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Abstract

We have proposed a generally covariant non-relativistic particle model that can represent the & -Minkowski noncommutative
spacetime. The idea is similar in spirit to the noncommutative particle coordinates in the lowest Landau level. Physically our
model yvields a novel type of dynamical system (termed here as exotic “oscillator™), that obeys a harmonic oscillator like equation
of motion with a freguency that is proportional to the square root of energy. On the other hand, the phase diagram does not reveal
a closed structure since there is a singularity in the momentum even though energy remains finite. The generally covariant form
is related to a generalization of the Snyder algebra in a specific gauge and vields the x-Minkowski spacetime after a redefinition
of the variables. Symmetry considerations are also briefly discussed in the Hamiltonian formulation. Regarding continuous
symmetry, the angular momentum acts properly as the generator of rotation. Interestingly, both the discrete symmetries, parity

and time reversal, remain intact in the x-Minkowski spacetime.

1. Introduction

Pointers from diverse areas in high energy physics
mndicate that one has to ook beyond a local quan-
tum field theoretic description in the formulation of
quantum gravity. Very general considerations in black
hole physics lead to the noton of a fuzzy or noncom-
mutative (NC) spacetime which can avoid the para-
doxes one faces in trying 1o localize a spacetime point
within the Planck length [1]. This 1s also comoborated
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in the modified Heisenberg uncertainty principle that
is obtained in string scattering results. The recent ex-
citement in NC spacetime physics is generated from
the seminal work of Seiberg and Witten [2] who ex-
plicitely demonstrated the emergence of NC manifold
in certain low energy limit of open strings moving in
the background of a two form gauge field. In this in-
stance, the NC spacetime is expressed by the Poisson
bracket algebra (lo be interpreted as commutators in
the quantum analogue),

{x,r:1xu} =g (1)
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where 84" is a c-number constant. Up till now this
form of NC extension has been the popular one. How-
ever, notice that Lorentz invariance is manifestly vio-
lated in quantum field theories built on this spacetime.
Somehow, it appears that the very idea of formulating
field theories in this sort of spacetime, consistent with
quantum gravity, gets defeated by this pathology!

In a parallel development, there have been intense
activities in studying other forms of NC spacetimes,
such as the Lie algebraic form [3] with structure con-
stants L'fl',

[x#.x"} =Cxh, 2)

It is important o note that the NC extension in (2) is
operatorial [3] and do not jeopardize the Lorent in-
variance in relativistic models, which s the case with
(1) with constant Y. (For an introduction to this sub-
jeet the readers are referred to [4]) OF particular im-
portance in the above is a restricted class of spacetimes
known as x-Minkowskl spacetime (or x-Spacelime m
short), that 1s described by the algebra,

{xi, £} =kx;i, {xi.xj}=1{t, r} =0 (3)

In the above, x; and ¢ denote the space and time opera-
tors, respectively. Some of the important works in this
topic that discusses, among other things, construction
of a quantum field theory in x-spacetime, are provided
i [5-7]. Very interestingly, Amelino-Camelia [8] has
proposed an alternative path o gquantum gravily—
“the doubly special relativity”—in which nwo observer
independent parameters (the velocity of light and
Flanck’s constant) are present. It has been shown [9]
that s-spacetime is a realization of the above. Fur-
thermore, the mapping [9] between x-spacetime and
Snyder spacetime [10] (the first example of an NC
spacetime), shows the inter-relation between  these
models and “two-ume physics™ [11], since the Sny-
der spacetime can be derived from two-time spaces in
a particular gange choice [12]. Our aim s o present a
physically motivated realization of the x-spacetime.

An altogether different form [13] of NC phase
space is induced by spin degrees of freedom 54,
gt (4)
where once again the noncommutativity 18 operatoril
and the model is Lorentz mvanant.

