepped wings of porphyroclasts are observed in
paturally deformed rocks. We therefore need to find
possible physical factors determining the pattern of flow
around a ngid inclusion.

The streamline patterns around sphencal ngid inclusions
are different in models of different workers, as discussed in
Section 3.3, The difference essentially crops up due o
consideration of models and the boundary settings imposed
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Fig. 7. Effect of model aspect ratio {Ay) on the fow pattemn around rgid
inclusion. Insets show initial models. Ag=103, 1, 2 in {a)-{c). Models wer
deformed by homogeneous shear at the top and bottom boundares, keeping
a stright-out condition at the lateral boundaries {third boundary condition
shown in Fig. 5h).

in the models (Bons et al., 1997). In the case of infinitely
extended viscous matnx, the flow is described in terms of
converging functions, which do not give rise o homo-
geneous flow field at any finite distance from the model. In
such a condition, the perturbations imparted by the rnigd
body do not die out within 4 finite area (Masuda and
Mizuno, 1996). On the other hand, physical modeling or
finite element modeling involves boundary conditions
imposed at a finite distance from the rigid body. For
cxample, ideal simple shear conditions are imposed at the
model edges, which are not hkely to prevail at the same
position had the matrix been considered as an infinitely
extended medivm. It may be noted that a slight pressure
gradient far away from the inclusion can modify the flow

near  the inclusion, which 15 somewhat similar w0 the
butterdly effect in the theory of Chaos. This is the reason
why FEMs show flow with bow-tie shaped separatrix, even
when its dimensions are large compared with that of the
inclusion. Howewver, the effect of model dimension is
evident from the increasing distance of stagnation points
with increasing model dimension. The finding suggests that
a bow-tie shaped flow with stagnation points located at
infinite distances will resemble an eye-shaped flow (e.g
Muarques et al., 2005).

Two stagnation points on either side of the inclusion
characterize flow patlems with bow-tie shaped separatrix.
We need to resolve the most fundamental gquestion—can a
particle have zero velocity in the flow field around an
mclusion in systems under simple shear? In homogeneous
simple shear all the particles on the central reference plane
have zero velocity. They are set in motion with velocity
component across the shear direction due to the pertur-
bations induced by the mtational motion of rigid inclusions
{Fig. 4d). The spatial occupancy of the sphere in the shear
flow does not contribule any perturbations on this plane,
which could result in velocity components across the shear
direction. This is evident from the streambine pattern of fow
around a stationary rigid sphere (fig. 31, Streeter, 1948).
Now the perturbations in the flow due to the rotational
motion of dgid inclusions are likely to prevail even at an
infinite distance from the inclusion. It is thus evident that
stagnation points are unlikely o exist in the flow field
around a rigid body, as seen in Egs. (8b) and (9b). In
addition, in flows with bow-tie shaped separatrix, partcles
on the central reference plane flow in the opposite direction
on ¢ither side of the stagnation points. It is rather difficult to
explain the movement of particles across the central plane
countenng the motational motion. It appears that this low in
the matrix is set in response to the pressure field generated
due to the imposed motion set at the lateral boundaries of the
model. To test this, we ran simulations of streamlines in the
flow around a rigid body generated by rotating the lateral
boundaries dextrally and keeping the other faces in the same
positions. Such a boundary setting gives nse to hyperbolic
paths cutting across the central reference plane (Fig. 9a).
This type of flow is obtained even when the model
dimension s very large compared with that of the inclusion.
On the other hand, the plate motion parallel to the central
reference plane on an unconstrained model gives close paths
with veloeity vectors acting opposite to that in the previous
model (Fig. 9b). Now, if we impose one over another, at
unigque points the two velocity vectors cancel each other,
giving nse to stagnation points, and the overall flow pattern
resembles that of bow-tie shaped separatrix.

