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In this paper we study quantum mechanical phase distribution of some nonlinear optical
phenomena in & general setting of interacting Fock space. We have investigated the
aptical phenomena of propagation through a ponlinear medivm as in optical fiber and
the process of photon alsorption from & thermal beam. The input and output phase
distribution have been investigated analyvtically in these two cases.
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1. Introduction

To study the finctuating fields we usually introduce a phase distribution which pro-
vides a useful insight into the structure of fuctuations in quantum states. But to
define a Hermitian phase operator has a setback starting with the work of Dirac
who attempted a definition of a phase operator via a polar decomposition of the
annihilation operator. Thereafter, Susskind and Glogower introduced a one-sided
unitary decomposition of the phase operator which is wsed extensively in quantum
optics. In the Pepp and Barnett approach a Hermitian phase operator was intro-
duced via a polar decomposition of the annihilation operator in a truncated Hilbert
space of dimension s + 1. Now, given a state in the finite dimensional Hilbert space
one first caleulates the expectation value in the s 4+ 1— dimensional space and then
takes the lmit as s tends to infinity. However, in this limit the PB phase opera-
tor does not converge to a Hermitian phase operator in the full Hilbert space, but
the distribution does converge to the 5G phase distribution. Thus to describe the
quantum-mechanical phase via a phase distribution appears to be computationally
advantageous than describing the phase distribution through a phase operator.

However, keeping the ideas of Susskind and Glogower in mind we describe here
a phase operator in interacting Fock space and adopt the view point of Aparwal
and co-workers to investigate the nonlinear optical phenomena of some states in
the interacting Fock space.
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The work is organized as follows. In Sec. 2, we discuss in brief the basic concepts
of one mode interacting Fock space. In Sec. 3, we describe the phase distribution
after introducing the phase operator in interacting Fock space. In Sec. 4, we study
the phase distribution of incoherent vector, coherent vector and Kerr vector in the
interacting Fock space. In Sec. 5, we consider the evolution of the phase distribu-
tion associated with a field as it propagates through nonlinear medinms. Here we
disenss two welkknown Kerr-like phenomena. In Sec. 6, we observe how the phase
distribution chanpes in the process of photon absorption from a thermal beam and
finally in Sec. 7, we give a conclusion.

2. Basic Concepts

Here we discuss some basic concepts which will be utilized throughout the paper.
As a vector space one mode interacting Fock space U@ is defined by

N@) = P ain . (1)

=il

where T'jn) is called the n-particle subspace. The different n-particle subspaces are
orthogonal, that is, the sum in Eq. (1) is orthogonal. The norm of the vector |n) &
given by

{nln} = An (2)

where {A,} = 0 and if for some n we have {A,} = 0, then {A\,,} = O forall m = n.
The norm introduced in Eq. (2) makes T'{T") a Hilbert space.

An arbitrary vector f in (@) is given by

f=cll e+ ea|2b+ -+ e + - - (3

for any n € & with | f|| = (30— lenl? M)t < 0.

We now consider the following actions on U{d"):

A¥ln} = [n +1}

(4)

}lfl
An+1) = ;‘ .

A* is called the creation operator and its adjoint A is called the annihilation oper-
ator. To define the annihilation operator we have taken the convention 0/ = (.
We observe that

np)={A"n—-1),n)={{n—-1),4An) = ;'" n—1ln—-1)=--- (5]

n—1

and

Jl)? = o R 2 = 52 (©)

By Eq. (2) we observe from Eq. (6) that Ay = 1.
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The commutation relation takes the form

* }lN+1 }lN -
A e 7

where N is the number operator defined by Nn) = njn).
In a recent paper® we have proved that the set {%,n =0,1,2,3,...} forms a
complete orthonormal set and the solution of the following eigenvalue equation

Af, =af, (8)

i piven by
_ e =
fu = ﬂ"{lﬂlﬁj W Z J';_ln} {‘-}:I

) a se |l X
where (o)) =3 ", ]—I_A . We call f, a coherent vector in '),
Now, we observe that

AN 41 AN
AA™ = I A = —— .
An An-1
We further observe that {L:—:’ - l—i-'ﬁ_"—l:l commutes with both A*4 and AA*.

3. Phase Distribution

To obtain the phase distribution we obtain first the phase vector fg which satisfies
the eigemalue equation

Pfa=3fa (10)
where P is the phase operator
Avet _ AN )“”
P = —= +A%4 A 11
( AN An-1 (1)
with f3 =3 a.jn).
We arrive finally at
fa=3 aaln) —a0 ¥ 87 ()2} (12)
=l =l
In Eq. (12) we take ag = 1 and 3 = |3]e*.
Then
fa=Y_ ™ Aa) 7 18] n) . (13)
re=(l

These vectors are normalizable in the strict sense only for |3 < 1. In the limit
|3 — 1, Eq. (13} takes the form

o

fo=Y e (A,) 2y (14)

=l



436 P. K. Das & A. Ghosh

where (0 < 8 < 27 and call fy a phase vector in T'{").
The vectors fg, though non-normalizable and nonorthogonal, form a complete

set and yield the following resolution of identity

1 2
i) dbl| fa){fol = I. (15)
To prove this we define the operator
|foilfel : TW@) — (@) (16)
by

|fai(falf = (fa. f)fo (17)

with arbitrary f =3 a,|n).

