P7T symmetry of a conditionally exactly solvable potential
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Abstract

A conditionally exactly solvable potential, the supersymmetric partner of the harmonic oscillator
is investigated in the PT-symmetric setting. It is shown that a mumber of properties characterizing

shape-invariant and Natanzon-class potentials generated by an imaginary coordinate shift = — ic also
hold for this potential outside the Natanzon class.

1 Introduction

The concept of PT symmetry has generated much interest recently in one-dimensional quantum mechani-
cal potential problems as many problems exhibiting PT symmetry, ie. invariance under the simultaneons
action of space (P) and time (T) inversion possessed real enerpy eigenvalues belonging to the discrete
spectrum, although the correspondig Hamiltonians were not Hermitian [1]. Later it was found that in con-
trast with the first conjectures, PT symmetry is neither necessary, nor sufficient condition for having real
discrete spectrum. More recently PT symmetry was recognized as a special case of i-pseudo-Hermiticity
[2]: a Hamiltonian is 7-psendo-Hermitian if there exists a linear, Hermitian, invertible operator 7, for
which H' = yH#~! holds. In this context PT symmetry is P-pseudo-Hermiticity for one-dimensional
Hamiltonians of the type H = p® + V(z), whereas conventional Hermiticity follows for 5 = 1. More
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recently the formalism of PT symmetry has been interpreted as the complex extension of quantum me-
chanics, by modifying it with the help of a dynamically constructed C operator, so that the inner product
{14 |CP|vy) leads to positive norm [3].

On the other hand, exactly solwable problems are of enormons importance in the inderstanding of phys-
ical systems, and this is also the case in PT-symmetric quantum mechanics. The welkknown texthook
examples (e.g. the harmonic oscillator, Conlomb, Morse, Péschl-Teller, Rosen—Morse, ete.) potentials be-
long to a rather narrow two- and three-parameter subset of the peneral six-parameter Natanzon potentials
[4]. In particular, they are shape-mvariant [5, 6] potentials having the property that a supersymmetric
transformation eliminating their ground state does not modify the functional form of the potential, but
only changes some parameters appearing in them. Supersymmetric quantum mechanics (SUSY QM) [7]
has been a rather productive method of generating new exactly sobmble potentiak from known ones. The
SUSY partner potentials penerated this way have the same discrete energy spectrum, except perhaps a
single level which is eliminated (the pround state), or is added to the spectrum (below the ground state).
Applying a SUSYQM transformation to a general Natanzon (e, non-shape-invariant) potential results
in a SUSY partner potential that is outside the Natanzon class, because in this case the bound-state
wavefunctions can be written in terms of two (confluent) hypergeometric functions.

To widen the class of exactly solvable models of the Schrédinger equation, another concept used is
conditional exact solvability (CES), rendering the potential exactly solvable only when the potential
parameters appearing in them satisfy certain conditions. For example, the DKV potential was proven
to be a Natanzon-class potential 8], and its CES nature stems from the fact that it has three potential
terms, but only two free parameters. Another type of CES potentials has been identified in the SUSY QM
construction: in this case the supersymmetric partner of shape-invariant potentials was constructed by
inserting a new ground state below the original one, and it was found that this could be done at certain
energies, which required setting a parameter to a mumerical constant [9]. With this a CES potential
outside the Natanzon class could be generated.

Comstructing the PT-symmetric version of exactly solvable potentials resulted in a mumber of inter-
esting findings. It turned out, for example, that except for the Coulomb and Morse potentials all the
shape-invariant potentials can be defined on a trajectory determined by the imaginary coordinate shift
z — x —ie [10, 11]. (The Coulomb [12] and Morse potentials [13] possess normalizable solutions only
on some curved trajectories of the complex r plane.) With the appropriate choice of the parameters,
normalizable solutions with both real and complex energies could be penerated in a straightforward way
for all the remaming shape-mvariant potentials [10, 11]. It also turned out that with the imaginary
coordinate shift the singularities of real potentials {(e.g. at the origin) could be cancelled, and as the
result of this, the radial potentials could be extended to the whole x axis formally, and new normalizable
solutions appeared due to the less strict boundary conditions. Moreover, these potentials had two series
of normalizable states, distinpuished by the g = £1 quasi-parity quantum number, which characterizes
the bound states, but the potential itself does not depend on it [14]. This gave rise to two different
(*fermionic’) SUSY partners due to the presence of two nodeless solutions (with quasi-parity g = 1 and
g = —1) to the original (‘bosonic’) potential [15, 16]. Furthermore, it was also proven that in case the
original potential has unbroken PT symmetry, then the two partper potentials also have this property,
but if the PT symmetry of the original potential is spontaneously broken, then the partner potentials
cease to be PT-gymmetric. This finding proved valid for some shape-invariant potentials (e.g. the Scarf
Il potential [16]) and also for some Natanzon-class potentials (e.g. the generalzed Ginocchio potential)
[17).