Now we come o the motuvaton of our work. In
a non-relativistic setup, NC space, onginating {rom

the lowest Landan level projection of charged parti-
cles moving in a plane under the influence of a uni-
form, perpendicular (and strong) magnetic field [1],
has become the prototype of a simple physical system
(qualitatively ) describing considerably more complex
and abstract phenomena, in this case open srings mov-
ing in the presence of a background two form gauge
ficld [2] mentioned before. Under certain low energy
limits, the mechanism by which NC manifolds emerge
i the stnng boundaries on the branes, 15 similar o
the way NC particke coordinates appear in the Lan-
dau problem. This sort of intuitive picture, if present,
is very useful and appealing. The NC space (or space-
time) one is talking about here is of the form

[x*,x"} =8%, 181~ |B7"|, (5)

where 84 is constant and the strength is proportional
o the inverse of magnetic field B. Note that in the clas-
sical set up the commutators are iterpreted as Poisson
brackets (or Dirac brackets ).

In the phase space form of noncommutativity also
[13] there 1s a physical piclure concerning spinning
particle models [14] that induces the NC spacetime.
However, such an intuitive analogue s lacking for un-
derstanding the Lie algebraic form of NC [3]. Our
present work 15 mmed at throwing some light in this
ared.

In this Letter we are going to putl forward a non-
relativistic particle model that has an underlying phase
space algebr isomorphic to the x-Minkowski one (3).
Hamultonian constraint analysis [15] reveals a novel
dynamical system (termed here as exotic Yoscillator™):
it has the square wot of energy as its freguency. This
sort of feature is cudously reminiscent of the quantum
particle whose frequency is proportional to ils energy.
Phase diagram analysis yields further surprises, to be
claborated later

However, demonstrating that the model truly repre-
sents the NC w-spacetime is not straightforward, the
main hurdle being the identification of the time op-
erator.! This requires a generalization of our model
w a generally covanant one [16]. The gauge invari-

I There is a version of k-spacetime | 7] which has anly NC space
coordinates. We intend to study this model more closely in our
framework since the NC time complications will be absent here. We
wish to thank the referee for pointing this out.
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ance (due W the symmelry under reparametrization of
the evolution parameter) allows us o choose a gauge
condition that fixes the ime operator according o our
requirement. This way of exploiting a non-standard
gauge condition o induce NC coordinates has been
used 1 [17] i constant spacetme noncommulabiv-
ity (5).

2. Mechanical model for r-spacetime

We start by considenng a canonical phase space
with the non-zem Poisson brackets,
[ X, Pj} = &, [g.m}=1. (6)

The sets (X;. PJ-} and (, m) are decoupled. (We do
not distinguish between upper and lower indices in the
non-relativistic setup. ) Let us posit the following set of
second class constraints (SCC) [ 15]

¥1=T. x1=1—ki(P.X). (7)

SCCs require the usage of Dirac brackets ( DB) defined
by
{A, Blpg = {A, B} — {A, iz x;) " Hxj. Bl (8)

such that DB between an SCC and any operalor van-
1shes. In the present case, the simple constrant Pois-
son bracket matrix and its inverse ame, respectvely,

0 -1
{XL x_.'} gl ( 1 ﬂ ) L] [9}

E b o
i %7} ‘=(_1 u)' (10)

The non-vanishing DBs are denved below:
1 Xi.nl=kX;, {F.nt=—kF;,
[ Xi, Pj} =8, (11}

Since we will always deal with DBs the subscript DB
15 dropped.

We now construct the following Lagrangian that
has the same SCC structure as i (7)

m 7. S
L= ?X'— 2emkn(X . X)

+c'r;r1+ Ernclklaylfl. (12)

m denotes the mass of the non-relativistic particle and
¢ and £ are two other constant parameters.
Reexpressed in the form

L= %Xl + (2me2n? + meki) X2 4 e,

one can think of the model as that of a generalized
form of oscillator whose spring coupling is not con-
stant and depends on X; itself through 5. In fact clas-
sically i can be eliminated by solving the Gaussian 1o
yield a complicated non-linear model. Instead we pre-
fer to work with this polynomial form with the extra
variable 5. As we shall see later, the model descnbes
anovel dynamical system.
The conjugate momenta in (12) are defined by

P =mX; —ent —2emkyX;, wm=0. i(13)
The primary constraint s
s =m = (14)

