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The effect of the bounded nonplanar geometry on dusi-ion acoustic shock wave (DIASW) in
unmagnetized dusty plasmas is investigated for the first time. By using the standard reductive
perturbation method, a eylindrical/spherical Korteweg—de Vries—Burgers (KdV-Burgers) equation
is obtained. The change of the DIASW structure due Lo the effect of the geometry, dust density, and
ion temperature is studied by numerical caleulation of the eviindrical/spherical KdV-Burgers

equation.

Propagation of ion acoustic shock waves in dusty plas-
mas has received considerable attention, and has been exten-
sively studied both experimentally and theoretically. Luo
et al.' observed the steeping of the leading edge of a ramp
signal propagating in 4 Q-machine plasma with dust par-
tcles. The dust—ion acoustic shock wave (DIASW) was ob-
served by Nakamura et al.> in a collisional dominated dusty
plasma. The collision due to the dust—ion interaction pro-
duces a kinematic viscosity which is responsible for the for-
mation of the DIASW, The results show that both monotonic
and oscillatory shock structures exist and the dust density has
significant effects on shock structures and phase velocity of
the wave. The detailed theoretical models for the DIASW are
given by Shukla® in a weakly correlated dusty plasma. The
studying of the dust acouwstic shock wave (DASW) in a
strongly coupled dusty plasma 1s also presented by Shukla
and Mamun.® The results show that the propagation of
DIASW and DASW can be described by the Korteweg—de
Vries —Burgers | KAV -Burgers) equation. The equation has a
dissipation term in addition o the nonlinear and normal dis-
persion terms. When the wave breaking due 1o nonlineanty is
balanced by the combined action of dispersion and dissipa-
ton, 4 monotonic or oscillaory dispersive shock wawe is
generaled in plasma. Recently, several authors™ W show that,
when ion viscosity or Landau damping effects are not impor-
tant in dusty plasmas, the nonadiabatic dust charge variation
provides an alternate physical mechanism causing dissipa-
ton, and as a consequence this gives nse to shocks for which
both monotonie and oscillatory structures are possible. 1L 1s
also seen that such shocks are described by the KdV Burgers
equation. A crtical review of shock wave phenomena in
dusty plasmas can be found in several review papers (see,
Shukla," and the referenced papers) and books."™ How-

ever, all of those studies for DIASW or DASW are limited o
the unbounded planar geometry, which may not be a realistc
situation in laboratory devices and space. Recent theoreucal
studies for dust—1on acoustic (DIA) and dust acoustic (DA)
solitary waves n nonplanar  geometry show'™ that the
propertics  of solitary  waves in bounded nonplanar
cylindrical/spherical geometry are very different from that in
unbounded planar geometry, and a stationary propagation of
cylindrical/spherical soliton no longer exists. The waves in
nonplanar  geometry  are  described by the eylindrical/
sphercal KAV equations. But up 1o now, there is no investi-
gation aboul the nonplanar geometry effect on the shock
wave structures. Therefore, in this Brnel Communication, the
effect of the nonplanar geometry on DIASW is considered.
By uwsing the standard reductive perturbation method, a
cyhndrical/sphercal KdV-Burgers equation 15 obtained. The
effects of nonplanar geometry, dust density, and ion lempera-
ture on DIASW structures is studied by numerical caleula-
tion of the cylindrical/spherical KdV—-Burgers equation.

To study the DIASW in the nonplanar cylindrcal and
sphencal geometry, we assume that the DIASW propagate in
an axial symmetry cylindrical geometry filled with the vis-
cous unmagnetized collisionless dusty plasma whose con-
stlwents are warm inertial wons, Boltzmann distributed elec-
troms, and negatively charged immobile dost particles. In
equilibrium, the charge neutrality condition is n,—ng
+Zn0="0, where n.g. nyg. and ny, are the unperturbed
electron, ton, and dust number densities, respectively, and 2,
is the number of electrons residing on the dust grains. The
DIASW propagating in cylindrical and spherical geometry 1s
governed by the following usual ion fluid equations:
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where m =0 for a one-dimensional geometry and m=1 (2)
for a nonplanar cylindrical (sphercal) geometry. The vari-
ables of time (1), space (r), ion number density (n,), ion
fluid wvelocity (u;), and electrostatic wave potential
igh) are nomalized o the reciprocal ion plasma frequency

