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IxTRODUCTION

1. Asctof m numbers 0, 1, 2, ... m—1, when arranged in an mXom square in such
8 way that every ictier or number occurs just once in every row and once in every column,
may be said to form a Latin Square. Tho Latin Squarc is #aid to be in the standard form if
tho nuwmbers of the top row and the left hand column are in tho natural order 0, 1, 2,...,
m~1. Two Latin Squares are said to be orthogonal, when if they are superimposed, any
number of tho first squaro occurs just once with each number of the sccond square. m—1
mytually orthogonal m X nt Latin Squarcs aro said to form a ‘complete set of orthogonal Latin
Squares’. It was well known that a completo set of orthogonal Latin Squarcs exists when
m is & prime integer. Such scta were also known to exist for the values m=4, 8, 0.1 ®
Ono of tho authors (R. C. Boxe) first showed, by using the propertics of Gnlois Ficlds, that
onch a et can always bo constructed when m is the power of a prime'.  Stevens also inde-
pendently obtained the samo reault, practically at the eamo time™. Boso also showed that
every plane Finite Projective Geometry with m+1 pointa on every luie has associated to it
& system of ‘complete ects’ of orthogonal mxin Latin Squarcs. Conversely to a given
‘confpleto set of orthogonal Latin Squares' thero is associated a uniquo Plano Finite Projec.
tive Geometry, with m+1 points on every line. To every Gulois ficld GF(p*), with me=p*
elements, there correaponds a uniquo Finite Projective Geometry PG(2,0°), which is the only
Finito Projective Geometry with m+1 points on every line, in which Desargues Theorem
hulds. Tho completo acta of orthogonal Latin Sanares associated 10 this geometry mny ho
called ‘Desargucsian scts’ as distingnished from 'Non.Desarguesinn sets' corres| g to
Non-Dendrguenian finite ,geometrics (for which Dsargues theorem docs not hold).
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2. A complete set of orthogonal Latin Squares is said to be a ‘standnrdisvd ret’, if the
Bimst equare bo in the standand from, and the numbers in the top rows of tho other squarns
aro in their natural order, It is un interexting problem to determine the number of Desar.
guesian standarcdised s X m sets.  This number has been ghown to be
(r=2)[n (0:20)
where m=p*.
1t has also been shown that all Desarguesian m X m sets (n=p*), can be constructed
by means of the forinula
L=L+1 (0-21)
by identifying the symbols &, I, .... 1., with the p* clements of the Gulois ficld GF(py),
inany order, except that I, must always be the null element and{, the unit clement of the field,
and then putting the number j in tho cell (4, f) of the i-th square. dt has alrendly been noticed
by Stevens that Fisher's 9x 90 set iy derivable from the above formula, so that this set must
bo Desarguesian. The 8 x 8 set given in Fisher's Design of Experiments* and tho 8 X ¥ sct piven
in Fisher and Yates® Statistical Tablea® have both been shown to bo Desarguesinn by us,
but it is intcresting to note that the 8x 9 set given in tho Tables turns out to be non-Desar.
guesinn. 1t has been shown to be derivable by means of the formula (0-21) from a certain
Dicksoninn® Algebra A(37).

3. Any given completo sct of orthogonal Latin Squares, can be brought in thoe standard
form, Ly applying to all the aquares of tho sct, row and column interchangen bringing, ono
square to the standard form, und then by Uringing the numbers of the top row in every other
square in their natural order, by a permutation of the numbers in ench square.  When thus
standardised all the hitherto known complete seta of orthogonal Latin Squares’ (as noticed
by Stevens™) are such that all squares of a given set are derivablo from any one square by
suitablo row permutations only.  Wo have shown that this property is certainly truo for every
Deaarguesinn set, but there exist Non-Desarguesian sets, in which this property docs not hold.

4. A standardised et of orthogonal Latin aquarca, may bo snid to be in the ‘caponical
form," if the rows of tho i-th square (excepting tho top row which is 0, 1, 2,.,. m-;l) aro
obtainablo by a cyclie permutation of tho rows (other than tho top row) of the first Bquare,
‘Tho number of Desarguesian canonical m X m scts has been shown to be

s(p—=1)/n
where m=p", and ¢ is the well known Euler function giving the number of integers, loss
than a given integer and primo to it.
A canonical sct ean bo completely written down, when we know the row number
one {i.e., the row just below the top row) of tho firat square in tho sct. Thin row may bo called

the key row of tho set.  Key rows for all possible Desnrguesian canonical X i sets for thio
values 3, 4, 5, 7, 8, 0, 11, 18, 25, 27 of m have been tabulated.

§ 1. STANDARDISED SETS OF ORTILOGONAL LATIN SQUARES ASSOCIATED TO
THE aEoMETRY PG (2, p°).

1. It has been shown in tho earlicr paper of Bose, ™" that from a given Plano Finite
Projectivo Geometry with m+1 points on it wo can obtain a completo sct of orthogonal
Latin Squares in tho foljowing manner :—
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ON COMPLETE SETS OF LATIN SQUARES

Mark out any line of tho geometry as the 'line at infinity’ and the m+1 pointa X,
Y; U, U, oo Uy, on it as the pointa at infinity, The remaining m?*+m lines, and mt points
are enlled *finite points’. Then mt finita lincs through each of X, Y, U,, U, ... Ug_, respee-
tively are said to form the peneils (X), (Y), (U)), (U,), ... (Un.,) reapectively. Atinch in
any arbitrary manner the nimbers 0,1, 2, ... m—1 to the lines of the peneil (X), and do the
aamo 10 the lines of {Y), (U)). {U,}, ..., (Uy,,,).  We takonow an m X m nquare, and number
jta columns beginning from tho left hand: 0, 1, 2, ... m—1; similarly the rows beginning
from the top row arc numbered 0, 1, 2, ... m—1. The cell formed by the interesction of the
column number ¢ with the row number ¢ is called the eell (s, £).*  Any finite point of the geo-
metry ia given os the interesection of one line of the peneil {X), say {he line number &, with a
Jine of the pencil {Y) 2ay the line number . Then this finite point is made to carcxpond to
the cell (s, #) of the m X m square. There is thus a (1,1) correspondence between the m? cells,
and the m? finite points. * If now in each cell (4, £) of the m xm square we put the number j
carricd by that line of the penell (U)) which passes through the correxponding finite point,
we get a Latin square [Ly)).  The Latin squares [L,), [Ly), ... [Ln.,] obtained in this manner,
form n complete set of mutually orthogonal Latin squares. This sct may be aaid to bo asso-
ciated to the geometry from which it has been derived.  Conversely tho set being given the
associated geometry ean be reconstructed from it.

