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Gas dynamical approach to study dust acoustic solitary waves
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Dust acoustic nonlinear waves are studied using gas dynamical approach. The swructure equation for
dust fluid has been obtained vsing the conservation laws for mass flux and momentum. The role of

dust sonic point for the formation of soliton has been discussed. Conditions for the existence of
soliton have been derived in terms of collective Mach number, taking intn account the dust charge

variaon.

Solitary waves i plasma have been studied extensively
during the last three decades. lkezi, Taylor, and Baker' were
the first to discover ion acoustic solitons in plasma. Since
then nonlinear waves in plasma have been studied vsing dif-
ferent methods,” both perturbative and nonperturbative.
Among the perturbative methods the most popular one is the
reductive perturbative technigue,” which uses stretched coor-
dinates. The famous Korleweg—de Vres (KdV) equation was
derived in plasma vsing this method. Among the nonpertur-
bative methods, the most widely used is Sagdeev’s pseudo-
potential method. This is usually applied in a fluid mechanics
framework on the assumption that the motion of soliton is
analogous o that of a particle moving in a pseudopotential
well. A number of people” ' have used this method o find
out soliton solutions like ion acoustic soliton,” dust acoustic
solitons,” ete. It has been found that Sagdeev’s method
yields the KAV soliton solution for small amplitude waves.
This method has the advantage that it can be applhied 1o ar-
bitrary amplitude waves and is also useful o study large
amplitude double layers. Another nonperturbative approach
15 the gas dynamic description which has been recently de-
veloped by Mckenzie'" and others. It differs from Sagdeev’s
approach in its viewpoint and uses a reference frame that
moves with the nonlinear structure and relies on the con-
struction of various Bemoulli-lype constraints of motion.
This, in wrn, puts constraints on the exstence of solitary
wave like structures and provides more physical isights that
are rather nonexplicit in Sagdeev’s approach.

To study the flow, the genermlized momenium function
and the energy functions for each species are deduced. Here
the equilibrum point comresponds to the zero of the momen-
tum function and the charge neutral point gives value of
the dust velocity, where the electric stress vamishes. Sonic
points for different species limit the strength of the flow
through the phenomenon of choked flow." For the formation
of a soliton the charge newtral point should lie between the
equilibrium point and the initial point. In the pseudopotential
method the criterion for the existence of soliton is derived in
terms of the plasma parameters which determine the shape of
the Sagdeev potential function. Here also, criterion for the
existence of solitons is derived in terms of combined Mach
number and density ratios. Mckenazie et al. 5 gtudied COMpr-
sive and rarefactive ion-acoustic solitons in a bi-ion plasma
using this method. They also studied  electron-acoustic

solitons'® in complex plasma. Here we study dust acoustic
nonlinear waves using the gas dynamic description. Sumilar
study has been made by Mckenzie'' using the fluid dynamic
approach. The main difference between the problem under-
taken here and the one studied by Mckenzie is that in the
latter case dust charge variation has been ignored. However
as has been found recently, dust charge variation plays an
important role in determining the parametric conditions for
the existence of solitary waves. For the dust charging we
have taken electrostatic probe model.'® Ma and Lin"™ calcu-
lated the characteristic time for dust motion equal 1o 2 ms for
micrometer sized dust grains, while the dust charging time is
95 ns. 50, on the hydrodynamic tme scalke, the dust charge
can quickly reach local equilibriom and the electron and 1on
currents balance each other. Simplifying the current balance
equation I, +1;=0 we obain z; as a function of plasma po-
tential ¢b. z4 is obtained from the current balance equation.
Since we do not use the charging equation we take the ion or
electron continuity equation withoul any source or sink Lemm.

The one-dimensional normalized ecquations governing
the dust dynamics in a dusty plasma consisting of warm dust
particles and electrons and 1wons are

anfat + (de)inu) =0, (1)
mon | dfot + o dldx) |u, = gn bk, — dp S, (2)
dE fdv=dmig.n, + gn, + g, (3)
L+1;=0, {4)
where
I=- w:ajffﬁ T tam,) Pn, expleg Ja,T.), (5)
I = majfl{ﬁ?'].-"mnj]l”llnllil —eqila, ), ()]
po=n (7)

Here y, are the adiabatic indices for the electron (s=¢), ion
(s=i), and dust (s=d), respectively. m,, g, are the mass,
charge for the sth species, n, is the number density, p, is the
pressure, £ is the electrie field in the x direction. T,, T, are,
respectively, the ion and electron temperatures. Before ob-
taining the conservation equations we normalize different
quantities as follows. Densities of electron and ion are nor-
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malized to their initial values n g, 1y, espectively. Similarly
the dust density n,and pressure py are normalized 1o mg. P
respectively, and the grain charge number z,; 15 nommalized o
its initial value zy. Distance x, time ¢, dust particke velocity
i, characteristic potential ¢ are nommalized o Ay, w;_ll., By,
and T,.fe, respectively, where

