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Abstract

This paper provides a mathematical investigation of the problem of scattering of swiface water waves by two surface-piercing
barriers that are almost vertical and are described by the same shape function in the context of linear theory by employing a
simplified perturbational analysis. Green’s identity is used to express the perturbation to the quantities of interest—the reflection
and transmission coefficients—in terms of the solution to the unperturbed system. As in the case of single nearly vertical barrier,
here also the perturbed transmission coefficient vanishes identically while the perturbed reflection coefficient is obtained in terms
of a number of definite integrals involving shape function. When the two barriers are merged into a single barrier, the known result
for a single barrier is recovered.

Kevwords: Water wave scattering: Linear theory; Mearly vertical barriers: Perturbation anal ysis: Reflection and tmnsmission coeftficients

1. Introduction

Within the framework of linearised theory of water waves, the problems involving scatiering of nomally incident
surface waler wave Lrains in deep water by thin fixed plane vertical barriers, admit of exact solutions (cf. Ursel [1],
Evans [2], Porter [3] for a single barrier, Levine and Rodemich [4], Jarvis [5] for two equal parallel bamiers). A
substantial amount of research work related to water wave scattering problems involving the thin vertical bariers
has been carned out during the last six decades (see Mandal and Chakrabarti [6]). Problems mvolving thin curved
barriers or inclined straight plane barriers do not admit of exact solutions but can be studied by some approximate
methods. These have been studied by using hypersingular integral equation formulations (ef. Parson and Marin [ 7], [8],
Midya et al [9], Kanoria and Mandal [ 10], Mandal and Gayen{Chowdhury) [11]). The hypersingular integral equation
arising in each problem has been solved approximately and numerdeal estimates for the reflection and transmission
coefficients are then obtained. When the barrers are slightly curved, which we call neardy vertical barriers, it is also
not possible w find exact solutions, rather perturbed forms of the solution can be found. A problem associated with
a surface-piercing nearly vertical single barrier was first handled by Shaw [12] using perturbational analysis which
involved the solution of a singular integral equation. Evans [13], in a short note, gave an idea for computation of the
wave amplinde produced by small oscillations of a partially immersed flexible plate which involved an application of
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Green's integral theorem. Following this idea, Mandal and Chakrabarti [ 14] determined the first order comections 1o
the reflection and transmission coefficients (R and T, respectively) for the problem of surface water wave scattering by
a fixed neady vertical barrier for is two configurations, viz. a partially immersed barrier and a completely submerged
barrier extending infinitely downwards, using a different perturbational analysis. The case of nearly vertical thin plate
submerged in deep water was investigated by Mandal and Kundu [15] employing Shaw’s [12] method as well as the
method vsed by Mandal and Chakrabarti [ 14].

In the present paper, the first order corrections By, T o R and T, respectively for the problem of surface wave
scattering by two fixed nearly vertical identical barriers, which are partially immersed to the same depth in infinitely
deep water, have been determined by using the techmgue employed by Mandal and Chakmabart [14]. Here we have
used the exact solution of the double barder problem given by Levine and Rodemich [4]. Asin the case of single barrer,
T also vanishes here identically while R is obtained in terms of definite integrals involving the shape function. The
known result for a single partially immersed neardy vertical barter is recovered when the two barriers are merged o a
single barrier by making the distance between the two partially immersed edges of the barriers to tend o zero.

2. Statement of the problem

Assuming linear theory, we consider the two-dimensional problem of water wave scatlering by two fixed neardy
vertical partially immersed barders in deep water. The position of the mean free surface is given by v =0, the y-axis
being chosen vertically downwards into the fluid region, and xr-axis along the direction of an incoming train of surface
WaVES,

Let the configurations of the barriers be described by ¥ = da + ec(v), ) = v < 1 wheree isa small non-dimensional
parameter giving a measure of maximum deviation of the curved barrders from the vertical and o v) isthe shape function
which is continuous and bounded in (0, 1)satisfying () = (1) = . Assuming the motion in the fluid 1o be irrotational
and simple harmonic in time r with angalar frequency o, it can be described by a velocity potential Refgix, vie 7'},

Then ¢ x, v) satisfies the Laplace’s equation

V’I¢ =10 inthe Nuid region, (1)
the lineansed free surface condition

Kp+¢,=0 on y=0, (2}
with K = o7/ g, g being the acceleration due o gravity, the barrier conditions

% =0 on rxr=Zda+tec(y)l=y=1 (3)
where n denotes the normal to the suface of the curved barriers, the edege conditions

r'?%¢ isboundedas r — 0, ()
where ris the distance from the points (£a, 1), the deep water conditions

6. Vp — 0 as y— o, ()

and finally, the infinily requirements given by

()

- Tlili"uf.f, ¥) asx — 0o,
$x ¥ ¢'™(x, ¥) + Rp™(—x,y)  asx — —oc.