Wy [ﬁu = dmnge tm;), Debye radius Ao
(= u.kHTg.Mmm,el]l, unperturbed equilibnum plasma den-
sity ny,, effective ion acoustic velocily L = (kg lm; ]l"r'
and kgT,fe, respectively, und = ,e.u"a:l..,hf_“ in which g is
the ion kinematic "r'l‘vLUhll}' ! We have set o=T,/T,.5

=n;pfn,q. where T, and T, are 1on and electron tempera-
ture, respectuvely.

In order o investigate the DIASW in the plasma, we
employ the standard redoctive perturbation technigue w ob-
tin the modified KdV equation. Here, we are interested in
the mcoming waves i nonplanar geometry, so, the indepen-
dent variables are stretched as'™'® §=—g "f'fr+r,'“r}l and T
=&, where & is a small parameter and p, is the wave
phase velocity. The dependent variables are expanded as

i}
n=l+en +en,++,
)
H=EN|TE MNaT***,

b=sd+sldyt . (2)

In many experimental situations the value of 7 is small, so

wie sel
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where #, is & finite quantity of the order of unity. If' 5 is not
small we can stull use the same substiution bul now 7
should be large. This does not present any hurdle o the sub-
sequent theoretical analysis. Substituting Egs. (2) and (3)
into Egs. (1) and collecting the terms in the different powers
of & 1o lowest order in &, we obtain on={1/8)d,,
wy=—1{vy/8 ¢, and uj=3fr+ 4. For the next higher or-
der, we can obtain

iy Ay dus dimg) m
oS | s e v S |
aT df  dE & UoT
e | it 5 e | l';'l:l.‘-"g 3 | g any | |
— —_— +
ar Vag Mg e ¥l ek "™ gp|
i
— Ty = T2 =),
i+ b 1
9£'=—¢5,+¢-3 Sny. (4)

Ju-Kui Xue

=25
0.4+ &=1.0%6
:11=|15
0.3
. 0.2+
0]
L0075 S0 025 00 25 50 75 100

g

FIG. 1. Shock wave structures in different geometry at = — (.

Now, using the derived expression of iy, 1, and eliminating
M, sy, and ¢, from Eq. (4), one obtains the cylindrdeal and
sphencal KAV -Burgers equation

3
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where .;bs.;b, A= (120+36—8)/2w 8, B= &/2v,, and
C=5,/2. The fourth and fifth term on the lefi-hand side of
Eq. (5) represents the dissipation and geometry effects, re-
spectively. 1t is clear from Eq. (3) that the nonplanar geo-
metrical effect is significant when 7— 0 and weaker for
larger value of |

For one-dimensional geometry (m=0), a stationary
propagation of the DIASW governed by Eqg. (5) has the fol-
lowing form:
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where &, is a real constant and represents the initial wave
position. When the geometrical effect is taken into account
(m#0), an exact analytical solution of Eq. (3} is not pos-
sible. Therefore, we have integrated Eq. (5) numerically by
finite difference method and have studied the geometrical
effects on the propagation of DIASW. The results are dis-
played in Figs. 1-6. The imitial condition that we have used
in all our numercal results is the form of the stationary so-
lution of Eg. (6) without the geometry term at 7= — 100 (at
this stage the geometry effect is weaker, so we can take this
stage as the initial stage of evolution). Figure 1 shows the
shock wave structure evolved at 7= — 10 in different geom-
etry. It is clear that the developed shock height and shock
steepness in different geometry are different from each other.
The sphencal shock wave, with higher height and larger
steepness, is the strongest one. The height and steepness of
cyhndrical shock wave are larger than that of the one-
dimensional shock wave but smaller than that of the spheri-
cal shock wave. The variation of shock height against time is
plotted in Fig. 2. We can see that, as time goes on, the in-
creasing rate of the shock wave height in spherical geometry
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FIG. 2. Variation of shock height against time 7.