2. Given an integer m22 of the form p*, where pis a prime, it is well known that by
the help of the Galois Ficld GF(p*) wo can construct a Plane Finite Projective Geometry *
TG(2, 7*) in which Desargues Theorem holds. In the carlier paper'! this geometry was
constructed by taking non-homogencous coordinates, thus getting at first the ‘finite pointa’
and ‘finite lines’ only and then completing the geometry by addition of the conceptual ‘cle-
menta at infinity’. For the purpose of the present paper it would be more convenient to
generate the geometry by uxing homogencous coordinates.

Consider the Galois ficld GF(p*). 1f (¢, 9, ¢) be any ordered triplet of the elements
of the ficld (¢, », {, not being simultancouxly zcro), then (£, 9, {) represents a point of our
Groli\’rlry, it being understood that (£, 9, {) and (¢', ¥, ¢’) represent the asme point when
and only when there exists an element p5£0 of the field such that §'=p ¢, #'=p 9, {'=p¢
whenco §=p £, n=pt 0’, =p"' {’. Tho point ju said to have the coordinntes (¢, 9, ).
Tho coordinates of a point aro arbitrary to the extent of a non. zero multiplicative factor,
30 that the same point can bo represented by m—1 triplets, Thero are m'—1 pawsible tri
plets, excluding tho triplet (0,0, 0). Hence the number of pointa in tho geometry is
(m*=1)/(m—1)=mt4m+1.

All points whose coordinates satisfy a linear cquation of the form
at+bntel=0 o (120)

where a, b, ¢ aro not simultancously gero, aro said to lie on mlino of tho projective geometry.
(1:20) is said to bo tho equation of this line. Clear)y thia lino is identical with the line

@ +bnte (=0 .o

This differs from the notation of the carfor papert, the coll (14) of the old rotation bcing now
called #hs ccll (s, 1).
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if and only if there exiata an element 05£0 of G F(p*). Such that a’=oa, b'=0b, ¢'=oc,
80 that a=v'a’, b=01}’, c=c"'¢’. The number of lines in our geometry is m*4m41,

Since the operntions of addition, aubtraction, multiplication, and division (by a
non-zero clemnent) aro poasiblo in GF(p*) it follows as in ordinary analytical geometry, that
any two pointa lio on one and only ono lino ; and any two lincs intersect in one and only
one point,

In the equation (1:20), at lcast ono of the clements a, b, ¢ is non-zero.  Let ¢20. Then
corresponding to any value of £, # we have a uniquo valueof {. Hence excluding (0,0, 0),
mf—1 triplcts satisfy tho equation.  Theso represent the samo point in scts of m—1.
1enco the number of pointa on any lino is m+1.  Similarly m 41 linca pass through every
point.

Tho ‘pointa’ and ‘linca’ here defined thereforo eatiefy all tho axioms for a Plane Finito
Projective Geometry. Tho geometry here obtained In usually denoted by PG(2, p*). It
is the only Deaarguesian Geometry with p*+1 pointa on every line. Complow scta of ortha.
gonal Latin Squares, associated to this geometry, may bo called Desarguesian scts,

3. To actuully obtain from PG(2, p*), a complete sct of orthogonal Latin Squares,
we have to carry out the proceduro indicled in para 1. Let us choose the line {=0, aa the
line at infinity. The points (0, 1, 0) and (1, 0, 0} clearly lic on this lino. They may be taken
as the pointa X and Y. The remaining —1 points on this linc can bo taken as

U,=(g,,—1,0), Uy=(g,, =10}, ... Un-y=(gm-1,—1, 0) .. (130)
whero ¢, ¢, ++ Gy are all the non- zero elements of GF(p*) in some order.

The pencils (X), (Y), (U)), (U, ... (Um.‘.) being defined as in paragraph (1), we
atlach to the m lines of each pencil the numbers 0, 1, 2, ... m—1, in an arbitrary manner.
Let the equation of the lino number # of the pencil (X) be

£+c.{=0 .o {rsy
and the equation of the line number ¢ of (Y) bo
n+d, {=0 .o (1132)

Then €, €, + v+ €moy 870 the m clements of GF(3*) in some order and the same holda
for d dy, ..o dueye

Taking any 1 X4n square wo let tho cell (s, #) correspond to tho point of interscetion
of (1:31) and (1-32), i.e,, to the paint (¢, d,, —1).

The m finito lines throdgh the point U, with eoordinates given by (1-32). form the
peneil (U)).  For each yaluo of i, wo attach to the linca of U; tho numbers 0, 1,2, ... m—1
in any manner. Let the equation of Tine number j of (U)) be

g by {=0 a3
whero By, Iy, +.. 'y are the m clementa of GF(p*) in somo order.
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ON COMPLETE SETS OF LATIN SQUARES

The m X m square ia converterl into a Latin Squaro [L,] by putting in the cell (2,1),
the number j carried by that line of (Uj) which pnxses through the corresponding point
{¢s Ao —1). Henco j iy determined by

h=ctqd, NTED)

The Latin aquares [U), (L], ... [La.,] are then mutually orthogonal.  We thus
get the following theorem :—

Theorem L. Let m=p*, and let the elements in each row of the following acheme, be
all the elementa of GF (p*) in aome order (not necexsurily the snme for every ruwc)® :—

Yo € Ciney
dy W, P o
MM e e gy L (135)
[N A Py

Al lnt
Qo @ eeee ey .. (1:36)
denole the non-sero elements of GF (p*} laken in some order.

