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equivilent to the strong monotonicity property. For the doublesided multiplicative trans formations, we show that

the Lipschitz contimuity of the solution map implies the GUS-property.

Key words: semidefinite linear complementarity poblem (SDLCP); Lipschite continuity: P-property: Q-property;
GUS-propenty.

MECHNEY subject classification: Primary: 90033 secondary: 93D05

CHRMS suhjecs classificarion: Primary: progmmming: secondary: complementarity

History: Received November 12, 2003; mevised June 24, 2004,

L Intreduction. Let 5" be the vector space of all real symmetric n % n matrices and
A7 the set of positive semidefinite matrices in 5. Given a linear transformation L: " —
S and O e ", the semidefinite linear complementarity problem SDLCP(L, () is 1o find
a matrix X £ " such that

Xed", Y=LX)+QeF', (X, ¥)=u(X¥)=0(s XY =0),

where r denotes the trace. We shall refer to XY =0 as the complementarity condition.

This problem was originally introduced by Kojima et al. [9] in a different form. The
SDLCP can be considered as a generalization of the linear complementarity problem (LCP);
see Cottle et al. [2]. Motivated by the significance of P-matrices in linear complementarity
theory, Gowda and Song [6] introduced the P-property and its variants, namely, the globally
uniquely solvable (GUS) property and the P.-property for the SDLCP. The relationship
between these properties was established in Gowda and Song [6] and in Parthasarathy
et al. [12].

One of the important problems in the LCP is to characterize the Lipschitz continuity of
its solution map g — 8,;(g), where 5,,(g) is the set of all solutions 1o the linear comple-
mentarity problem LCPIM, g). Mangasarian and Shiau [10] showed that if M is a P-matrx,
then the multivalued map ¢ — §,,(g) is Lipschitz continuous. Pang conjectured that if S,
is Lipschitz continuous and S, (g) £ ¢ for all g € B", then M must be 8 P-matrix; see
Gowda [4]. This result was established in Murthy et al. [11].

These results motivate us o find the interconnections between the Lipschilz continuity
of the solution map ¢, of the SDLCP and the P-property and its variants. Because the
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cone ¥} is nonpolyhedral and the matrix multiplication is not commutative in general, the
problem becomes more difficult than in the case of the LCP. We have shown that for a
monotone linear transformation L, the Lipschitz continuity of ¢, implies the Py-property. By
specializing o Lyapunov transformations L, we show that if L, has the O-property, then
db,  is Lipschitz continuous if and only if L, has the strong monotonicity property. Using
this result, we give an example to illustrate that the GUS-property of L need not imply the
Lipschitz continuity of ¢b,. For the transformation M,(X) = AXA", we prove that if ¢,
is Lipschitz continuous, then M, has the GUS-property. If we make the additional assump-
tion that A is symmetric, then for the transformation M. we show that ¢, is Lipschitz
continuous if and only if M, has the strong monotonicity propertly.

L1. Notation and Preliminaries.
(i) Let X € " We wrte X =0 (> 0) if X is positive semidefinite {definite).
{it) Given a linear transformation L: 5" — 5" ket ¢, (@) denote the set of all solu-
tions to SDLCP(L, ).
{iii) We use [ to denote the identity matrix.
{iv) For A e 7", let ||A|| denote the Frobenius nomm.
We list below some well-known results on matrices; see Zhang [13].
(i) X =0= PXP" =0 for any nonsingular matrix P.
i) X=0,Y >0, {X,Y)})=0=XY=¥YX=0
(iii) Let A & 57" Then, there exists a real invertible matrix @ such that QAQ" =
diag[f, . —{ 0], where k is the number of positive eigenvalues of A and r is the number of
negative eigenvalues of A.
DeFpiviTion 1.1, For A € "™, we recall the following definitions.
(i) A is positive stable if every eigenvalue of A has a positive real part.
{i1) A is Schur stable if all the eigenvalues of A lie in the open unit disk of the complex
plane.
{iii) A is a signature matrix if’ A is a diagonal matnix and its diagonal entries are either 1
or —1.
DeFiviTion 1.2, For a matrix A € ™", we define the corresponding Lyapunov trans-
formation L2 " — " by
L(X)=AX+XAT.