The FEMs described in Section 3.2 indicate that the flow
geometry 15 4 function of the modelfinclusion dimension
ratio, 8 parameter comparable with volume concentration of
inclusion in the system. It has been shown that volume
occupied by the inclusion in 8 FEM can greatly influence the
flow of matrix around the inclusion (Treapus and Lan,
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Fig. &. (a) and {b) Flow pattems in square models and rectangular { A =21 models with unconstrined loterl boundaries { second boundary condition shown in
Fig. 5h). {c) and {d) Bow-tie shaped flow patterns in models of two different aspect ratios. Ay =0.5 and 2. Homogenems shear displacement {first condition

shown in Fig. 5h) was set at the model boundaries.

2004). Samanta et al. (2003) presented an analysis of flow
around a rigid inclusion as a function of volume
concentration of inclusions. With decreasing concentration
bow-tie shaped flow transforms into eye-shaped (Fg. 5;
Samanta et al., 2003), which 15 consistent with the FEM
results obtained by inereasing model/inclusion dimension
mtio (Fig. 6a). Flow with eye-separatnx should thus be
considered in analyzing inclusion-associated structures in
meks containing inclusions in very low concentrtions.
Kinematics of flow with bow-tie shaped separatrix would be
appropriate for systems with large inclusion concentrmtions,
irrespective of shear zone width,

5. Conclusions

Based on our overview, we artive at the following
understandings. (1) The difference in observations on the
flow patterns around rigid inclusions is essentially due to
model constraints, a8 shown by Bons et al. (1997).
Analytical solutions for the flow field suggest that the
patterns will be essentially charactenzed by eye-shaped
separatrix and that there cannot be any stagnation points in
the fow around a rotating inclusion. (2) Flows with bow-lie
shaped separatrix is likely to oceur in finite inclusion—matrix
systems, as reflected in the results of FEMs. When the
model/inclusion dimension mtio s low, the separatrix
defining the back flow regimes is nearly semi-circular,

Fig. 9. (1) Flow induced by shear displacement on the lateral model
boundaries. (h) Flow pattern developed in a model deformed by shear at the
top and bottom boundaries, keeping the latem! boundaries unconstrained.
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which progressively assumes an elliptical shape with
imcreasing dimension muo. In such cases the stagnation
points continuously  shift away from each other with
increasing modelinclusion dimension ratio. (3) The flow
pattern around a rigid inclusion can change dramatcally
depending on the boundary settings in the model.
Unconstrained models in overall develop elliptical stream-
lines, and the flow in the neighborhood of inclusion show
eye-shaped separatrix, whereas finite models with straight-
out or homogencous shear conditions of the boundary
settings show flows with bow-tie shaped separatrix. (4)
Under unconstrained state, eyve-shaped flow turns into a flow
with two vortices on either side of inclusion when the aspect
ratio of model 1s large. (5) The use of flow pattemns obtained
from finite models should be made with care while
mterpreting  natural structures in inclusion—matnx  mock
SysLems.

Acknowledgements

We wish o thank Professors M. Bjomerud, T. Masuda
and C.W. Passchier for providing many suggestons for
improvement of the manuwseript. The work has been
supported by the Department of Science and Techmology,
India. CC acknowledges infrastructural facilities provided
by the Indian Statistical Institute, Caleutta.

References

Bjornerud, M.G., Zhang, H., 1995, Flow mixing, inclusion-matriz
coherence, mantle growth and the development of porphyroclast tails.
Journal of Structural Gealogy 17, 13471350,

Bonz, PD., Bamr, T.0., ten Brink, C E., 1997, The development of &-clasts
in non-linear viscous materials: 2 numercal approach. Tectonophysics
70, 20-41.

Bose, 5., Margues, F.O., 24, Controls on the geometry of tails amund
rigid circular inclusions: insights from analogue modelling in simple
shear, Journal of Structuml Geology 26, 214521560,

Ghosh, 5.K., Ramberg, H., 1976 Reorientation of inclusions by
combination of pure shear and simple shear. Tectonophysics 34, 1-T0.