Time persistence of x| generates the secondary con-
strainl

p=n=nH—=pn=p—kP. . X)=0. (15

These are the same as the constraints we started with
al the beginning in (7). Obviously identical DBs as in
(11 will be reproduced. The Hamiltonian

el |

p? S 2
H=—+42ckn(P .X)—cy 16
2m el V5 %)
in the reduced phase space simplifies to the exotic *os-
cillator™
ﬁl e e Y |
H=—+ck (P .X). (17)
2m

It is worthwhile w0 emphasize the fact the model pro-
posed here for simulating s-spacetime has consider-
ably more structure (in the form of additonal variables
i and ) than the analogous model for constant non-
commultativity [1]. This s expected on the grounds
that the Lie algebraic form of NC algebra is non-linear
and operatonal in nature. We also encounter [ 18] sim-
ilar complexities in analyzing a Lie algebraic space—
space NC algebra.
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Fig. 1. The exotic “osc lator” phase diagmm for £ =1 and a =10.5.
3. The exotic “oscillator™
The relevant Hamiltonian equations of motion are

. B i
X;={X;. Hl= =+ 2ck*(P . X)X;.
m
P =—2ck*(P. X)P. (18)

A further tteration in time derivative generates the fol-

lowing exotic “oscillator”™ dynamics

¥ =—w’X; (149}
with ¢ = —b” and the frequency w identified as

w = +2bkvV'H . (20)

Note the novel characteristic of dispersion where the
frequency is a function of the Hamiltonian or energy.
This is curiously reminiscent of the quantum mechan-
ical dispersion w ~ energy. This is one of the interest-
ing results of the present analysis.”

From the above analysis, the exotic “oscillator”™ in-
terpretation seems 1o be straightforward, since for a
particular value of the energy (which is a conserved
quantity), the “oscillator” will have a definite fre-
quency given by (20). However, a phase diagram of
our model (see Figs. 1 and 2) will reveal that the abowe
conclusion is nor fully comect.

In the figures we have considered a simplified
version of the Hamiltonian (17), in the “oscillator™

< One might be tempted to think that tming the exponent in the
(£ X) term in (17}, the guantum particle dispersion can be oh-
tained. However, this is not the case as we show in Appendiz A, As
1 curosity, the quantum dispersion will be obtained if the Hamil-
tonian is pmportional to ()72 with # of the form of {17),
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Fig. 2. Phase dingrams of exotic “oscillator” are compared with
those af harmonic oscillator for energies £= 1,3, Sand a = 1.5,

regime, noone space dimension and all the parameters
are taken 1o be unity

H=E=P1-X%). (21)

The phase diagram for £ =1 is drawn in Fig. 1. In
Fig. 2 phase diagrams are drawn for three values of
encrgy E = 1,3, 5 and they are compared with the
harmonic oscillator Hamiltonian, for the same set of
encrgy values Ep, = 1,35

H=Ep=p*+4¢% (22)

In (21) and (22), we use the paramelne representa-
tons, respectively,
VE
X = cos(r), P=—, (23)
sinir)

P =+ Esin(r). (24)

X= J{Euus{r},

It is evident that in (23) there is a singularity at r = 0.
Actually in the figures we have plotied

_ VE

a4+ s r)

with a = 0.5 in Fig. 1 and @ = 1.5 in Fg. 2. The
asymmetdes in the figures are due to the choice of the
value of a. Indeed. in this model the momentum can
diverge even though the energy remains finite. 1t will
be useful to construet a variant of our model with the

X =cosir),
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a-damping in-built. Cleady one has o be more careful
i interpreting w contaiming the Hamiltonian explicitly
as frequency. It is clear from the Lagrangian in (12)
that the model is gualitatively different from a har-
monic oscillator An intutive physical understanding
of this behavior of our exotic “oscillator”™, with the ap-
parently simple looking dynamics as depicted in (19),
15 possible in the Lagrangian version.