Inthe condition (6), R and T, respectively denote the { complex ) reflection and transmission coefficients o be determined
and

(5, 5) = e~ KrHIEE "

denotes the incident wave potential propagating from the direction of ¥ = —oo.
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3. Method of solution

For nearly vertical barriers, the parameter € can be assumed to be very small. The boundary conditions (3) on neardy
vertical barners can be expressed as

d
iy a £ 10, ¥) —fd—{ff_lr‘}"i"}-f:l:ﬂ +0, 9} +06e) =0 for O0<y=<] (%)
¥

where +0 denote values on two sides of each barrer. The forms of the approximate boundary conditions (8) suggest
that ¢, R and T have the following perturbational expansions, in terms of the small parameter ¢:

@lx, vi€) = dolx, ¥) + edy (x, v) + ole?),
Rie)= Ry + eR| + oie?), ()
Tie) = Ty + €T + oie?).

Substituting the expansions {9) in the basic partal differential equation (1), the free surface condition (2), the approx-
imate boundary conditions (8), the conditions (4)—(6), we find, after equating the coefficients of identical powers of ¢
from both sides of the results, that ¢y and ¢ satisfy the following two problems py and pa, respectively.

pi- The function ¢y satisfics

{) Vg =0 in y=0,—oc<x =00
(ii) Ko+ oy =0 on y=0,
(i) gy =0 on x=da ld=<y=<1,
(iv) r'?Vey isbounded as = {(x+a)’ +(y— 1)}? =0,
(v) dy, Vg — 0 as y— o0,

—Ky+iKx

Tye A% x — 0o,

(vi) golx, ¥) ~ - e
i c—j._x-!-m..r +Rnc—ﬁ.}—|ﬁ..t A8 T — —O0.

pz- The function ¢ satisfies

{i) Vi =0 in y=0, —oc = x = o0,

() Ky + gy = 0 on y=0,

(i) gyoida£0, v) = %{c'f_v}dlﬂ}.f a0, ¥}, 0= y=<1,

{iv) 72V isbounded as r={(x+ta) +(y—1)"}1? =0,
(v) g, Vi — 0 as y— oo,

Tie FHEy e r 5 oo,

(vi) gnix, y) Rie—5-iK2 a5 oo,
The problem py corresponds 1o water wave scaltering by two thin vertical partially immersed barmers. 1s explicit
solution was obtained by Levine and Rodemich [4] by using complex vanable theory. His results are reproduced in
Appendix Appendix A in anequivalent form for the purpose of their use in obtaining the first order corections R and
T to the reflection and transmission coefficients appeanng in the problem pa.
Without solving the problem pa fully, R, T} can be oblained by employing Evans’s [ 13] idea. To find R, we apply
Green's integral theorem o the functions gyg(x, v) and ¢ (x, v) in the region bounded by the lines

y=0, a<x<X; =X O0=y=Y; y=Y -X=x=X; r=-X, 0=zy=V,
y=0 —-X=x<—a r=—a—-0, 0=y=1l; r=—a+0, 0=y=1;

y=0, —a=x=a; x=a—0 0=y=<l; x=a+0 0=y=l
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and circles of small radius § with centers at (+a, 1) and ultimately make X, Y tend to infinity and § tend w zero. Using
arguments similar o Evans [13], we oblan

1
iR = _[ {dola + 0, yhbrela + 0. y) — dola — 0, ¥idiela — 0, y)idy
0
|
+ f {hol —a + 0, vy p(—a + 0, v) — gpl—a — 0, by o (—a — 0, y)jdy. (10
i

Using the condition (iii) of pz in the relation (10}, integrating by pars and using o(0) = o(1) = 0, we find that

1
ik = f ciyi {doia — 0, ¥)+ doyi—a + 0, yiHdoia — 0, ¥) — goyi—a + 0, y)}
0

—{doyla + 0, ) + doy(—a — O, yiH@oyla + 0, y) — oy (—a — 0, yijidy. (11}
Following Levine and Rodemich [4]. ¢y (2, ¥) is given by

v

doy(x, ¥) = c_m—[ M Refix + indv — Ke ™is(x) for x>a and x< —a, (12}
0
”
doy(x, y) = i / um'Rf_f'(.r +iv)de — Ke ®u@) for —a<x<a. (13)
410

where the functions fiz), A<(x) and pix) are given in the Appendix A. Using (12) and (13), the relation (11) produces

1 y .
iR =f civ) [c‘“—‘*‘f u“{Rej'm—tHiu}+Reﬂ—a+u+iu}}du—.ﬂfu‘“~-"mm}+m—a}}]
0 0

® [u_j:-"' f e*{Refia — 0+ iv) — Refi—a + 0+ iv)}dv — Ku-ﬁ'-"{;;m}—;;r—a}}] dy
il

1 .l =
— f ol y) [c-f-" f e*{Refia + 0+ iv) + Refi—a — 0+ iv)ldv — Ke ¥ 0 (a)+ )L_r—a}}]
0 0

i e -
% [u‘”-"f uj‘”{Rff{ﬂ+{]'+iu}|—qu'f—ﬂ—[]'+iu}l}du—Kc_f"-‘{)-._-,fﬂ}l—)-._{—ﬂ}}] dy. (14)
0

The integrals appearing in (14) can be evaluated numerically, once the form of ofy) is known.