DeFiviTioN 1.3, For a linear transformation L: " — ", we say that
(i) L has the Q-property if SDLCP(L, () has a solution for all Qe 5",
{ii) L has the P-property if X and L{X) commute, XL(X) =0 = X =10.
{iii) L has the GUS-property, if for all @ e 57", SDLCP(L, @) has a unique solution.
{iv) L has the monotonicity property if {L{X), X} =0 for any X € ",
{v) L has the strong monotonicity property if {L{X), X} = 0 for any nonzero X £ 5",
(vi) L has the R-property if SDLCP(L, 0) has a unigue solution,
{vii) L has the Po-property if X =0, ¥ =0, (X = F)LIX-F){(X+¥V)=0=X=Y.
DeriviTioN 1.4, Let L: 5" — 5" be a linear transformation. Corresponding 1o any
e {l,... n}, we define a linear transformation L : 50— Solel by

Lo(Z)=[L(X)],a (ZeZF"),

where, corresponding to any Z € 50 X e 5 is the unigue matrx such that X, =7 and
x; =0 for all (i,j) € @ x a. We call L, the principal subtransformation of L correspon-
ding 1o e,

DeFiviTiON 1.5, Let Lo " — 57" be a linear transformation and ¢, () be the set of
all solutions to SDLCP{L, (). Then, the multivalued map o, 0 " — 57 is Lipschitzian, if
there exists C =0 such that

b, (@S, (Q)+CI0—-0'|B
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for all @, O e 7" satisfying ¢, ( Q) £ b and ¢, (') = b, Here, || - || denotes the Frobenius
nom in 5" and B denotes the closed unit ball in 57",

THEOREM 1.1 (Karamarpian [B]).  If SDLCP{L,{) and SDLCP{L,[!) have unigue
solutions, then L hay the Q-property.

THEOREM 1.2 (GowDa aND S0oNG [6]).  For a matrix A€ R"™", consider the Lvapunov
transformation L. Then, the following statements are equivalent:
(1) A ix positive stable and positive semidefinite.
(it) L, has the GUS-property.
THeorREM 1.3 (Gowpa anD SoNG [6]).  Ifa linear transformation L: 5" — 5" has the
P, -praperty, then L has the GUS-property.

2, Main resulis. We first give a sufficient condition for the Lipschitz continuity of ¢, .
The result is known in a more general setting than the SDLCP. For a proof we refer o
Proposition 2.3.11 in Facchinei and Pang [3]. Specializing this resull to the SDLCP we get
the following theorem.

THEOREM 2.1, Let L: " — 5" be a linear transformation. If L has the strong mono-
tonicity property, then o, is Lipschitzian.

We now give an example 1o show that the monotonicity property is not sufficient o
conclude that ¢, is Lipschitzian,
ExaMPLE 2.1.  Let L: 5% — 57 be defined as

05 el w

Then, L has the monotonicity property. It is simple to verify that ¢, (1) = {0} and

0 0
![ :|:n=1,2,...]§{.!:-,_{{]']|.
0 n

If &b, is Lipschitzian, then ¢, () will be a compact set, which is clearly a contradiction.
The next example shows that ¢, is Lipschitzian, but ¢b, is not Lipschitzian.
ExampLe 2,20 Let L{X):= —X. We claim that ¢, is not Lipschitzian. Assume the
contrary. Let © = 0 be the Lipschitzian constant. Without any loss of generality, assume

that € > 1/+/2. Let
[ o o[
=g ] ™ €Ty ¢

It 15 not hard to show that

"~

iy 1,!7—("'| 412 r:+1,ﬂ

son 1[0 0] [€c 1~ 5 > 2
£{Co)= 0o o||y2 ¢ | |M2-C f—lf?J Lfﬂf? f+1f’2
| 2

2 3 2 l

Choose

0
Nz s, (Q.).
“ Lo u} (L)

Then, |Xe — Xi|| = Cl|Qr — QF| for every X[ € ¢, ( Q). which conradicts that ¢, is
Lipschitzian.
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We now show that if L has the monotonicity property and ¢, is Lipschitzian, then
SDLCP{ L, () has a unigque solution for all Q0 € 5" The proof of this result is based on the
following lemmas.