Keeping | fixed if we put in every cell (s, 1) of an mXxm square the number
JOZ j<m=1) delermined by

l=e.tq dy (134
we oblain a Latin square [Ly).

The Latin square [L,),{1,), ... [L.,) oblaincd by laking i=1,2,.... m=1 form
@ complete xel of mutunlly orthogonal Lalin aguares.

1t should be observed that the sets obtuinable from Theorem 1 constitnte all the
complete sets of orthogonal Latin Squares’ naocinted ta PG(2, p*); for no new sety aro
obtuined by taking a new choice of the ‘line at infinity’ and the points X and Y upon it.
Suppose that an arbitrary line

at+bn+el=0 .o (137

in chown un the “line at infinity” and the points (I, m, ), (I', m,' #’) are chasen ns the points
X anl Y. Then

al4+bm+en=0, al'+bm’ fen'=0 o (138

1 Uicorem 1 tha in D) in an upper sufiin, 0 that 1) denates any clement of the fekt, aml not she
11h powar of 1.
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Now as the points X and Y are distinct, at least onc of the quantitics ma’—m’n, al'—n'l,
I’ —1'm s non-vaniching. Suppoxe mn’—m'n=d70. Then from (1'37), az£0. The lincar
transformation

= —nddotmdi{

W= wdtgimdr J .oo(raw

O=a ¢+batecl

with non-vanirhing determinunt, earrics pointa of PG(2, p*) inta points, and lines into lines,
incidence relations remaining invarinnt,  Also (1-37) is enrrivd to §’=0, and X and Y to
(0, 1, 0), (1, U, 0).  This proves our obaervation.

4. The clements of any row of {1'35) ean be ientifield with the clement of GF{p*)
inm! ways. Al . g: +- Guy can be identified with the non-zero vlements of GF(p)
in m—1)! ways.  Henco there are (m 1) pn—1)! ways of iden
(3

s
ide

hg the clements in
L (1'36).  The complete set of orthagonnl Latin Squares corresponding to any one of theso
ifi is not necessarily in the dard form. Let us now determine those moiles of
identification for which the corresponding complete sct of Latin Squares in in the standard
form,

The top rows are now in natural order.  Hence in the cell (s, 0) of [L;) we have thy
number x. Thus

h=c,+q.d, [ T

Alvo the elementn in the initial column of [Ly) are in natural order,  Henee the cell
(0, 1) of [L,] contning the number £. So

I=c,+g,d, 1)

Since the nunber 0 oecurs in the cell {0, 0) of the column 0 of (Ly), o the cell (D, 1)
must contain & number k520, Now if [Ly] in superimposeil on [Ly), the number &y of (1]
occun together with the number &y of [Ly] in the cell (ky, 0).  Hence the number k520 u‘f[L.]
in the ccll (0, 1) is different from &, Thus the cells {0, 1) of (L,), [Lo(, . ... [Ln.,] contain
the numbers 1, 2, . ... m—=1 in some order or other, By \\'ril’ing the Latin squares of the set
in a suitable order, we ean arrnnge for the number § to appear in the cell {0, 1) of [L]. In
this cane

li=co+q d, (142
Putting i=1 and a=¢ In (1-40) we have
li=c,+g, d. {14%)
From (1:41) and (1-43) we get
qll—d)=c,—c, (1-431)
Dutting a=i in (1"4D) we have
=e)+q d. (1:432)

ann



ON COMPLETE SETS OF LATIN SQUARES
From (1-42) and (1-432) we get
qid,~d)=¢,—¢, Lo (143

Changimg £ to i in (1'431) aml comparing with the above, we have

Bldi=d)=g (d,—d)=(e,—c), (i=1,2,... m=]) L1439
Let s now define 4, (i=1, 2, ... m—~1) by
q=hq, o4y

Clearly §, =1, while 4, I, ... L., are the ather non-zero elementa of GF(pe) in vome valer,
From (1:434) and (144) we get after pulting d,—d,=a=£0

di=d,+la Lo (143)

a=ctg ha R

The relations (1:43) and (1-48) which hold for i =
i=0, if we define I,=0.

m =1 alio remain true for

Finally from (1:40) we get
b=¢,4q L atlgd, o {147)
for (i=),2, ... m—1;0=0,1,2, ... m=1),

Converely if the relutions (1:44) to (1-47) hold, then the relutions (1-40), (1413, (1+42)
al130 hold (s in scen by direct subatitution).  But these Intter relations are au
that the set {L,], |L,). .. -, (L., ) i0 it the standard form with the number i in the ol (1) of
{Ly). Heaco we have the following Theorem.

rient to eneure

Theorem IHA). The necessary and sufflicient conditions, that the complots act of
orthogonal Latin Squares, derived in Theorem 1, xhould be in standard form swith number
¥ in 1K cell (0,1) of [Ls) are that gy, d\, €,, I, should satisfy (141} fo (1-46) where 1,=0, =1,
and 1,1, ... L., are the remaining elemenis of GF{p*) in some order.

Substituting from (1-44) to (1'47) in the Tundamental formula (1°34) we get

ctg lyathg di=co+q, 1 atlig, (4ot a) or since azAth, q,:£0
=040 PR O]
Thiy relation involves only the numbems . Hence we can state—

Theorem 1U(B). Let 4,=0, l,=1 and I, b, ..., lu., the obher elments of CF(sr)
Keeping i fixed if we put in every cell (=, 1) of an mxm

in some order or other, (m .
aquare the number j determined by

f=t44t, e 1Y)
we obtain a Latin aquare [L,). The Latin Squarea (L], (L,).. .. |Ly.,) form a complete act
of mutually orthogonal Latin squares, in the standard form (written in an onder in which the
number § appeara in the cell (0, 1) of [1a].  The aets derirable in this way are the only standurd
arls narociated lo the geopelry PG (2, p*).
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5. Let a, ap @y oo amoy nnd o, @'p, @'y L 0y be the clements of GF(p*) in two
orders (not necensarily the rame).  The correspondence ay—a’), (j=0, 1, 2, ... m—1) is sid
to be an automorphinm of GF(p*) provided a)+a;=a, implics a’y+a’j=a’y and a, ay=a,
implics 'y a’y=a’, for b=0,1,2, ... m—1. Itinknown® that there ae just n automor.
phisms of G F(p*), viz,

a —aft, k=01, 2, ..., n-1) .. {1'50)

It is obvious from (1:50) that in an automorphism of GF(p*), 0-0 and 1-1. Let
aya’y bo an automorphism of GF{p*) whero'a,=0 nnd a,=1, Then a’y=0, a,'=1. In
Theorem 11{B), the ilentifications Li=ay (i=0, I, ... m—1) and h=a’, (i=0, 1, ... m=1)
Tead to tho mame sct of orthogonal Latin Squnres.