All these results raise a number of questions concerning the properties under P7T symmetry of var-
ious types of solvable potentials. A number of results seem to indicate that properties characterizing
mainly PT-symmetric shape-invariant potentials are actually, valid for more general potentialks from the
Natanzon class too. This is the case with the applicability of the imaginary coordinate shift, the presence
of the quasi-parity quantum momber and the behaviour of the SUSY partner potentials in the case of



intact and spontaneously broken PT symmetry of the original potential. It is natural to ask whether
these properties also characterize potentials even beyond the Natanzon class. A natural candidate for
these studies is the SUSY partner of shape-invariant potentials penerated by inserting a new ground
state below the original one. The CES potential generated in this way is outside the Natanzon class, as
we have discussed befare [9]. However, all its main characteristics can be determined in terms of exact
calenlations, so we can hope to get answers to our questions formulated here.

2 A conditionally exactly solvable PT-invariant potential

In this section, our aim is to construct CES potentials which are SUSY partners of the much studied
PT-symmetric harmonic oscillator [18]

a®— %
Viz) = (z —ie)? + —2 . 1
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Shifting the co-ordinate from x to z = x —ie removes the sinpularities on the real line, and extends the

potential from the half line to the full line. The eigenvalues and eigenfunctions of (1) are well known [18]
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where LE,"]{:'EII are the associated Laguerre polynomials [19) and g = +1 is the quasi-parity [14].
We wish to find Hamiltonians which are isospectral to (1), with the possible exception of the ground
state. For this purpose we define two intertwining operators Ag,, and By,

d
Ag) = 3 + Walz) (4)
and .
{ r
Bl =—7-+Wilz), (5)

where W, (z) (the so-called superpotential in conventional Hermitian quantum mechanics), is, in general,
a complex-valued function. It is easy to observe that if 4] (z) is an eigenfunction of H_t"] with eipemvalue
E,, then ¢7(z) = Byf(z) is an eigenfunction of g

Hamiltonians H ¢ are given by

with the same eigenvalue E,, where the partner
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with

It is worth mentioning here that 3, can be g-dependent. In fact, as we shall see later, 3, turns out
to be the g-dependent factorization energy. The interesting point to note is that wnlike in conventional
Hermitian quantum mechanics, A, and B, are not mutually adjoint operators. They may be related
by a linear, invertible, Hermitian operator 57 to form mutually psendo-adjoint pair [20]. The role of the
quasiparity quantum onmber (g = £1), is quite important as it gives rise to a doublet set of Bospectral
partners for the original potential.



To construct isospectral, non-shape-invariant partners of the PT-symmetric oscillator, we assume the
following ansatz for W, (z) :

2gp(x — ie)
Wig(2) = (- ie) + +37 5”’ L @20, (9)

.T—'i'.f

which reduces to the superpotential of the PT-symmetric oscillator for

gL = g2 = gy = --- = gy = 0. Thus the supersymmetric techniques applied here are different from
the standard ways when the pround state is eliminated. Hather this is a reverse procedure in a sense, in
which V., & a simple potential and we construct V_ which has one more state. Further, in this work we
restrict ourselves to the case N = 1. The partner potentials then assume the form
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Since the functional form of V ':”]{ r) should be of the same form as that of V(z) in (1), simple algebra
shows that

J'.=—qrt+%. (12)

This is an example of CES problem, as exact sobvability oceurs only when the potential parameter g

assumes the specific valie
1
_ 13
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reducing the partners to
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Note that after the substitution of g from (13) vy (z) is independent from g, while v “]{ 1) is not. Equation
{15) is an example of a CES potential, for the particular walue of g given in (13). Moreover, it has more
terms than its partner vy (z), and hence cannot have the same functional form. Thos we obtain a
norrshape-invariant isospectral partner of the PTsymmetric oscillator. In the above 3, stands for

By = —2gax . (16)

Thus to each vy (x), there exist two nor-shape-invariant | isospectral partners 1,“]{ ), as shown above.
The interesting feature observed here is that there are no singularities on the real line, and hence the
CES potentiak so constructed are defined on the full line {—oo, +00).