Lemma 2.1, Suppose that o, is Lipschitzian and ¢, (1) = {0). Then, &, (Q) = [0} for
every =

Froor. Let 57 be the set of all positive definite matrices in . Let 1 ={Q e ] :
¢y (@) = {0}}. Then, {1 is nonemply by our assumption. We claim that £} is an open set
in . Fix P e (). Because ¢, is Lipschitzian, for all U € B, we have ¢, (kP + U) <
b (kP)+ C|U|B for all £=1,2,3,.... From ¢, (P) = {0}, we see that ¢, (kP) ={0}.
Therefore, the sets ¢, (kP + U') are uniformly bounded. For any X € &, (kP + U), we have

X=0, Y:=L(X)+kP+U=0, ¥YX=0.

It follows that for all large &, ¥ = 0. Hence, ¢, (kP + U7) = {0} for all large k. Because
kP 4+ U = 0, for all large k, kP + U7 € £). Hence, P+ Uk € 0 for large k. Thus, P is an
interior point and £} is an open set in 7. Now we claim that £) is closed in 277, Let
P e bein the closure of £}, Because every neighbourhood of P contains a point U of £},
and for any such point ¢, (U) = [0}, it follows from the Lipschitzian property of o, that
eh, (P) must be contained in an arbitrary small ball around zero vector. Hence, ¢, (P) = {0},
so that P € £). Because ) is connected, {2 = 5] . Let Q' =0. Then, Q' +ef =0 for all
e = (). Because ¢, is Lipschitzian, ¢, (Q") € &, (Q' +el)+ C./neB. Hence, if X € ¢, ('),
then || X|| < C./ne forall € = 0. Thus, X =0. O
The proof of the next lemma is siraightforward and thus omitted.

LEMma 22 Let L: " — 5" be lincar For an invertible matrix O € R"™", define
LX) :=0L(Q"XQ)Q". Then, &, is Lipschitzian if and only if &; is Lipschitzian.

Lemma 2.3, Suppose that o, is Lipschitzian, and & (1) = {0}. Let L be a principal
subtransformation of L. Then, &, is Lipschizian

PFroor.  Because o, (F) = {0}, by Lemma 2.1, ¢, (0) = {0}. Thus, L has the Q-property
by Theorem 1.1 and hence ¢, (Q) £ ¢ for all O € 5", Without any loss of generality,

assume that e ={1,.._, k). where k=n. Let P,Qe # and Ze d,_(P). Put
[Z 0
Al
(0 0
and =
M N
L{Z) = _ :
| NT R
From the block form of Z°, it follows that L, (Z) = M. Define
P —N
P = Vm=1,2,3,....
—NTmi

We now claim that Z° € o, (P, ) for all large m. Because Z =0, it follows that Z' = 0. Now
M+pP 0 }

L(Z)+ P, =
0 R4 m!

Because M + P =L, (Z)+ P, we see that M + P = 0. Now choose large m such that
R+ ml = 0. Thus, L{Z') + P, =0 for large m. The venfication of the complementarity
condition is strightforward and thus Z' € &b, (P, ) for large m. Now for 0 € #l*, define

am

0 =N
Q.= . Ym=1,2,3,....
—N" ml
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Let X, b, (Q ). We claim that the sequence { X,

am H

0 0
Q::.= ¥m=123....
0 mi

Because @ =0, by Lemma 2.1, ¢,(Q2) = {0}. By the Lipschitz continuity of é,, we
have X, € C||Q,, — O, |B. Thus, { X} is bounded. Now there exists a subsequence of {X, ]
which converges. Without any loss of generality, assume that { X} itself converges. Partition

X, and L{X, ) conformally as before:

1’:" Z.||| AJII B.III
X =| _ and L(X )= i i
’ [m WJ ' [m CJ

Because X, (L(X,,)+ Q) ) =0, we have ZI (B,

we see that W, — 0. Because X, =0, Z, converges to (. Now let ¥, — ¥*. We claim that

¥*ed, (Q). Clearly, ¥* = 0. Because L is linear, we see that A, converges to L, (¥*).

Now applying the limits to A, +Q =0, we get L (¥*) + 0 = 0. The verfication of the

complementarity condition is direct, becawse {Z,} and {W, } converge to zero. Because ¢,
is Lipschitzian, for all large m, we have

Z 0 Yo L :
€l _, +C|P, —Q,|B.
0 0 Z, W,

Taking limits, we see that |Z — ¥*|| = C||# — Q| and hence ¢, is Lipschitzian. [0

| is bounded. Put

=N+ mW, +W, O, =0 Taking limits,

an m Ll

Lemma 2.4, Ifoh, iv Lipschitzian and L has the Q-property, then L is 1-1.