Conversely if in Theorem 1I(B), the identifications =a,(i=0, 1, .... m—1) and
=a"|(i=0, 1, ... m=1) whero a,=a’s=0, a,=c’,=1, leadl to tho same sct of orthogonal
Latin Squares, then aj=a.4aj oy would imply ay=uf +u' o', for s, 1, j=0, 1, 2, ..,
m=1,i=1,2, ..., m—1 Toking i=1 in particular we find thot a;=a,+a, implirs &=
o' +a’ for o, 1, j=0,1,2 ...,m=1. Toking 2=0, we similurly find that a)=a, a, inplies
a=a a/fort, j=0,1,2, ...,m—1;i=12, ..., m=1. Butfori=0, aj=n a, obviouxly
implica a’;=a’) a’,. Mence the correwpondence aj—a’y is an sutomorphism of GF(p*).

Henece the (n—2) ! ways of identilying the clementa I, 1, I, Iy With the
clements of GF(p®) in Theorem 11(B), (1, being identified with 0, and I, with I), lead in seta
of n, to the aame complete set of orthogonal Latin Squarcs in the standard form  Thus wo
get the following theorem :—

Theorem 11(C). The number of complete sets of mutually orthogonal Latin Squares
in the standard form, associated lo the geometry PG(2, p°} is exactly (p*—2) !n.

A complete act of orthngonal Latin Sguarcs as«ociated to the geometry PG(2,p")
may be called a Desarguesian ret.  1f Np, be the nuinber of standnrdised Desarguesion mXm
sets, then values of N, for amall values of m are shown below :

" 2 3 4 5 7 8 9
Na 1 1 1 [} 120 240 2520
Now it in krown that there exints just one ‘standardised complete set of orthogoml
Latin Squares' for the casea m=2, 3, 4; there are 6 such xets for the caxe m=35, (Fisher'*')
and 120 sets for the ease m=7 (Norton'™). It appears therefore that for m<7, all the powsible

complete seta of orthogonal latin Squarca are Desarguesian.  There exists therefore no
Non-Desarguesian geometry with 8 or lexs points on a line.

§2. TOENTIFIOATIONS YOR TIE 8X8 AND 0X0 SETY or Fixugr aNp YaTes

NON.DENARGUESIAN X0 SETY
1. A complete set of orthogonal Latin Squares may be standardised b\ first l\rmLmb
the first square to a stundard form by row and column hanges, applying (

the rame interchangeadto all xquares of the set) and then by an interchange of letters nuhm
the remaining squares ta bring the top rows in natural order. The first procexs amonnty
to changing the numbering of the linea of tl& pencila (X) and (Y), and the second to changing
the numbering of e lines in the pencils (Uz), (U,), ..., (Usy.y) I §1 para 1. Henee the
geometry nssocinted to a given set remaina unaltered by the procds of  standardization.
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ON COMPLETE SETS OF LATIN SQUARES

Consequently a Denargucaian set remaina Desarguesian, and a Non-Desarguesian sct remaina
Non-Derarguesian by standardisation,

Consider a standardined Denarguesian mxm sct (n=p*),
(L), (L), .oy (L]

the Latin Squares {Ly) being supposed to bo written in an order such that in the ecll (0, 1)
of {Ly] thero appears the number . Tho number in the cell (s, #) of [L,) i then derivablo
by the formula (1.48) of Theorem IIB, whero 1,=0, 1, =1,1,, 1,, ..., ., are clementa of
GF(p")-

The row number ¢ of (L), will then be irlentical with somo row (number ') of (L'}
For thero is 8 uniquo clement L' ('£0), GF(p*) determined by

L=l 1

when 4520, 170 and I, are known. The number in the cell (s, €) of (L] is identical with
tho number in the cell {5, £')of (Ly’] for 2=0,1,2, ... m=1. As l, runs over all clements
of G¥(p*), I,’ docs tho samo. Hence

Theorem I11. A alandurdiaed Desarguesian sl posscsses the property Dy, that the rows
of any square (Ly') of the set, are the same as that of any other aquare (L;) of the sel, except that
they occur in a different order.

A standardised set not possessing tho property D, is necessarily Non-Desarguesion,
An examplo of such a sct constructed from the Non-Desarguesian Geometry of Veblen and
Wedderburn™ (Carmichacl # p. 411), by the process of §, para 1, is given below. However
tho posscasion of the property D, by a standardised set is not sufficient to ensure that tho set
is Desarguesian. In fact the 9X 9 ect given in Fisher and Yates' Tubles (c/. para 4) posscssca
the property but is nevertheless Non-Desarguesian,

STANDARDISED SET (NOT POSSESSINO THE PROPERTY D) ASSOCIATED
70 TnE NoN-DesakouaN GeoMeTny or VEDLEX & \WEDDERBURN

(L] (L]
01 2 3 4 6 8 7 8 01 2 3 4 8 6 7 8
1 2 0 4 6 3 7 8 ¢ 2 01 5 3 4 8 6 7
2 01 5 3 4 8 6 7 1 2 0 4 5 3 7 8 ¢
3 4 5 6 7 8 0 1 2 ¢ 7 8 0 1 2 3 4 &
4 5 3 7 8 6 1 2 0 g8 6 7 2 0 1 5 3 4
5 3 4 8 6 7 2 01 7 8 6 1 2 0 4 5 3
6 7 8 0 1 2 3 4 6 3 4 5 6 7 8 0 2
78 6 1 2 0 4 6 3 5§ 3 4 8 6 7 2 0 L
8 6 7 2 0 1 &5 3 4 4 6 3 71 8 6 1 2 ¢
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ON COMPLETE SETS$ OF LATIN SQUARES