15 larger than that in eylindrical geometry. We also can see
from Fig. 2 that the cylindrical and sphencal shock waves

are similar to one-dimensional shock wave for large value of

|7. This is because for large value of |7 the nonplanar geo-
metrical effect 15 no longer dominant. However, as the valoe
of |7 decreases, the nonplanar geometrical effect, repre-
sented by (m/27) ¢b, will become dominant and the eyhindn-
cal, spherical, and one-dimensional shock waves differ from
cach other.

The effects of dust density and 1on @mperature on shock
wave are also studied. The dust density can be expressed by
the variation of & because of §—1=2Z_n 4 /n,,. In Fig. 3 the
cylindrical shock height 1s plotted against 7 lor different val-
ues of A This figure shows that the shock height decreases
with & That is, the shock height decreases with the dust
density and the ion—acoustic shock wave (4=1) has the
largest height. Fizure 4 shows that the sweepness of the shock
wave is also modified by dust density and it decreases with
dust density. The time vadation of the shock height for dif-
ferent won temperature o 1s displayed in Fig. 5. 1t is clear that
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FIG. 3. Variation of cylindrical shock height against ime 7 for different 4.
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FIG. 4. Cylindrical shock structures for different §at v=— 11,

the shock height decreases with 1on temperature and the cold
wm—acoustic shock wave (o=10) has the largest height. But
we can see from Fig. 6 that the won lemperature has a weak
effect on the shock steepness.

In conclusion, we have mvestigated the nonplanar cylin-
drical and spherical DIASW which 1s governed by the modi-
fied KdV—-Burgers equation. The nonplanar geometry effect
for DIASW is very strong for a small value of |7 and there
are obvious differences between the cylindrical DIASW,
sphencal DIASW, and one-dimensional DIASW. The height
of DIASW decreases with mcreasmg dust density and 1on
temperature. Physically, the phase velocity of the wave, the
nonlinearity and the wave amplitude are modified by the ion
temperature and the constituents of the dust grains, 1ons, and
electrons. Becavse the dosty plasma always supports low-
frequency DIA waves with phase speed muoch  smaller
ilarger) than electron (ion) thenmal .'L-p'l_‘i_‘d.l'ul the normalized
dispersion relation of the linear DLA waves (withoul dissipa-
tion effect) is'*2! w/k= [3or+ 811 +¢5§:1}J V2 1t is elear that
the phase velocity of DIA wave increases with dust density
i 8 and ion wemperature (o). When the kinematic viscosity
(77} 15 conswdered, the dispersion relation will be modified,
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FIG. 5 Vanation of cylindrcal shock height against time  for different o,
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FIG. 6. Cylindrcal shock structunes for different ot v=— 10,

i.e., w® should be replaced by w(w+ink”), and the dissipa-
tion effect is introduced into the system. Hence, a shock
wave can be formed when the ponlinearity 15 balanced by
dispersion and dissipation. The dissipation caused by dust—
win collision m a collisional dusty plasma increase with dust
density.?? For extremely small dissipation, the shock wave
will have an oscillatory profile due to higher dispcrhiun,]“‘
although the oscillatory shock waves do nol occur in our
parameter range. If the dissipation is increased and it is
larger than a certain cntical value,” the shock wave will have
a monotonic behavior. But further increase of the dissipation
will make the shock wave more smooth and weak. So we can
conclude that the 1on temperature and the dust density will
modify the properties of DIASW. These are also confirmed
by the 1:.1q:m:rirn|:rjls.“I The purpose of swudying the dissipa-
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tve nonplanar bounded plasma 1s o gain understanding on
the propagation characteristics of the dust ion—acoustic
shock waves that are of vital imponance in laboratory plas-
mas as well as in plasma application.
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