Proor.  Let L7 denote the adjoint of L. If L is not 1-1, then there exists a nonzem X €
" such that L7 (X)=0. Put @ =—L{I). Clearly, I £ b, (Q). Now we can find a sequence
{0,.} such that @,, — @, and {Q, . X} #£0 for all m. Let X,, € ¢, (0Q,). We claim that
each X is singular. Suppose that X is nonsingular for some &. Then, the complementarity
condition X (L{X,) 4+ ©,) =0 implies that L(X,) 4+ @, = 0. Taking the inner product
with X, we see that (X, L(X,)+ Q,) =0. Because LT(X) =0, we get {X, 0.} =0. This
contradicts our assumption on {0, }. Now by the Lipschike continuity of ¢, , we have
feX, +C|Q—0,|B. Because O, converges o ), we see that X, — I. This is clearly
a contradiction, because each X is singular. Hence, L must be 1-1. O

We now prove our main resull.

THEOREM 22, Let L: " — " be a linear transformation. Suppose that L has the
monatonicity property and ¢, is Lipschitzian. Then, L has the Py-property. In particular,
L has the GUS-property.

ProoF.  Assume that there exists X =0, ¥ =0 satisfying (X = ¥)L{(X =YX+ ¥)=0.
We claim that X = ¥, and this will imply that L has the Po-property; see Pathasarathy et al.
[12, Proposition 1]. If possible, let X & ¥. Because X 4+ ¥ = 0 and nonzero, there exists a
real invertible matnx @ such that

R
X+Y=0 e,
0 0

where {1, is the identity matrix of size rxrand 1 = r =n Let A:=07'X(0")" and
B=0"Y(0 " Then, A and B are symmetric positive semidefinite matrices with

I 0
A+B= i
o 0
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A0 B. 0
A= and B = :
g 0 o 0

where A and B, are r = r matrices. Now (X —YV)[L{X = F)](X +¥) =0 gives

It follows that

Q' (X —Y)Q ) QT[L(QAQT — QBOT)]QO (X + ¥)(Q™") =0.

This gives (A — B)[L(A— B)](A+ B) =0, where L(Z) := Q" L{(QZQ")Q. Writing

2 P N
L(A—B}:[NT R},

we get
A—B 0[P N][L O (A, —B)P 0
” = =0.
0 0 NT R 0 0 0 0
From the block form of A — B, we note that P=L_ (A, — B,), where a = {1,..., ri.
Thus,

(A, —B)(L,,)(A, —B,)=0.

By Lemma 22, ¢b; is Lipschitzian. From the monotonicity property of L, it follows that
L has the monotonicity property. Hence, é;(/) = {0). Thus, dbi__ is Lipschitzian, by
Lemma 2.3, Now the monotonicity property of L implies the monotonicily property of
L,.. Hence, d;_(1,,)={0}, where 1,, denotes the identity matix in ¥/ Thus, from
Lemma 2.1, ¢; _ (0) = {0}. From Theorem 1.1, we see that L, has the Q-property. Hence,
L. is1-1, by Lemma 2.4. If A, — B, is invertible, then A, = B, proving A=Band X =¥,
This is a contradiction. Suppose that A, — B is not invertible. Let

B AL e
A —B =U ur.
0 0

Now define T(X) = UL_ (UTXU)UT. Then, D, Ty(D,) = 0, where Ty, is the principal
subtransformation of T corresponding 1o 8 ={1, ..., s}. By repeating the same argument as
before, we see that Ty, has the Q-property and {bm is Lipschitzian. Hence, by Lemma 2.4,
Ty 15 1-1. This shows that D, =1}, proving A, = B, and thus X =Y. This ends the
proof. O

3. Some special linear transformations. 1n this section, we specialize 1o some specific
linear transformations which are prominently studied in the SDLCP literare; see Gowda
and Song [6], Gowda and Parthasarathy [5], and Gowda et al. [7].

3.1. Stein transformations. For a matrix A € R™" we define the corresponding Siein
transformation §,: " — 5" by

SAX)=X—AxA"

We first prove the following theorem which is needed in the sequel.