Happel, 1, 957, Viscosity of suspensions of uniform spheres. lournal of
Applied Physics 28, 1288-1292

leffery, G.B., 1922, The motion of ellipsoidal particles immersed in a
viscous Auid. Proceedings of the Royal Society of London A2,
lal-1m.

Jezek, 1., Saic, 8., Segeth, K., Schulmann, K., 199, Three-dimensional
hydrodynamical modelling of viscous flow around a rotating ellipsoi dal
inclusion. Computers and Geosciences 25, 547-558,

Lamb, H., 1932, Hydmody namics, Cambridge University Press, Cambridge.

Mandal, N., Samanta, 5.K., Chakmborty, ©., 2000. Progressive develop-
ment of mantle structures around elongate porphyroclasts: insights from
mumerical models. Joumal of Structural Geology 22, 993 10{8.

Mandal, N., Samanta, 5 K., Chakroborty, C., 2001, Numerical modeling of
heterogeneous Aow fields around rigid ohjects with special reference to
particle paths, stmin shadows and foliation drag. Tectonophy sics 3301,
177-1494.

Mamques, FO., Coelha, S, 2001 Rotation of ngid cylinders in viscous
simple shear How: analogue experiments. Joumal of Structural Geology
1, 6lN-6017.

Mamques, FiO., Taborda, K., Bose, 5., Antunes, 1., 2005, Effects of
confinement on matrix flow amund a rigid inclusion in viscous simple
shear: insights from analogue and numercal modelling. Journal of
Structural Geology 27, 3749304,

Masuda, T, Ando, 5., 1988, Viscous How around a ngid sphenical body: a
hydrodynamical approach. Tectonophysics 148, 337-36,

Masuda, T., Mizuno, M., 1996, Deflection of non-MNewtonimn simple shear
Ao amund a rigid cylindncal body by the finite element method.
Joumal of Structural Geology 1R, 10891 100,

Passchier, CW., 1986, Stable positions of rigid objects in non-coaxial
Aorwr—a study in vorticity analysis. Joumal of Structuml geology 9,
679650

Passchier, CW., 1994, Mixing in flow penurbations: a model for
development of mantle porphyroclasts in mylonites. Joumal of
Structural Geology 16, T33-714,

Passchier, CW ., Simpson, C., 1986, Porphyroclast systems as kinematic
indicators. Journal of Structural Geology 8, 83 1-844.

Passchier, C.W., Soukoutis, D, 1993, Experimental modelling of mant led
porphymclasts. Tournal of Structuml Geology 15, 89590k,

Passchier, CW ., ten Brink, C.E., Bons, PI), Soukoutis, D, 1993, Delta
ohjects a5 o gauge for sinzss sensitivity af stmin rate in my lonites. Earth
and Planetary Science Letters 120, 230345,

Pennacchioni, G.P., Fasolo, L., Cecchi, MM, Salasnich, L., 3000, Finite-
element modeling of simple shear flow in Mewtonian and non-
Mewtonian fluids amund circular rigid panicle. Joumal of Structural
Geology 22, 6R3-692,

Samanta, S.K., Mandal, N., Chakmborty, €., 2003, Flow patterns around
rigid inclusions in a multiple inclusion system undergoing bulk simple
shear deformation. Joumal of Structural Geology 25, 2089-221.

Streeter, VL., 18, Fluid Dynamics. MeGraw-Hill Book Company, Inc,
Mew York p. 263

Taborda, R., Antunes, 1., Margues, FO., 2004, 2-I rotation behavior of o
rigid ellipse in confined viscows simple shear: numerical experiments
using FEM. Teatonophysics 379, 127-137.

ten Brink, C., Passchier, CW., 1995, Modeling of mantled porphyrocl asts
using non-Mewtonian rock analogue materials. Joumal of Structural
Geology 17, 1311446,

Treagus, SH., Lan, L., 3004, Deformation of square ohjects and howdins,
Joumal of Structural Geology 26, 13611376,



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg

