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The interest of ians in ¢ ial | involving the ar

of a finite number of things, in scts or patterns, salisfying given conditions can be traced
back to at least as far os Euler (1872), who interested himsell in the construction of Latin
nnd Gracco-Latin  squares. \[any other lahr mathematicians  including Steiner also

terested 1 in o Nevertheless these questions have tilt
recently remained only side-shows, as tlie major developments of Mathematics have leen
in other directions, dictated by the necessily of apswering problems raised by other
sciences, chiclly Physics and Astronomy.

But as has often happened in the history of Science, combivatorial problems which
were hitherto considered ouly to be of academic interest, have suddenly revealed themselves
10 be of the greatest interest for the proper designing of biological experiments, This
development has been mainly due to the work of Profussor R. A. Fisher and his associates.
Their work has however been held up by the absence of suilable mathematical methods
for solving the combinaterial problems that arise. In to-day’s discussion I wish to show
to you, how metliods of Fimite Algebra and FinMe Geometry, which had initially Leen
developed Ly mathenaticians for other purposes, can be made applicable to just those types
of combinatorial probleras which have arisen during (e course of work of Fisher, Yates
and olhiers.  For this purpose I shall sclect two special problems.

The first problem about which I shall speak to you is the problem of construction
of Balanced Incomplete Block designs, which were first imroduced in sgricultural expe-
rimentation by Yates. Here we have 1o distribule v varietics in b blocks, each consisting
of k different varietics, such that each varicty occurs in r blocks, and cach pair of varieties
occur in A blocks. Combi ially it is equivalent o the following diuner party
problem :—Persons v in number ore 1o be invited to b diuners, & persons taking part iy
each dinmer. It is required to arrange the invilations for dinner in such a mauper that
each person is invited « times, and two persons mect at a dioner just A times,  Clearly

bk=vr, AMv—1)=r{k-1)

The question is, given A, b, k, v, r satisfying the above ecquations we have to
construct the combinatorial solution. The combinatorial soution is not mlways possible
when the five integers A, b, k, v, r salislying these conditions are given. Fisher bas
shown that b2 v, but even with this restriction there may not exist a solution, é.g., it is
known that the cases

v=36, b=42, r=7, k=6, A=1;

v=43, b=43, r=7, k=7, A=

are imposaible of solution.
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Some interesting cases can be sulved by using Finite Ceometrics. I GF{p®) is the
Galois ficld with $=p° elements, then we can form the corresponding Cuclidean ond
Projective ite Ceomelries EG (m, s), G (m, 5) of m dimensions. If we take m=2 the
poiuts as varielies and the lines as locks we obain the series of designs

v=¢", b=s'+1, r=5+1, k=3, A=)

v=s"+35+1, b=s'+s5+1, r=541, kmger, A=y

These are the orthogonal series of Yates, and it is clear that the process by which one
series is derived from the other, is cquivalent to the adjunction of the line at infinily.
Taking w=3 the points as varietics and the plancs as blocks we get the serics

v=s), b=s"+s"+s, ratHs4, k=g, A=+t

v=s" T e+, ="+ s Hs+ 1, r=s"4pt1, k= ts+r, Amgtd

Only the case s=2 is of practical iatercst, since otherwise the number of replications
becomes too high.  Similarly we get othier dusigns by taking m=3, the points as varietics
and the lines as blocks. Ia particular when s=2 we get the design v=15, b=35, 1=7,
k=3, A=1 from PG (3, 2).

Not all designs, however, can lw obtained by geometrical methods. In fact,
geonietrical designs form a minority among the class of all designs.  1lence, other methods
are oecessary.  One such method is what I have called “the method of symmetrically
repeated differences.'’

Consider a finite modul M (i.e., o finite algebraical system where addition and sub-
traction is possible, the usual laws being obeyed) consisting of m elements, x, x| |
*"=0 and to each clement x! let there correspond m varicties x,W, x,t . S
If . and x,'" be two varicties occuring in the same block, we say that they give rise
to a diffcrence of the type [u, ¥] and mugpitude x®=xW -t The difference iy said to
Le pure or mixed according as u=v or u+ v, Since the vanielics are all different the pure
difference of magnitude o of any type [u, u] is impossible. Thus there are mn (mn—1),
different differences.  Given  blocks By, By, ..., B., cach contaiving % differemt
varietics, r varicties belonging to the same class (ki=wr). It among the ki(k-1)
differences which the blocks give rise to, each of the mn (mn —1) possible differcuces occurs
exactly A times, we say that the differences are symmetrically repeated.  From each block
B, we can generate other blocks by adding a given clement of M, to every variety in B
keeping the lower suffix (denoting the class) constant. The complete sct of nt blocks
which can thus be gencrated by starting with the initial blocks B, B,, .. B, is then
a balanced incomplete block design. Consider for example the series of designs

2=61+3, b=(31+1) (2t+1), r=3141, k=3, A=1,
For the elements of M, take integers reduced mod (20+1), and 1o cach clemeut of M let
there correspond three varicties. Then a set of initial bockseix provided by the block
{0\, 0,, 0,) taken together with the 3t blocks
(A t41=Ny, 0), Daslzit1=2), 0], [4, Grri-d,, o),

A=1, 2, .00 .00 b
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The construction of initial blocks satisfying the condition of symmectrically repeated
differences, is much facilitated by using the properties of Galois fields. TFor example if
12i+1=p° where p is o prime, and x is a pritnitive element of the Gaolis field GF(p*),
then the set of ¢ initial Llocks given by

[o, 2%, z¥+% gheti] ¢

can be proved to satisfy-the condition of sy trically reg d difl We thos get a
general solution for the serics of designs

0,1,2, ,..0=1.

v=120+1, b={(rat+1), r=4i, k=4, n=1,
whenever 12841 is the power of a prime.

The method of forming designs by the use of ‘symmetrically repeated dillerences’ as
explained above can be extended by intréducing a new variety @, which remains vn-
changed by adding any element of M, ond intruducing appropriate madifications in the
conditions for a sct of initial blocks. We then get solutions for many mew general sefics.
For example, let 41+ 1 =p" where p is a prime, and x be a primilive clement of GF (p*) ond
k an integec such that

k41
xk—y

=x% where q is odd.

Then the set of 31 +1 blocks consisling of ( = , 0, 05 0,} and

(B2, sheU AN gAY imo, 1, 2, L.l -1 (u, W)=(12), (2, 9), ()

generates a solution for the serics
v=12l+4, b=(gl+3)(3+1), 1=at+1, k=4, A=x

For a symunctrical design i.6., when b=v, r=£k, it can be proved that of the £ varieties
occurring in a particular block just A occur in cach of the remaining bLlocks. Given a
sywmetrical design, if we cut out one block and all the varielics belouging to it, we gat
another design, For cxample by the method of symmetrically repeated differences we
can get a general solution for the series

v=4t+3, b=4l+3, r=2+1, k=2l+1, A=l

and from this derive the solution for the auxiliary serics,

v=2l+2, b=4l+2, r=20+1, k=141, A=t

A few words now about the problem of confounding in the geseral symmetrical
factorial design. Let us consider a factorial design s™ involving m factors cach at s levels,
where we. shall suppose that s is a prime or a power of a prime {(s=p®). Anpy treatmenl
combination can then be represented by a symbol of the form

Xy Xy o0 v e, Tm

x, denoting the Jevel of the i* factor in the trestment combination. Since x, can pssume
£=p% values, we can identily these values with the elements of a Calois field, so that every
element of the field reprefents a level. Now xy, x,, . . . xa cnn be regarded as the
co-ordinates of a point in EG (m, s). So that there is a (1, 1) correspondence between the
#* points of this geometry and the s™ trcatment combinations. By adding the flat at
infinity x=o, we can immerse EG (m, s} in PG (m, s), the point x, x5 . . . . xa of
EG (m, s) being now idemtified with the finite point {1, %,, Z,, . . . . xa) Of PG (m, 5).

172



THEORY OF THE DESIGN OF EXPERIMENTS

Let O be the point (1,0,0,....0) of PG (m, s) and X, the point for which x,=o0,
X=0,. . . %420, X, BI, 4,70, ..., xa =0. Then the lines OX,, OX,...0Xa
play the same part as the axes of reference in ordinary geometry, O Ixing the origin. The
points X, (i=1, 3....m) are, of course, at infinity. Then the simplex X,, Xy, ... X o
may be termed the fundamental simplex. The points X, (i=1, 2, . . . m) may be called its
vertices or zero cells; the lines X, X, (i, j=1, 2,....m; i# j) its edges or 1-cells; the
triangles X, X, Xu (i, §, k=1, 2, . . c. m: iwje k) its 2-cells, and, in general, the (k-1)
dimensional partial simplexes formed from any k of the m points X,, X,, . . . N o
may be called its (k—1)-<cells,

Through any (m—2)-flat at infinity there will pass a pencil of s parallel finite (m —1)-
flats, cach containing ¢! finite points, These will divide the 5 trealments into 5 scts
of s™! treatments cach. If the trcalments corresponding to the s™! points in any one of
these (m—1)-flats are considered as belonging to the same sct, the contrast Letween
these sets represents s—1 degrees of freedom. We may speak of these degrees of freedom
as belonging to the pencil of {m~1)-flats considerad, this pencit being determined by the
(m=2)-flat at infinity which may be called the vertex of this peacil.

Now the number of (m=2)-fats in the (m—1)-flat at infinity is =) 4¢%°F 4 ..,
+£+5+1. To cach of these corresponds a pencil of s finite (m —1)-Nats with =1 degrees
of freedom. Thus the tolal number of degrees of freadom carried hy these pencils s
s®—1 which we know lo be the total number of degrees of freedom for all treatinent
comparisons.

Tt can now be shown that the s—1 degrees of freedom given by the contrasts between
the s sets of treatment combinations into which the totality of s™ treatments are divided
by the pencil of {m—1)-flats represcoted by the equation

.y ]
=1

helong to the k™ order interaction. It is also readily shown that the two scts of s—1
degrees of freedom corresponding to any two pencils of this type are mutually orthogonal.
Every (m—1)-flat of this pencil passes through the (m—k-2)-cell of the fundamental
simplex, obtained by excluding the k+ 1 points X.o, X,y .. X, from among the yertices of
the simplex. Conversely every pencil whose (m = 1)-flats pass through the same (m—k-2)-
cell of the fundamental simplex, has an equation of the above form, and the degrees of
freedom corresponding to it therefore belong to a k™ order interaction.  As each of
#y, ¥y ..., u, can assurme s—1 different values, the total number of peocils of the above
type is (s—1)* which give (s=1)'*! degrees of freedom corresponding to the k** order
interaction between the £, 1,",... {,"™ factors.

Tou Theeeens fa, My, U
fixed; r=o0, 1, 2.

T, t 0 Ty +ay,z;, +o o, 2 =a,

The principle of generalised interaction first enunciated by Bamard for the 2™
symmetrical factorial design can now be readily extended. The change of main efectsSs
simply cquivalent to a chauge of the fundamental simplex. The cquations of trans
formation Leing once written down we can readily calculate the new designation of any
interaction.
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The ted principle of 1 interaction may now be utilized in cnumerating
the various possible types of confounding by studying the relation in which o-flats, 1-flats,
a-flats, 3-flats, . ... (m=2)-flats in the (m—1)-flat at infinity stand to the fumdamental
simplex.

Consider a (m—&—1)-flat ot infinity and the dugrees of freedom associated with it. Iy
is fixed as the common (m—£k=1)-flat of intersection of Lk independent (m—2)flay gy
infinity. The pencils of (m=1)-flats cor ling to these, i in the finite portion
in s* {m—£)-flats which have the given flat at infinity for vertex. As these constitute the
totality of (m—k)-Rats with the given (m—k=—1)-flat at infinity as vertex, to each of these
(m—k—1)-flats ot infinity are associated s* —r degrees of freedom given by the contrast
between the s* scts of s*°* treatment combinations into which the s® treatments are
aplit up.  Of these, k(s—1) degrees of freecdom belong to the main cffects or interactions
corresponding to the initial k (m—2)-flats at infinity, and the remaining s*—-r-k (s—1)
degrees of freedom to the miin cffects or interactions determined by the generalized
interactions in their entircty of the k inital main effects or interactions. [Tt appears,
therefore, that for the formation of confounded arrangements in the case of a s™ design
in s sub-blocks, we have to look fur a particular (m —k—1)-flat at infinity znd set down
the £==* ftreatments occurring in cach of the s finite (m—k)-flats having the given
(m=k-1)-RBat at infinity os vertex. The nature of confounding thus effected would, as
above, be deducible from considering the relation in which the totality of the (m—2)-flats

at infinity '—::—: in number, passing through the given {m-k—1)-flat ot infinity stand

in relation to the (undaroental simplex.

‘The totality of the number of ways of getting n s™ design arranged in s™* plot blocks
may be divided up into 8 number of classes in accordance with the types of the (m-k=1)-
flats at infinity in relation to the fundamental simplex, each of these different types leading
to one particular type of confounding. Among these, the best sets of treatment com.
parisoms which may profitably be confounded are those in which the main cffxts and first
order interactions are affected as little as possible, and will correspond to the (m=k=1)-
cells, if any, which pass clear of the fundameatal simplex.
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