Novar,
(for ) = 3 e (3) 2,
and
(o, Aifa= 3 800200 P anlm).
e re=)
Heree
1 ar 1 ar = i s e ;
5 [ donanir= 5 [ @ 3 0w )

Z ai.,.,.{}.,,.,.:I_l"'lz{l,.:lI"'lgﬂ,. |'i|'||1.:'

rre e ={]

Z iy |1t

re=ll
=f. (18)

We use the vectors fp to associate to a given density operator p, a phase distribution

as follows:

P(6) = %{fa,pfs]

e =

The P(#) as defined in Eq. (19) & positive, owing to the positivity of p, and &
normalized

fhp{mda =1 (20)
i
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For

2 piln—m |ore) [
-/ﬂ‘ P{H:I (1} 21 Z : ” ( ] o \f"ln}‘_rl )

= [n}
—;(m v )
LI {21)

The phase distribution over the window 0 < # < 27 for any vector f i then
defined by

P(8) = o= (fou | F){f1fo)

—I(fo: PI. (22

4. Examples

We now consider some specific vectors in the Hilbert space T'(T) and compute their
corresponding phase distributions.

4.1. Inecoherent vectors

For the incoherent vectors we take the density operator to be

n
Z P —> < s (23)
=l " }l"
with
Pe =0 and Zpﬂ =T
re=(l
Now we caleulate the phase distribution P(#) as
1
P(8) = 5-(fo.pfo)
n
— "_ZP.-: (fﬂ'u _'_'_> <_'_" fﬂ)
fl=‘] I'I }"'I'I
2
i z i ( 5 )
r|=ﬂ "
1
= — (24)
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4.2, Coherent vectors

For the coherent vectors

fo =¥(laf?) ““Z

1-|=I'.|
we take the density operator to be

if,
P = |.fn}{fu| y = |ﬂ:|{‘.‘ o

and caleulate the phase distribution P(#) as
1
P{8) = 5-(fs: pfo)
1 2
= 5 l(fas fo)

&0 ]
1 ;
L tre[H—8yg ) " 112 /2
= > 2 o™ (An) ™Y 2 (|af*)”
For A, ~ n! we have
. 2
IE =
P{Hj i Zﬁ:rll:ﬂ—ﬂ“]lnlrl{ :| 172 {l“l :| 1/2
2w re=f]

3 2n
And with o(|a]?)~V2 ~ (30 l*—jl—jl_l"f2 — =102 we arrive at

=0 !
S 2
I s |ex|™ 2
Pt e[ —8g) —|ex| " f2
Pla i E=ﬂ & —mﬁ'

which i the phase distribution in the hosonic case.

For large |n|? after using the Gaussian approximation for a Poisson distribution

Bre - 2
&E_l”l 2 (2aal?) 12 Tt

we caleulate sum (29) to obtain the following approximate Gaussian form

2

1o\ _sja2e—-an?
Plg == o2 (88 )"
(6) 2(2:: =

For A, ~ [n]! we have
2

o

z E‘ir:[ﬂ—ﬂu]|r!|'fl{[,“]!:|—1 ,."‘E,w{ |u|2:|—1,."2

TE=

And with ¥(|af2)"¥2 ~ (T2 L2

=11 |_-|-|J!

|2u

)72 = e4(|af?) "2 we arrive at

2

o

[
> et D o
ﬂ'

=]

P(6) ~ —

2w

which is the phase distribution in the deformed case.

(30)

(1)

(32)

(33)
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Phase-Distribution Graph
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Fig. 1. FPlot of P(#) as a function of & — #y for & coherent state with mean number of photons
(a) |c:|2 = §; (b} Uk (c) 2 (d) 40 and A, ~ n!

In Fig. 1 we have plotted P{#) when A, ~ n! and given by Eq. (31) for varions

values of |a|2. The distribution curve is peaked at # = #; and becomes narrower as

lex]? increases.

4.3. Kerr vecltors

For the Kerr vectors qbf,

=3 guln) (34)

re=ll
where
; _1 a0 Ea dn__y .
e =1=|'«‘{|Q|E:| lfgl_ﬁ'ﬁ'ﬂ_liﬂ_' ] {‘55:|
we take the density operator to be
p=outoal, a=lae® (36)
and calculate the phase distribution P(#) as
1
P() = 5(fo. pfo)
Lk 2
= E_H:bu' 1 f'ﬁ':”
T
; 2
] Frt e : e Mg
=— Zﬁar:(vﬂ—ﬂu]lnlr:{}l"j—lf?wunlij—llﬂﬁﬁ?’ﬂ—lfﬂ—l 1} : {H?:I
2w

re=ll
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For A, ~ n! we have the phase distribution of the Kerr vector in the bosonic

Cise
e | | 2
1 ; cx|™ 2 i
Pigy ~ H:ul:ﬂ—ﬂ.;,] E—|u| fﬂﬁ%j‘rll:rl—l] a8
(@ "E=ﬂ 7 (38)

For A, ~ [n]! we have the phase distribution of the Kerr vector in the deformed

Case
- 2
Pig) ~ i Z pinld—8q) ﬂﬂ (| 2 i L2 g vln] ([ —1) (39)
2n re=(] v [ﬂ-]! '

5. Propagation Through Nonlinear Mediwms

Here, we consider the evolution of the phase distribution associated with a field as
it propagates through nonlinear medinms. We shall discuss two well-known Kerr
like phenomena that fall in this catepgory.