(1] (L]
6 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
7 8 86 1 2 0 4 5 3 8 4 7 2 0 1 5 3 4
5 3 4 8 6 7 2 01 4 5 3 72 8 6 1 2 0
8 8 72 5 3 4 1 2 0 5 3 4 1 2 o0 8 8 7
3 4 535 0 1 2 8 6 7 1 2 0 6 7 R 4 5 1
1 2 0 7 8 6 3 4 3 6 72 8 5 3 4 0 1 2
4 353 3 2 0 1 7 8 6 7 8 6 4 5 3 2 0 1
2 01 6 7 8 5 3 4 3 4 56 0 1 2 7 8 8
¢ 7 8 4 5 3 1 2 2 0 1 R 6 7 3 4 5
2. Consider a standurdixed sct of orthogonn! mxm Latin Squases (= p*)
(L) (Lo oo (L) 220)

possessing the property D, and supposed 10 be written in an order sach that the cell (0, 1}
of [Lj} containg the number i.

Corresponding to the sct we ean sct up an Algebra in the following mnnner :—Let
the numbers 0, 1,2, ... m—1 with which the aquares are filled correspond to the clements
Lol by ... Iy of our Algebra,  Correrponding to the aquare [L,] (i-e., by replacing every
suniber j by the correapoding element 1)) wo get what may bo termed the ‘midition table®
of our Algebra.  Again form an mxm aquaro M, and put in the celi (i, 1) of M the number
appearing in the cell (0, 1) of [L,}, —1).  Also in every ccll (0, ¢) of M put the
numbee 0. (The aquare M i thus formed by juxtaposing the 1oft hiand eolumns of (L,], [L,),
<+« [Lrs), prefixing a column composed of zeros only fo tho lft). Correxponding to the
square M (i.e., by replacing evary number § by the clement 1)) wo get what may be termned
the ‘multiplication table’ for our Algebra.

For example tho addition anid multiplication tables for the algebra correxponding ta
tho 99 et given in Fisher and Yates' tables are shown below in Table L

Given two clements I, 1, of our Algebea, their sum 4,41, is Ucfinexd as the element
L, appearing in tho ccll {1, v) of the ‘addition table’. Tho product I, 1, of the two elements
i defined a« tho clement I, appearing in tho cell (i, ¢} of the multiplication table.  In virtuo
of the property D,, tho number j in tho cell (4, 2) of [L,] eatisfica

=Lhl,

which tallies with the formula (1-48) of Theorem 1B, Heneo in the special case when the
st {2:20) in Desargueninn, I, 4, 4y, + ..« Loy oro the clomenta of thoe Galoix ficld GF{p*) in somo
order, I3 being the null element and I the unit clement,

n
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TaBLE 1, ALOESRA CORRESPONDING TO THE 9X0 SET OF FisuER aND Yares' Tasres

Addition Tablo Multiplication Tablo
[ T T A S A A A A Lohod b,
[ A A oL,
[ A A R A A A A A LoLoL AL Ly
[ A A A A A A AR [ A A A A A A
[ 7 O PO A A A [ A A O A A
[ A T A A A A A A A
[ 7 A A A A A Loy on L LL
| A A A A A A A A L Lon oL,
LonoL L Ly L LOoLoL L L L,

Tn the general case it is easy to verify that the following propertics hold for our Algcbra,

(i) The sum 1,41, and the product L, I, of two clements 1, and 1, uniqudy exist
(by definition).
{t) Subtraction is poible and unique, i.e., the cquations

THh=1, Lty=l
have uniquo solutions.

{iti) ‘There exists & uniquo null element, viz., L, i.e. L is tho only element with the
propertics that

Letl=la Ltb=be LL=l, &L=l
for any arbitrary element I, of the algebra.
(ir) Division (except by the null clement) is possible and unique, i.e., the equations
=l L y=l, (W£L)
have unigue solutions.

{v), Thero exista a unique unit element, riz., I, f.e., I, is the only clement with the

property.
Lh=h, L=,

for an arbitrary element of tho Algebra.
(vi) Thero holds the orthogonality preperty, namely that the simultancous cquations
4+l y=l
24l 9=l
haVe a unique sotution, when 2l (sinco the nimber j of (L] occurs with tho number
of [Ly'] in just wno bell).
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ON COMPLETE SETS OF LATIN SQUARFS
(cif)  The simultancoun cquations
Ltyhe=x
Loty l=r

bave a unique solution, when 4, (thia fullows by conxidering the corresponding geometry,
and remembering that the points corresponding to the eclls (s, 1) and (4", ') are joined by one
and only one line, which belongn to one of the peneils (X), (Y), (Uy), (Uy), ... (Un.,). When
1,5£1,- ie. 252, the points must be joined by a lin2 of (U)) carrying say the number j. Then
the solution is z={), y=1. When I,=1,", tho points are joind by the same line of the peneil
{X). No line belonging to any one of the pencits (Uy) can therefore puss through both points.
Henee besitles the obvions mlution x=1,, y=0, there in no other solution.

The propertics {i)—(tii) arc of course not all independent, some of them being for-
mally duducible from others.