Npa= (Tldanzae’)' ", (8)

w;_!. = {mdmm u-(,:':.c,ez]l 2, (9)
and

= —gile. i 101}

We obtain the equations of motion in the wave frame of
reference in which the flow appears steady. We assume iy 1o
be the swreaming velocity of different species. From continu-
ity equations number density flux is conserved:

nu.=1, s=ied (11}

From the equations of motion for electrons, ions, dust and
Eqg. (3) the following equations for conservation of momen-
tum flux are oblained:

uf,z mn P )= _%Tr:dg:d,(dqﬁu’d.r}z, (12)
where
Pu)=(u,— 1)+ (1M (Ul = 1), (13)

s=i,e,d Mach number M, is defined as
M} = wym v, T,. (14)

where, as mentioned by McKenzie, the first term on the
right-hand side of Eq. (13) gives the change in dynamic pres-
sure and the second term gives the change in thermal pres-
sure. The electric stress is proportional to (deh/dx)”. Thus the
sum of the total pressure is balanced by the electrical stress.
The energy equations for ion, electron, and dust in nommnal-
ized form are given by

elu) =—T‘,qh"m,ui, (15)

elu,)= T‘,qﬁu’m‘,ué, i16)

elu,) = :ﬂ,F(qﬁ}(T‘,a"mdué} ; (17)
where

el =10 — 1)+ [ V{9 — DM = 1) (s=ie.d)
(18)
and
"
F(g)= j gl . (19)
0
From the equation of motion, Eg. (2), E, can be wrillen as
E =- (lnyrfd;u-(,}ud(r?uuu"r?.r}l:mu.uﬁ— }deuu'u}'H b (200
and the dust sonic points for the sth species are given by

ug= 1M, (21)
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The momentum functions P (w,) and the energy func-
tions elw,) have a minimum at the sonic points given by Eg.
i21). From Eg. (4), we can deduce

T 102 ) T 4 102 #
( —¥) n et — | — ) —mnll: 1 — g =00 (22)
m, m;! ng

Using Egs. (22) and (19) we can deduce the analytical
form of Fi¢). From Eg. (22) and assuming y.=73%=3 we
obtain, assuming a linear approximation,

q=1+p, (23)
Py 15 given in the Appendix. Using Egs. (15), (16), (18), and

(22} we can get p. The linear approximation is justfied as
the coefficient of the higher order term is small if

{H,ﬂ(l—”"“)J_? SO . )
a,T, 3BM, —1) 3(M.-1)

whene

B=T/T,. 25)
Using (19) and (23)

F(d) = b+ p 82 (26)
and From Eq. (12), using Eq. (20),

dﬂu’ 2 e E"I.\H.\{?F.-;l:“.\}
= U a1 20

dr

: 3 3 27)
Eﬂu'cr"&{mu'“n - Tu'Tu“r“J"rF )

Taking z,=1+pch, Eqgs. (19) and (17) imply
elug) =z 1 + (p/2) S)(T, bl ai). (28)

The nomalized electron velocity ., and 1on velocily w; can
be expressed in terms of energy function for dust as

M2 e(y)

]—l.q?‘—l:l
Te— T — F 1, (29
witpoa) 0 rTh @

1!,:[14—[};—1}

M2 ()
| e — =1, 30
""P[ :m{1+(mf2}¢]]’ % e
g | |
= Ay d) == . w#£1, (31
" [ D)+ Gl ” @
Mi,ufl:nd]l
=¢ — | = 1. 32
“P[:m{lﬂo.fz}a&]] B 2
whene

Moy=Mimgm = ugmyy,T,. (33)

From (28),
e —1+41 +211'J|l:1'n”|n(2 zu»(,T,]lfl:ud}’ (34)

&l

where p; #0. We define the normalized plasma momentum
function Riu,) as
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m.n
R(u) = P o) + 2l piyy o Beliebp oy (35)
LR LR
Then
g ¢ 3 Y2
RaZaod 0 o duy | 1 3
-.—..—.—..-._1—.—..-.:&“;::'(..—.- (1 _ > T,I+| #Rl:[!d}, (3'&‘}
243 dx M

dR j 1 8 & z\uy
...._.—-—muﬁu“u(,(l M, Tﬁ')( "'-I—""‘)"". (37)

dha, iR o Myl Iy

When the term in the first parentheses in Eq. (37) is equated
o zero it gives the dust sonic point and when the tenn in the
secomd parentheses 15 equated o zero it gives the charge
neutral point. Al the charge neutral point the eleciric stress is
maximum. Al the dust some point

wg= 1My, (38)

the flow becomes choked as du,/dy —=. The root of Riu,)
=0} gives the equilibnum point. An equilibrivm point muost be
attained before the dust sonic point is reached. Assuming the
dust particles to be massive so that m, /my, mm,—0, the
plasma momentum function is simplified as