The possible zero-energy eigenfunctions of HE;"] + i, are of the form

P2 (z) = Nog exp (:l: f wm{f.)df) : (17)



where N, is the normalization constant. Since 1,51}:“_] (x) given by
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is normalizable, the situation may be compared to that of unbroken supersymmetry. So the eigenfunctions

t,i',':.t] and eigenvalues E,, of the partner Hamiltonians HE;"] arerelated by (n=10,1,2,..)
a,« =0, E|:_u+1.];,. = Ert; >0, (19)
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Since the eigenfunctions and eigenvalues for the Hamiltonian H

(q) AT well known, the wave functions of

the partner Hamiltonian H;j] are caleulated to be
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From the structure of (15) and (22) it iz evident that 1:&"]{::] belongs to a class of potentials which i
beyond the shape-invariant as well as the Natanzon class potentials. However, in analogy with the shape-
invariant and Natanzon potentials, the states are characterized by the quasi-parity g, giving rise to two
SUSY isospectral partners for the original potential.

Now let us analyse the conditions for having real and complex energy eigemmlues. As we shall see the
role played by the potential parameter o is very crucial in this regard.

3 PT symmetry of the SUSY partner

(i) oisreal : The PT symmetry of the original potential v (z) is unbroken.

The parameter g turns out to be real in this case, and the two partner potentials o (z) (with q = £1)
are also PT-immriant, as can be seen from the behaviour of their real and imaginary components, which
are even and odd functions of x, respectively. Figure 1 shows the imaginary parts of the original potential
together with its two partners (corresponding to g = £1) for o = 0L.3 and e = 0.5 while fipure 2 shows
the real parts of the same potentials for identical parameter values.

(i) o is pure imaginary : PT symmetry spontaneously broken in the original potential v (z).
Let v = ia, where a & real. This choice of o renders g to be complex. The PT-imvariant vy () sector
has an attractive, but non-singular core

2 1
2 s+ 5 ; ;
vp(z) = (z —ie)? — m +6 (23]
with complex conjugate pairs of energies
E} =4n+8—i2a. (24)
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Though there still exist two values of g and consequently of o (z), the partners given hy

2 O 3 ]
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are no longer PT-imvariant. Figure 3 shows the imaginary parts of the original potential topether with
its two partners (corresponding to g = £1) for o = (0.37 and € = (1.5 while figure 4 shows the real parts
of the same potentials for identical parameter values.

As illustrative examples we caleulate the ground state and the first excited state wave functions for
this case:

log = Cogll — i ECIE s 20

I = —_ 2 —
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where Oy, and 'y, are some normalization factors. It is clearly seen that the eigenfunctions are no
longer PT -invariant, rather the PT operation tramsforms v, and ¢, (g4 = £1) into each other. Tt

is worthwhile to note that this relation also holds between v and v in the case of imapinary .

4 Summary and conclusions

We analysed a conditionally exactly solwable potential, the supersymmetric partner of the PT -symmetric
harmonic oscillator, which is outside the Natanzon potential class by construction. Our motivation
was to mvestigate whether some typical features originally found for the PT-symmetric version of most
shape-invariant potentials and later proved also for some non-shape-invariant Natanzon-class potentials
(the generalized Ginocchio potential) generated by an imaginary coordinate shift ¢ — ie remain valid for
this kind of potential too. These features inchided the presence of the quasi-parity quantum oomber
g = £1, the “sudden” realzation of the spontaneous breakdown of PT symmetry (i.e. the simultaneons
disappearance of real energy eigenvalies and their re-emerpence as complex conjugated pairs at a certain
valie of a parameter) and the finding that the spontaneous breakdown of the original potential implies
the manifest breakdown of the PT symmetry of its two supersymmetric partner. Our study confirmed
that all these features are valid in this case too, so they characterize a much wider potential class than
originally thought. It seems that these features appear for all the PT-symmetric potentials that are
generated by an imaginary coordinate shift. Certainly they are absent in shape-invariant [12, 13| and
non-shape-invariant Natanzon-class [21] potentiak defined on curved trajectories of the complex z plane.
Further work is needed for the detailed analysis of these differences.
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Figure Captions

Fig 1. Imaginary parts of the original potential (solid line), the partners (dashed line for g = 1,
dotted line for g = —1) for unbroken PT symmetry for o = 0.3, = 0.5.

Fig 2. Real parts of the original potential (solid line), the partners (dashed line for g = 1, dotted
line for g = —1) for unbroken PT symmetry for o = 0.3, = 0.5.

Fig 3. Imaginary parts of the original potential (solid line), the partners (dashed line for g = 1,
dotted line for g = —1) for spontanemsly broken PT symmetry for o = 031, e = 0.5,

Fig 4. Real parts of the original potential (solid line), the partners (dashed line for g = 1, dotted
line for g = —1) for unbroken PT symmetry for o = (0.34, e = (0.5.
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