Nothing however can be affirmed about the commutativity or nwocintivity of the
addition or the multiplication, or about the holiling of the distributive law (from the right
or the Ieft).  One or more of theso luws may hold in specinl casex,  All of them certainly
hiold when tho st is Desarguesian.  For the Algebra corresponding to the Yx 9 wet given
in isher and Yalea' Statistical Tables and shown in Table 1, it i eaxy to verify that both the
sddition aml multiplication are associative, the addition is commutative and that the dis-
tributite law from the left holds, ie., a(b+e¢)=ab+ac. But the multiplication is not
commutative, as is shown by the fuct that the multiplication table is not rymmetrien] about
the leading dingonal, for example I, {,=4,, I, L,=4.  Also the distributive law from the right
does not hold, for examplo (h4+4) Lal L=t L+ L=1+h =) This incidentally proves
that the 9 x9 set of Fisher and Yates' Stutistical Tahles must be Non. Derguesian,

3. Let us now investigate the nature of the 8x8 st given in Fisher and Yatea'
Statistical Tables. The algebm corrcapondding to this 8X 8 sct ix given below :

TABLE 2. ALGEBRA CORRESPONDING TO THE 8$X8 SET GIVEN IX
FisHER ASND YATEN' STATINTICAL TaBLEN

Addition Table Multiplication Tuble
LonLohoh L Lo L
Lo, [ T T T R A
Loaon,on L TR P A Y A A
(7 T A PR S A A T T A T N T A N
| R T A A A A A [T T T A A T A X
[ T R S A N N P A O A T A A A
oL L A A R T A A AN
Lottt o1, Lo L,
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1t can bo verified that for this algebra, all the laws for a ficld hold, Hence the algebra
must bo tho algebra GE(2?) and the set in question must be Desarguesian.,

Taking 22+ x*+1 o5 tho minimum function, the elementa of GF(2'} can be represen.
ted aa (¢f. Bose, 1038, §4, para 2)

0, "=, r=r, =2, =241, r'=xl4r+], P=x+], 2*=2"} 2 .. {2:30)
whero z is a primitive clement of GF(2?), so that z"=1.

It would bo interesting to discover tho Identification for Iy, U, L, L, Is, Iy (of course 1,=0,
L=1).

Now from the addition and multiplication tables we get

L+! Lth=1 o
.23
Li=1, LL=l, L1=1

=1 lL+h=1

whereas in our representation of GF(27)

r+0=1, =], =1
- (239)
z *=1 =1, =1
In the following representation, the elementa whose sum is unity are joined by a thick
line, whilo the clements whoso product is unity are joined by a dotted line.

l‘), {5 x xs
e ——— T
’ Al -’ a
. \ ’ 3
\ ’ .
’,
. \ 4 *
J \‘ ,,’ N
.
14’\ L.r :6\ /xz
T\ ) - e

Fig 1

It fa then apparent that the identification for 1, determines tho identification for
L.hyla b 1. Thus only the identifications shown in the following table are possible.

The identificationa (3), {5), (6) are automorphic (tj. §1, para. 5), and as can be verified
by direct subatitution, eatisfy the conditions of Table 2 The identifications (1), {2), {4)
aro automorphic, but dé not satisfy all tho conditions of Table 2. Wo can thus state :

The 8X8 aet given in Fisher and Yator ‘Statistical Tables' is Desargnesian and can be
generated by the formula (1'48) of Theorem 11(B), taking any one of the tdentifications (3}
(5), (6) of Table 111 A. the elements of GF (3%) being represented as in {2:30).
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ON COMPLETE SETS OF LATIN SQUARES

We kavo been considering ‘standardised sets® in which the top rows are in tho natural
onler. The 8x 8 sct given in Fisher's Design of Experiments can bo brought in this form
by interchanging tho columna with the rows. We can then prove as before, that the set is
Desargucsinn and can bo generated by using the formula (1°48) of Theorem I1B, if wo make
sny of the three identifications of Table 3B, the elementa of GF(2°) being represented as
in (2:30).

TabLE 3(A). IpExTIFICATION TasLe 3(B). TpExXTIFICATION

[ A A A

M|z 2 » 2 2 = WL LR
OIS Mz 2 2 2 » o
[ ESE S S S S D) 2 2 2z 2
W) » 2z 2 0 2 B2 2 2z 2 22
|2 2z 0 0 2 2
Gl » 2z 2 o0 2

4. Lot us now consider tho 9% 9 ect given by Fisher, in his Design of Exrperiments
The corresponding algebra (when the act is written in the standardised orm) is given below:

TABLE 4. ALOEBRA CORRESFONDING TO THE X9 SET or Fisner's

Destax or EXPERINETS

Addition Tablo Multiplication Tablo
A A A N A A A A Lo, 0
[ A A A A R A A A oL 0,
[ A A A A A A 3 A A A A
[ T A R A A A [ P A A A A A A X
[ T A T T A N A 2 [/ T P A A A R A A
[ A N A A A A [ [ A A A A S
[ A A A A A A A [P A A A A A A A
[ A A N A A A [ 7SN A N A A A A
[ A T P A A A A [ T A A A A A A
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It in easily verifiablo that for the abovo algeben all the laws for a ‘Bield’ hold.  Hence
Fisher's 9x 9 ect is Desarguesian,

Taking z84-x+2 as the minimum function the clements of GF(3t) can be represented
a (cf. Bove, 1938, §4, para 1),

0, =), r=x, 2¥=2s+1, O=2r42, r'=2, B=2r, r"=r+2, r=rt) oo(233)

From Table 4 we find {,+1,=0. Since I,=1, ,=2=1x' it rcmaina to discover the
identification for I, !, I, le, hy, I, Now from Table 4,

L+L=0, 1,+1,=0, L+4L=0

L4b=1, L+l=1, L+l=1
whereas in our representation of GF(3%)

2 +2=0, F'4+2=0, r4r:=0

Prl=1, =1, rir=1

In tho following representation, elements whose sum i1 0 aro joined by a thick lie,
clements whoso sum i3 1 are joined by dotted line.

% 5
bk AR
Ay ’ \
I’ \\ 4 v
’ A}
II “ ’I \

’ \ ) \
’ ‘\ 'y I' \‘
l—,\ /L-, x \ /xY
e Ao A 4
Fig 2

Hence only the six identificationa shown in the following table are possible. They
are awtomorphic, in pairs, rix., (1) and (4); (5) and (8) ; and (2) and (3).

Each of the above six identifications satisfies the Addition Table, as can be readily
verified.  Now from the multiplication table 1. 1,=1.  This is satisfied only by the identi-
ficationa (1) and (4). We may verify that they satisfy all the conditions of Table 4. Hence
we can state ;

The 9X9 act giren by Fisher in hia 'Dexign of Experiments ia Desarguesian, and can
be generated by the formula (1'48) of Theorem INB), taking any one of the identifications (1)
and (3) of Table §, the elementa of UF (3%) being represented as in (2:33).