Asa — 0, the two barriers merge to a single barrier. So if we make a — Oin(14), R) for a single barrer should be
recovered. To show this, approximations of various quantities as a — ) are obtained in Appendix B. Using the results
givenin (B.16)-(B.18) in Appendix B in(14), and noting that the second integral in ( 14) contributes nothing, and using
the contributions for the first integral in (14), we obtain as a — 0,

B 1 ¥ S | — Ky
lf:rth}+iKlfK}}%—Kf o y)e 2K f s T N m~+f o(y)—————dy. (15)
4K 0 X 1 (1 — 1.:?::!["'I E [ R _}J}I"II i

This result coincides with the result, obtained by Shaw [12] and Mandal and Chakrabarti [14] for a single partially
tmmersed neardy vertical barner.
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Again, to find T}, we use Green's integral theorem to the functions i x, v) = ¢pl—x, v) and ¢ (x, v) in the region
mentioned above to obtain finally,

|
il = / Trgla 4+ 0, ¥y la + 0, v) — dgla — O, vighyla — 0, yibdy
Ju
[
+ / {urpl —a 4+ 0, yhghyl —a + 0, v)— dipl—a — O, ¥yl —a — 0, ¥)idy
Ju
|
= / {n(—a — 0, yidla + 0, v) — dol—a + 0, y)dla — 0, y)idy
Ju

|
+ [ {dola — 0, yidpl—a + 0, ¥} — dola + 0, vig(—a — 0, yijdy.
Juo

Using the condition (iii) of p,, then integrating by parts and using c(() = ¢(1) =0, we find that the above inegral
vanishes identically so that

=i (16)

Thus, the first order correction to the transmission coefficient vanishes identically for two neardy vertical barriers also,
as was the case for a single nearly vertical barrier.

4. Conclusion

A simplified perturbational analysis together with appropriate use of Green’s integral theorem is employed o
obtain the first order corrections B and 77 to the reflection and transmission coefficients for two neardy vert-
cal partially immersed barders in deep water. While R is obtained in terms of definite integrals involving the
shape function describing the bamiers, T) vanishes identically. If the two barders are merged o the single bar-
rier then the known result By for a single barder is recovered. Here the same shape function has been cho-
sen to describe the configurations of the two barters for simplicity. However there is no difficulyy if two dif-
ferent shape functions cp(v)(i = 1, 2) such that ¢;(1) = 0 and |ei(y)| is bounded for 0 < y = 1 are chosen. The
first order correction for By will involve definite integrals involving o) (v) and c2(y) while T will be identically
2em.

It may be noted that the present problem can be handled by a hypersingular integral equation formulation as has
been done by Mandal and Gayen(Chowdhury)[11] for two symmetric circular arc shaped plates when the form of
the shape function o(y) 1s known and € 15 also prescribed. However, in solving the resulting hypersingular itegral
equation by collocation method, the evaluation of the elements of the matrix of the resulting linear system, although
straight forward in principle, is quite cumbersome in practice. The present perturbational method appears to be simple
in comparison o the hypersingular integral equation formulation.
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Appendix A
In this section, we mention those inevitable expressions of [4] which are used above and in Appendix B
The function fiz)in (12) and (13) is given by
f@) =(C— D) fi(z) + (C + D) fo(2) Li.1)

3pct + g 2pp”

hiz) = (Z_@2p (2P
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f{l i ﬁl}l f.:f i ﬁl}l

where C, [, p are constants (cf. [4]). £ and ¢ are related by

L e ds
"_ﬁz 0 ful_rl}l.f‘lfy‘l_r’_’}l.n"l !

where o, f§,  are determined by the following relations

falzy=

B Ek)

v = Ko’

ol K(KE(k, 8) — E(k)Fik, 8] = E(k),
’-;a B

with

152

o] iz 3o 112
o’ 1 4

J;-:(l——,,) and &:sin"—(l—i) :
ye k 13

Fik,d), Eik, &), K(k) and E(k) being elliptic integrals. Also Jo(x) and goix) in (12) and { 13) are given by

Tnet forx = a

el® 4 Boe EY fory < —a,

1 X
halx) = _E —[ sin K(x — o) o )de 4 {

oo

X . ()
i) = —% f sin K{x —u) flode — M cos Kia — ) fludo

0 K!iiﬂ EKI! IV}

cos Kla — x) 0

- - - cos Kia+w) flude, for —a<=x=a,
Ksin2Ka J_, Hr ()