Riug) = Pl + I:nj(,-fj;ﬂu.(,Mfd}I: Wl —1})
+ (o Mo ) Liuk - 1), (39)

For d=u,—1 <1, keeping terms up to &, Riu,) can be ex-
panded as

Riug) = &E + FEx+ 8'E;. (40)

For d=u,—1 <1, the structure equation (27) reduces to

d&ldy= + VK25, (41)
where
1 n 2 oMo
KE‘-:— i ||':+ e'(?"wrd JIIP"I" .|u'_ (42}

T N

For K> >0, we need M3, > 1/(1—1/M3) +3p,C.. where M,
15 the “collectuve™ heavy Mach number

i) 1 a 2
My = (oM +n oM MWngs . (43)

K* =0 corresponds o evanescent type solution of the form
expi+Kx). For M ==, which corresponds to the case when
the dust component 1s cold, we have

Pl =u,—1), (44)
Pu) = (1/yMD(1 )= 1), (45)
Pu,)= (UMD (k= 1), (46)

1 )
1.
};ﬂfd(n”‘ J

(47)

i’-i':ul“
R =, —1)+—5 ( —1)
tr : };Mfd !

The equation for determining the charge neutral point is
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FIG. L. Rlw,) vs ny is plotted where the dust-plasma parameters are myg
= LAX10"em™, ngo=10""cm, P ozam=3X 10, T.=T,

Ap=10F an=?,
=106V, My=M,=1330434, T,=0.1cV, M,=115344, a,= 138186
® 10 cm, my; _lH?:TKm

Sfu, — S+, =0 i48)
For M ===, the structure equation can be wrillen as
duy, 1
wy— = =luy—1
i = u:_l: i—1)
/ y+ 1 .
X\I—l (g + 1)° I:Mi_—3p,£':}+2p,f;(nd+ljl.

(49)

In the small amplitude limit the region of existence of soliton
15 denved as

1< pC,+ M5, <4, (50)

In case of dust acoustic wave the dust mass provides the
inertia whereas the restoring foree is due to the thermal pres-
sure of the electrons and jons. The plasma momentum func-
tion Riwuy) is simplified to Eq. (40} when we assume the dust
to be massive. Plasma momentum function is plotted in Fig.
1. The deviations of the ion and electron velocities (nommal-
ized) from the equilibrinm value are plotted against dust ve-

FIG. 2. w=1, w.= 1 vs sy are plotted where the parameters are the same as
those wsed in Fig. 1.
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FIG. 3. ¢b vs 1y is plotted. The data are same as those used in Fig. 1.

locity in Fig. 2 using Egs. (29) and (31), respectively. 1t is to
be noted that we have considered here the adiabatic case
¥=7¥=7=3 It is seen that the charge neutral point is at-
tained between the initial point and the equilibium point
The sonic point oceurs at w,=0.030 38 and the second equi-
librium point occurs at w,=00111.

To conclude, dust acousuc solitary waves have been
studied using the gas dynamical approach discussed in Ref.
14 taking into account the dust charge variation and it is
found that the charge variation puts further constraints [see,
e.z. Eg. (50)] on the existence of dust acoustic solitary
waves, The exact form of ew,) is obtained when one con-
siders Eq. (22). We have assumed that z, can be taken as a
linear function of ¢. Figure 3 shows the potential profile
associated with the dust acoustic soliton.

APPENDIX
8= ng/nyin. (AT)
8y= ng/ Ny, (A2)
r=ng/n, (A3)
xp=ezfayT,, (Ad)
Yo = ‘-'E-Cu'cs"'“d T, (A5)
C. = muig/zaoT., (A6)
A =238(M1-1), (A7)
As==23(MZ 1), (A8)
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Pr=1A1 =AM —yg)2(xpl1 — o) + ¥y, (A9)

Dy =[n,l2- Te}M:d +nlyi— H%L]-"”dcﬁi‘m (A10)

. nol ¥o— 202y, — IME 4 n gy, — 22y, — IIME,
5=

Emad,z:.” :
(Al1)
E =301 - UM)p,C.+ M- 1), (A12)
+1 1f : 1
E2=—}rd—:-+_(1+lul:-)(1__:-)|:.|”|c;+ﬂ’fi-}
M 2\ M3, M3,
1(1 l)jgu’c” Cc.M> —2D)) (A13)
Y B (Lo LMy — i), =]
2\ M3,
) ':?1.'+1}(}’d+2}+P|C,-+Mi-(l(1+£)2
T sl 2 \4\ T M3
Yalyat1) 1
S L= Ly (Al4)
6M M,/
—E(l L]z(uﬁ)(m - pC M)
Sl"4 Mf,. Mf.' L =L, — LMy,
L A e 5mn 0.
+(1_E) (DE-I- 5 +§M;:.p]ﬁ;—Tp|l:_.. :

(Al5)
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