5. Let us now comsider moro fully the naturo of the 0X 9 ket given in Fisher and Yatee®
Statistical Tablea. Wo noto that the addition table for thiy wet is the same as for Fisher's
OxY net given in the Design of Erperiments {(when written in the standardised form). The
twa wis have the smme common first square (L;). Remembering that tho wlentifications
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OX COMPLETE SETS OF LATIN SQUARES

TapLE 5. IpexTIPICATION

[ A A
mle 2 2 © » 2
| 2 A 5L
@ 2 2z P
| Pz
G|z 2 2tz 2 2 2
s 2t 2 2 P ox

in Table 5, were derived only on the basis of the addition table, wo can make the following
interesting observations : there are exactly three Denarguesian complete aeta of 99 ortho
gonal Lalin squarcs, which contain [L,}, tho common firt square of the 9X ¥ sets given in tho
Design of Experiments and in tho Statistical Tubles, Of courso ono of these scts is Fisher's
set itself.  As the existence of the 9 x 0 ect given in tho Stalistical Tahles, and the st derived
from Veblen and Wedderburn’s geometry {¢f. § 2, para, 1) shows, thero are other Non-Desar-
guesian acta containing [L,].

From tho Galois Algebra GF(3?) wo can construct a new Dicksonian Algebra' in the
following manner :—Let @;=0, @, u:, ... a, bo tho clements of GF(3?). The 8 non.zero
elements can be divided into two classes.  An clement belongs to tho first class if it can bo
expressed as the square of another element, while it belongs to the second class if it cannot
be go expressed.  Each class contains four elements.  Now we tako a new set of nine elements
Bu=0,.8,, By ... B, oa tho elements of the new algebra (B corresponding to a;) and defino
addition and multiplication of these clements as follows :—

() A+Bj=Bu when atay=ay
(i) B¢ ;=0 when 8)=0
(ii)) 1f a; brlongs to the first class By Bj=p,. when ay aj=ay
(iv) If a) belongs to tho sccond class By §)=p8, when ay a®j=ay
Tt can now bo verificd that if we take 1,(i=0, 1, ... 8) to be the clements of a Dick.
sonian Algebra conptructed as above, and make Jy correapond to the element of GF(3%) appear-
ing under , in any (fixed) row of the Table 5 (I, and I, correnponding to tho null and ugit

clements of GF (3%), then we get just ¢ho algebea (of Tablo ¥) corresponding to the 9X90
sct given in Fisher and Yates® Statistical Tablest

For example lct tho clements of GF(1?) bo taken as in (2:33) ; and for tho clements
of the new algebra take L, I, 1, 1, 1y by e, Iy U, corresponding to tho elements 0, 1,
,ox o, A 2, 2t 2 Then Lth=h, "sinco a'+2t=(r+ 1)+ (2 +1)=2=2% |, h=l,
ance 2! A=x; I, lh=l, sinco 57 (£*)'=2". Theso results can bo sacn to tally with Table 1,

7
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The result obtained in the last paragraph can bo stated in & alightly different
form :—

The complete act of DX D orthogonal Lalin aquarea given in Fisher and Yates® ‘Statistical
Tables* can be generated by putting in the cell (s, t) of the i** aquare (L) the number j determined
by

L=l 1 when I belongs to the firol class (sugnres)

L=hl 1> when 1, belongs to second class (non-squares)

1,=0, =1, 1, ... I, being elements of GF(3*), any one of the identifications (1)—(0) of Table
5 being taken for L, 1, ..., 1,

Wo finally notice one moro jnteresting point. Tho sct ‘vonsidered above posscsacs
the property D, (cf. Theorem 11I), but we can construct“from it a set which does not have
this property, by first obtaining the projective geometry associated to tho set, suitably
changing the line at infinity, and then deriving another sct by the process of § 1, para 1.

§ 3. CANONICAL SETS OF ORTHOGONAL LATIN SQUARES ASSOCIATED TO
THE GEOMETRY PG (2,p).

1. . A standardised st of orthogonal Latin aquares, [L,), [L,), ... (Ln.,] is said to bo
in the canonical form if the row number ¢ or [Ly,,] is identical with the row nurtber ¢41
of [Li], for t=1, 2, ... m=2, whilo the row number m—1 of [L;.,] is identical with the row
number 1 of [Ly}. Thus the rows of [L,.,] {other than tho row number zero which is auto-
matically 0, 1,2, ... m=1) are obtainable by a cyclicyermutation of tho rows of {Li] {other
than the row number zero). Henco when the sct (L), (L,), ... {Li.)] J8 in the canonical
form, we ean at once writo down [L,), ... [La.,} knowing [L,].

Let us consider for what identifications of the Is in Theorem II(B), wo get a
canonical set. Tho number j in the cell (e, 1) of (L;.,) is given by
b=+l 1, o (310
tho number occurring in tho cell (s, ¢41) of (L)) is given by
=l 1y . (@I
sinco j=j', wo have
hali=hil,, (6,6=2 ... m=2) e {312)

Keeping ¢ fixed and varying ¢ wo get

_”‘. b e -=_;"‘" =y (say)
1 ) fo-3
Remembering that If=1, we have
L=y, b=y, L=y ..o b=yt . 31

Since 1, Ly, +.. L.y aro all the non-zero elements of GF(p*), y must bo o primitive element
of GF(p").
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Conversely, ifl,, 1.1,
then (3:12) is matisfied.

o+ haoy watinfy (3'13) where y is & primitive element of GF(p®)
co the number j and j* in the cells (s, 1) of [L,.,} and (, t41) of
[Ly] aco determined by (3-10) and (311}, j=j". Uence the row number £ of [Ly.,] is identical
with the row number £ of [L,), (i, =1, 2, ... m=2). Again the numbers & and &' in the cells
(8, m—)) of (Li.,) and (4, 1} of (L} aro determined by

L=+l
W=l+41

Iy lny=y' y=t=yi=li=l |

B

since g™ 1=ys"1=1, z being & primitive clement of GF(p*). Thereforo k=K' which shows
that tho row number =1 of (Ly.,] is identical with the row number 1 of (L},

Hence wo get the following theorem :—

Theorem 1V(A).  The necessary and sufficient condition that the standardised set of
orthogonal Latin squares of the theorem 11(B) is in the canonical form is that

L=ify b=y, L=t o g =yt B TE)

where y is @ primitive element of GF(p*).