THEOREM 3.1, Suppose that L: 7" — " is linear Let i €{1,.. ., n). If ¢, is Lip-
schitzian and ¢, (1) = {0}, then the (i, i)-entry of L{E,;) is positive, where E;; is the matrix
in 5" with one in the (i, i)-entry and zeros elsewhere.
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Proor. Let e = {i}. Now consider the principal subtransformation L, of L. If the
(i,i)-entry of L{E;) is B (say). then it is easy to venfy that L (x) = Bx. By Lemma 2.1,
ey (@) = {0} for all @ = 0. Now using the same technigue as in Gowda and Song [6, proof
of Theorem 8], we see that 8 is nonnegative. Now by Lemma 2.3, ¢, is Lipschitzian and
thus 8 cannot be zero. Hence, 8 =0. O

The proof of the next lemma is similar to Lemma 1 in Gowda and Song [6].

Lemma 3.1, Let A e R Then, A is positive definite if and onfv if every diagonal
entry of UAUT is positive, for any orthogonal matrix U.

We now derive the following result for Stein transformations.

THEOREM 32, Let A € R, Then, for the Stein transformation S, consider the fol-
lovweing statements:

(i) oy, is Lipschitzian and S, has the Q-property.
(i) I — A iy positive definite.

Then, (i) = (ii).

Proor.  Assume (i). Because 5, has the Q-property, by Gowda and Parthasarathy [3,
Theorem 11], 8, has the P-property. 1t is now easy o verify that ¢; (/) = {0}. By Theorem
3.1, the (i, i)-entry of §,(E;) is positive for each index i e {1, .. ., n}. It follows that if e is
a diagonal entry of A, then | — a® = (. Thus, every diagonal entry of § — A is positive. Now
by Lemma 2.2, ¢bg . is Lipschitzian for any U orthogonal. Because 8, has the O-property.
Sapr has the Q-property for all othogonal I7. Thus, by repeating the same argument as
before, we see that for any orthogonal [7, the diagonal of U(7 — A)UT is positive. Hence,
by Lemma 3.1, f — A is positive definite. This gives (ii). O

The following example shows that the P-property need not imply that ¢, is Lipschite

contnuous,
0 0
A= A
30

Exampii 3.1, For
consider the comresponding Stein transformation §,. Because £ — A is not positive definite,
from Theorem 3.2, it follows that ¢ is not Lipschitzian. But A is Schur stable. Hence, 5,
has the P-property, by Gowda and Parthasarathy [3, Theorem 11].

3.2, Lyapunov transformations. For A4 € R"™", we consider the corresponding
Lyapunov transformation L,. We now show that if ¢, is Lipschitzian and L, has the
O-property, then L, has the strong monolonicity property.

THeoreMm 33, The folfowing statements are eguivalent for a Lvapunov transforma-
tion L 4:
(i) A ix positive definite.
{i1) L, has the strong monotonicity property.
(iii) L, has the Py-property.
(iv) ¢, is Lipschitzian and L, has the Q-property.

Proor.  The equivalence of (i), (i), and (iii) follows from Parthasarathy et al. [12, Theo-
rem 5], The implication (i) = (iv) follows from Theorem 2.1 and Theorem 1.1. We now
show that (iv) = (i). For L. the Q-property implies the P-property in (Gowda and Song
[6. Theorem 5]). Hence, ¢, (1) = {0}. Now by Theorem 3.1, the (i, i}-entry of L,(E;) is
positive for each index i e {1, ..., mj. If y is the (i, i)-entry of A, then it is easy o see
that the (i, i)-entry of L,(E;) is 2. Thus, ¥ = (.. Hence, the diagonal of A is positive.
Because &, is Lipschitzian, by Lemma 22, ¢, . is Lipschitzian for any orthogonal
matrix 7. Now the Q-property of L, implies the O-property of L+ for all onhogonal I7.
By repeating the same argument as before, we see that the diagonal of UAUT is positive
for all orthogonal I7. Hence, by Lemma 3.1, A is positive definite. O
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The following example shows that ¢, is not Lipschitzian, but L has the GUS-propery.
ExampLE 3.2, Let
0 -2
A= £
2 2

Then, A is positive stable and positive semidefinite. Hence, by Theorem 1.2, L, has the
GUS-property. Because A is not a positive definite matrix, ¢, is not Lipschitzian by the
above theonem.