5.1. Optical Fiber — lype one
The first dynamic evolntion of the density operator for our consideration is given
by

F{f:l =E,—£'I.'A'AI:A'A—I]! vATAATA—L {4[})

e

where - is the Kerr constant of the medinm. The time evolution of the corresponding
phase distribution is given by

1
P(8.t) = 5—(fo.p(t) fo). (41)
For an initial coherent vector
p0) = [fallfal, a= |“|‘r-’i'ﬂCI - {42)
P(#. 1) is given by
P{ﬁ},f:l _ Ei{f'ﬂ" F_,—ETA'A(A'A—I]!”ru}{fulﬁi-yA'A(A'A—l]!fa:l
T

! iy AT ALATA- 2
= o |(fa, AN AR )

27
: 2
L - el —1/2 ‘.':"!TA"—(TA“——].]
ot 2_ f;nzf' {};":I e rn—1 -1 |'i|?-}
TT ne=l]
= 2
- : et A
= E_‘L'“ﬂrz:'_l Z |&|rlﬁ.trtl:ﬂ_aﬂ]{}l":l—Il."Eﬁ ELb vl & e . (13)
w
re=ll
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Time Graph
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Fig 2. The phese distribution P(8,7) with mean number of photons o2 = 10 propagating
through a nonlinear medium corresponding to (a)  =0; (b) v = 0.025; (c) v =0.05; (d) 7 =0.1
and An ~ nl

For A ~n! and 7 = ~#, P(#. ) can be caleulated numerically to be
1 1
P@7)= - ————e 1?2

= Tf+ (@ —8;—7)* + 4| x| (8 — 8y —7)7]
e 2

. ERp (44
Der

. 4.2
with g2 = lH;’l:‘l . In Fig. 2, we have shown the distribution and observed that

the distribution shifts and broadens as the field propagates through the nonlinear
medimm. Thus, quantum mechanically, the phase not only shifts but also diffuses.

5.2. Optical Fiber — type two

The second dynamic evolution of the density operator for our consideration is given
by
3 - 2 : - a
P{f:l =t v AT A) PPHH:-_H:A At {:H-:'j

where ~ is the Kerr constant of the medinm. The time evolution of the corresponding

phase distribution & given by
1 .
P(8,t) = 5—{fo.plt)fa) .- (46)
Y

For an initial coherent vector

j'?{{]':l = |fn}{fu| y = |’”|‘"aﬂ(I {ilT:I
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P 1) is given by

Pla.t) = %{fﬂ*ﬁ_iﬂA'A]ﬂ!|f;.}{f"|ﬁ”u'”]ﬂ'faj

1 b e T
= El{fmﬁt-ﬂ}i 4 !f3:||2

3 An 2
(fu Z :1-59 I,"E FLE . ] |'i|'|l})

re=ll

2

" l'fl a—8y] fa it P
= > ¥(laf?) IS lafren 000, )2

=1l

6i. Process of Photon Absorption from a Thermal Beam

We next consider the phenomenon of photon absorption from a thermal beam. The
density operator associated with the process can be written as

p=cApg A" (497

where ¢ is a normalization constant.
If we take the input field as a coherent vector, then the density operators for
the input and the absorbed fields are

pin = |fa}{fal, a= |'”’|*"-'E'ﬂ':I (50)

and

Pout = CAxslf"}{fulAs 3 5 =0, {ﬁl:l

Having obtained the density operator for the output field, we can now calew-
late the corresponding phase distribution. For the input field p, we have already
calenlated the phase distribution in Sec. 4. The phase distribution P, (#) for the
absorbed field is given by

1
R’JLLL{H:I = _E‘N{f'ﬂ‘ F{JuL_fvﬂ:I

= (o, A | fu){fal 47 fo)

2
%{.ﬁh -"i”{fu'- Ar‘fﬂjfuj
= = |(fa A" f)I*

2

1
'f:ﬂs:'rlh:ﬂﬂq f 2, —1/2
= £ [Slapeetesn -t _L_y(at)1n| (52)
re=1] it
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7. Conclusion

We have thus shown how the phase distribution associated with the field evolves in

wvarions noolinear processes in the interacting Fock space. We studied phase distri-

bution through Susskind and Glogower type phase operator for incoherent vector,

coherent vector and Kerr vector which have no classical analopue and observed var-

ions chanpes there on. We observed how phase distribution evolves when it prop-

agates through Kerr-like medinms and when it undergoes the process of photon

absorption from a thermal beam. Experimental observation of phase distribution

of the variows vectors studied may be quite interesting and may throw some insight

into the subject.
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