The number of primitivo elements of GF(p*) is $(m—1) whero ¢ is well known
Euler function giving the number of integers less than a given integer and prime to it.
Among tho (m—2) | identifications for the 1’s in Theorem II (B) exactly ¢ (m—1) lead 10
canonical sets.  But to a given ect correspond just n of theso identifications (¢f. § 1 para.5).
Henco the following theorem :—

Theorem 1V(B). The number of canonical acts of orthogonal Latin squares associaled
(o the geometry PG(2, p°) is exactly ¢ (p*—1)jn.

2, Tho identification arrived at in the Theorem IV(A), is the samo which has been
adopted as the simplest identification in Bose's' paper already referred to. The scts obtained
inthe § 4 of that paper are all in the canonical form {except that owing to tho change <f nota-
tion rows are i hanged with col A ical act can bo completely writien down
by knowing tho first square (L,] of the act. This squarc can however bo quickly written
down as soon as the row number 1 of (L,) is known, by following tho rulo of § 4, para. 4 of
Bosc’s paper (tho change of notation docs not affect [L,) owing to'ita symmetry), viz :—Tho
fow number 0 is composed of tho numbera 0, 1, 2, .. m—1 in their natural order,  Fill in
the row number 1. Starting from any number of tho row numbee 1, proceed by singlb step
in the direction of tho leading diagonal. If the initial number with which you start in tho
row number 1 is 0, £ill in cach successive cell by 0. Lf however tho initial number is othee
than 0, then fill in cach successive ccll by putting a number one greater than the number in the
preceding cell, remembering however that when tho number m—1 is rdached in a ceil, the
suceeeding ccll muet bo filled by the number 1, Completo the square by remembering that
thero is symmictry about the Teading dingonal.
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If followa from Theorem 1V(B), that the number of ‘canonical scts’ for the values
m=3,4,57,8,9 11,16, 25 27,is1,1,2,2,2,2,4,2, 4, 4, reapcctively. Let us consider
the particular cnse m=9. Wo shall take tho representation (2:33) for the elements of GF{3%),

The primitive roots nre x, £*, 2%, ¥'. Tho identification in Theorem IV(A), ia completely
determined by knowing /,.  The identifieations ,=z and l,=z* are automorphic and lead
to ono canonical act. The remaining identifications ly=x* and l,=2" aro automorphie and
lead to the sccond canonical set.  Let us deterinine the row number 1 for the sccond set,
taking the identification determined by I,=x, In this caso

1,=0 1L=1, L=r'=2z

=xt=0r 41, l=r'=z+1, Le=r'=2
li=1, h=2=z42, lL=0'=2142

Tho number in tho cell (0, 1) of the Key Latin aquare (L, ) is of course 1. Tho number

in the ccll (2, 1) when 221 ia the number j=j(s, 1) given by
=141,

Now 1+4=2 =l 144,=0 =l,
1+L=2z+1=l,, 1+l =x+1=l,
1+1,=2242=l,, 1t+h=z =l

V= zd2=l, 14,=2

Hence the row number 1 of [L,] is

1,53,8704,6,2

The completo Latin square (L,] developed according to the rule given before is

0 1 2 3 4 5 6 7 8
1 6 3 8.7 0 4 6 2
2 36 4 1 8 0 5 7
3 8 4 756 2 1 0 6
47 1 65 8 6 3 2 0
5 0 8 2 6 1 7 4 3
6 4 0 1 3 7 2 8 &
7 6 5§ 0 2 4 8 3 1
8 2 7 6 0 3 6 1 4
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3. Wo tabulate below, the row number 1 for all possible canonical sety'correaponng
10 tho valucs m=3, 4, 5,7, 8, 0, 11, 16, 35,27,

mm3,

me=d.

mwb. Set 1
St I

m=?5¢ I
Sot JI

mmB, Bet I
Set I

m=9 Set 1
Bet 1L

mall. Set 1
8ot 1T
Sot YIL
8ot IV

m=l6. 80t T
Set 11

me23, Bel T

8L I

Bet 1N

8ot IV

m=228ct I

Set 11

Bat ITL

But IV

2, o
0, 3,

4,
4 3
4,

B,

LN

0, 3,

Tanre 6. Row

NCUDER 1, op THE KEY LaTiy SquaRre.

2,

38k

2,
2,

xa,

21,

1, 1

15, 13,

L A

2, 12



Vou. &} SANKHYRX: THE INDIAN JOURNAL OF STATISTICS |PaRT 4
Rerxnexces

1. Bosk, R. C. 1 On tho application of the propertica of Galois Fickla to the problem of construction
of Hyper-Gmeco-Latin Squarea,  Sankhvd, Vol. 8, 1038, pp. 32R-33K8,

2. Comscuaer, R, D.t Introduction to the TAeory of Groups of Finite Order, Bostun, U. 8. A. and
London: Gin and Co., 1937,

3. Dicksow, L. F.: On finite Algebras. Gothinger Nachrichten, 1003, pp. 354.304,
4. Fionen, R, At The Design of Experiments, Edinburgh: Oliver and Boyd, 2nd Edition, 1937,

5. Fisurm, R. A. and Yates, Foy Statistical Tables. Edinburgh : Oliver and Boyd, 1638,

8. Lrve, . W. 1 dlybme. Vol. 1. Caleutia Univemity Publication. (In tho pres).

7. Nonrox, H.W. 1 Tha 27X 7 aquarce. Annals of Eugenics, Vol, 0, 1030, pp, 209.207,

W. L.t The completely orthogonalised Latin Square. Annale of Evfnies, Vol. 0, 1939,

0, Veseex, O. aml Maczaoax-\V F. . : Non-D ian and non-Pescalian geometrics.
Trone, American. Math, Soe. Vol. 8, 1807, pp. 379.348.

[Paper received : 12 November, 1941.]



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022