3.3, Muliiplicative transformations. For A R"™", we now consider the transforma-
tion M,z 5" — 5" defined by M, (X) = AXAT. We first prove the following lemma.

LEmma 32, Let Ae R™" Then, the following are eguivalent:

(1) A is positive definite or negative definite.

(it) If U i an orthogonal matrix, then every diagonal entrv of UAUT is different from
e,

Proor.  The implication (i) = (ii) is obvious. We now show that (i) = (1). Suppose that
A is neither positive definite nor negative definite. Then, there exists a mawrix X € 5" of
rank 1 such that XAX =0. Let UXUT =D, where D is diagonal. Put ¢ = UAUT. Then,
we see that DCD =0, Because D is of mok 1, D = diag[0, _d;, .., 0]. From the equation
DCOD =10, we see that the (i, ij-entry of C is zero which contradicts (i), O

THEOREM 34, For the transformation M, consider the following statements:
(i) b, iv Lipschitzian.
(ii) A is positive definite or negative definite.
(iii) M, has the Py-pmoperty
(iv) M, has the GUS-property.
Then, (1) = (i) = (iii) = (iv).

ProoF. (i) = (ii): Let X € ¢y (1). Then, ¥ = M,(X) + 1 = 0. Hence, the comple-
mentarity condition X ¥ = 0 implies that X = 0. Thus, by Theorem 3.1, the (i, i)-entry of
M (E;) is positive for all i If a; s the (i, ij-enry of A, then it is easy (o see that the
(i,i)-entry of M,(E;) is a;. Hence, we can conclude that every diagonal entry of A is dif-
ferent from zero. If U is an orthogonal matrix, then ¢, . is Lipschitzian (by Lemma 2.2).
Thus, item (i) in Lemma 3.2 holds. Hence, A s either positive definite or negative definile.
Now (i) = (1ii) follows from Gowda et al. [7, Corollary 6] and (iii) = (iv) follows from
Theorem 1.3. O

When A is symmetric, we prove a stronger result for M,

THEOREM 3.5, If A is symmetric, the following are eguivalent for the transformation
M, (X):=AXA
(i) M, has the O-property.
(i) M, has the strong monotonicity property.
(iii) &, iy Lipschitzian.
(iv) M, has the P-property.

Proor. The implication (ii) = (iii) follows from Theorem 2.1, We now show that
(iii) = (i). It is simple to verify that ¢, (/) = {0} and hence ¢, (0) = {0} by Lemma 2.1.
Now using Theorem 1, we see that M, has the Q-property. Thus, we get (i) = (i).

We now show that (i) = (ii). Let § be a signature matrix of order n. We claim that if M,
has the Q-property, then § =£1. If § £ £/, without any loss of generality, assume that

-4 o
T B
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where I, denotes the identity matrix in %, k < n. Define Q € 7" as follows:

—1 if(i, )=k k+1or(i, ) =(k+1,k),

0 olherwise.

Q(i. j)=

If possible, let X € ¢y, (Q). Now expanding X(SXS + (). and summing its (k, k+ 1) and
(k+ 1, k)-entries, we see that —xy, — x5 = 0. Because X = 0, we get x, = xp =10
Hence, its principal submatnix

Xk Krk+1
= 0.
Het1e X1+
Because SX8 4 0 = (), its principal submatrix
Kk Ky — 1
=0.

A — 1 X

This is clearly a contradiction and it follows that M, cannot have the @-property. Hence,
§=1or85=—I Now let X € ¢y (—I). Then, AXA = I. This shows that A cannot be
singular. Hence, there exists a real nverible matrix B such that BABT = 8, where § is
a signature matrix. Now the O-property of M, implies the O-property of M. . Hence,
§ = . This implies that A is either positive definite or negative definite. Now using
Parthasarathy et al. [12, Theorem 6], we see that M, has the strong monotonicity property.
Thus, (i) < (ii) <> (iii).

It 15 obvious to see that the strong monotoncily property implies the P-property. Hence,
we gel the implication (i) = (iv). Finally, (iv) = (i) follows from Gowda and Song
[6, Theorem 4]. O
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