1 I
Ty = E“_IMHC — D)) (1) — sin Kal2(1)} 4 (C + D){11(2) — icos Kal2(2)}].
a 1 -
Ry =e¢ ka4 ?u"*“[rc — DY I(1) — sin Kab(1)} —(C + D) 1{2) — icos Kal(2)}].
I
where

i
hin= / cos Ki(a — x) fjlx)dx,
41

a0 -
Mﬂ=f e~ X fi(iy)dy,
0

Lij)= f l[eos Kia —z) —eosh K| fjzidz (j=1.2)
€y
where C) s a curve from a + 010 @ — 0 in the cut half plane occupied by the fluid.
Appendix B

Approximation as a — 0
Smee
1 E]- _k'lx_""}l.llz

Eik) = —_—ilx,
© o (1—xHi2 )

{AS)

(A4)

(A5)

(AG)

(A7)

(AR)

(A9)

(AL

(ALY

(AL2)

(AL

(AL4)

(ALS)



5 De er alf Wave Martion 43 {25 | 167175
use of the first mean value theorem of integral calculus produces

Etk) = gfl g, 0<k<l.

Thus, (A7) gives

a = a(l — K242,
s0 that
o’ ?,2 —a
l—— = =1 as a—1)

R
and hence
k=1 as a— (L

Again sinee

4
Kik)=In E]__j_-qw =moo as o a— 0,

we find from ( A5) that
ﬁ'l
?
Also from (A8 that

=0 as a— 0.

b3
2

Thus we find from (A7) and (B.2) that

g = as a — .

2a
—, F=0 as a—0

o=
ira

Now using (A.5) in ( A.6), we find that
B _ VEK8)
o l+aFik &)
Sinceasa — 0, k=1 and &= %,wu find that
Eik, &) = 1.

Using (B. 1), we find that as @ — 0
4
aF(k, 6) ~ aK(k) ~ aln (—y) 2 aln (—) =0
o

since, as p = 0 always, we can wnle
v s oa—0
where pp = 0. Using (B.6)—~(B.8) in (B .5), we find that

B2
o aRch
Now from (Ad)

"l

dz oy =
&~ B @R

173

(B.1)

(B.2)

(B.3)

(B4)

(B.5)

(B.o)

(B.7)

(B.8)

(BY9)
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Asa — 0, using (B.4), (B.8) and (B .9) we find that
dz 1
— = —,;”- (B.10)
di w2 —yt2

But we know that for a single barrier(a = (), (cf. Levine and Rodemich [4])

dz £
e -’ £

Comparing (B.10) and (B.11) we find

w=1.
Using this and (B .4), (B.8) and (B.9), we find asa — 0
2 3,0 12
a2 ﬁ%(_—ﬂ) . oyl (B.12)
T

The approximation in (B.12) are now used to find the approximations for fi(z), f20z), f(z) and the various integrals
for a = 0. Form (A.2) and (A 3) we get

4

3 2
flfz}*ﬁ(g+§'),fz[:}%g as a— 0 (B.13%)

where £ is given by the ransformation (B.11). From (A 13)—(A.135) we have (cf. Levine and Rodemich [4])

1
hily—sinKahi(l)= —-_)-KKHK,H}
. |
2y—icos Kal.(2) = ] KKK, a)

2i

K, a)= —0(f), j=1,2

3 ) - 3 .Ir::l J

where

2 ]

KK a)= E,[ cos Kix —a) filx)dx, j=12.

i
As g — (), we find

KiK. a) = =R —/"3‘3 cos K 2 +1(1 +.rl}ll"'I dx
1K, a) = — 00 e !
K Jy (1427

1
hiK.a)=— P f {cosh Ky — cosh K) % + (1 — y")/2| dy, (B.14)
Tk il (1 —_1"_::'_
KK, a) =4K(K), DK a)=21H(K) (B.15)

where I(K) and K(K) are modified Bessel functions. From (A 11), we find after using the approximations (B.14)
and (B.15) as a — 0 that
1K (K) ahi(K)
A 5 R:] 2 A
1 1

0=

where

ﬂl = .an[fK}l +iK[fK}I.
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Again from (A1) we find that as a — 0

1 1
Jilz) = TR T for a =0,
ﬂ[lfl + =z 1}' (B.16)
f(z::l == __ﬁ_l f-]___-i__zf}:-ﬁi for a=0
so that from (A.9) and (A 10), we obtained as a — (),
Asla)+ h_(—a) =2,
T a e 2 fx sinh K 2al(K) (B.1T7)
POTET T KA a= T T A
and
fla) + pl—a) =1,
2 (B.18)
pla) — pl—a) = — AKE
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