A Lagrangian framework is better suited to get the
physical picture corresponding 1o the exotic “oscilla-
tor”. For the one-dimensional model (21), exploiting
the first order formalism, we get the Lagrangian as

Lk A
S 2(1—cX?)’
where we have eliminated P using the equation of mo-
tion. The impression is that of a “free” particle with an
effective mass. The singulanty of this effective mass
leads to the momentum blowup.”
The higher-dimensional action 1s more involved:
Pt | ety L) (27)
R Vi ! - 2 i 1 i CX;I s &=

L=PX—H (25)

For a single space dimension, (27) reduces 1o (25)

.. (X:)” (28)

2 f 242
{a +1|',- 1 —cX7 )
Expressions sunilar to (27) have appeared in [12]. 1t
will be very interesting if these models are related
Lo known physical systems. We will comment on this

possibility at the end.

4. Generally covariant framework

Let us now come o the main opic: & -spacelime.
From the DBs (11) it s evident that our aim is to iden-
tify the degree of freedom n as time. So far in this
formulation, xir) is a (configuration space) degree of
freedom just as X;(r) and their evolution is dictated by
the Hamiltonian in the conventional way. Hence fur-
ther work is o be done if # is to identified as time.

4 The ad hoc momentum cut off o, introduced to get a closed
phase space dingram is in-built in the following Lagmngian
(X)?

.Il_-= {%]

Pk | =

' i _ w2 2’
I,:’£+.|r.|. 1’}:‘.]

Quite obviously, in x-spacetime Ume is an operalor
since 1t has non-trivial commutation relations. In our
classical scenanio this will be reflected in the non-zero
Dirac brackets concerning 1.

Hence in order to identif'y  as the time operator, the
natural way o proceed 5w generalize the model woa
generally covariantone [ 16], which has more freedom
since the evolution 1s dependent on another parameter
T and “time” is still not fixed or identified. In this for-
mulation one works in an extended phase space with
one extra canonical pair {Xolz), Pa(r)} =1 and all
the dynamical variables are functions of the parame-
ler v. The system 1s elevated to a local gauge theory
where the gauge symmelry 15 invariance under repara-
metrizations of 7. Therefore one has the freedom of
choosing a gauge condition in order to lifl the above
invarance and this choice in effect can fix the tme
operator. Conventionally Xg(t) plays the role of the
tme opertor and normal Hamillonian mechanics 1s
recovered in the gauge Xolt) = 7. In the present con-
lext our aim is o fix the gauge so that the variable 5
(introduced above) becomes the tme operator.

We follow [16] and re-express the action § of our
model in the following generally covarant form

§= f dr [P X; + mi+ PoXy — He]. (29)
The extended Hamiltonian

HE =I!;]¢¢] +I!|}f| +H1X1, f3ﬂ]l

has become a linear combination of conswrains only
and weakly vamishes. In (300 gy represents the FCC
inducing r-diffeomorphism

o= Fo+ H =0, (31)

and xp and x2 are the SCC pair introduced at the be-
ginning in (7) and ;s denote multipliers. Note that in
this form we have reverted back 1o completely canoni-
cal (X;. Py} and (5, 7 ) phase space. However, for con-
venience, we will exploit the partially reduced phase
space where the SCCs yy and x7 arestrongly zero with
the phase space algebra given in (11). As mentioned
before, conventional dynamics, as obtained in (17),
(18) is mecovered in the gauge ¢y = Xplr)— 7 =0
which constitutes the SCC pair together with gy .
Now comes the most important part of our work.
Since we are interested in a particle model that gener-
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ates the sw-spacetime, we instead choose a gauge
¢ =Xy —k(P.X). (32)

The reason for this choice is the following. Remember
that we are working in a truncated phase space whene
the SCC y7 = 5 — £X; Py strongly vanishes and thus 5
is already identified with £ X; P So inthe above gauge
(32) the time variable Xy becomes related to 5.

To get the fully reduced phase space, we now com-
pute the secondary set of DB s induced by the SCC pair
(gho. g1 ) with

{¢EJ~¢|}=—(1— E) = . (33)

m

We must remember o use the first set of DBsin (11) as
the existing bracket structure in the definition of DB in
(8) in the analysis at hand. This leads 1o the following
more involved final DB structure involving coordinate
and momenta:

k
Xi, Xj}=—(X:Pi — X; P),
{ i _,II’ nm!{ iy i T

k
Xy Py i = PP,
1 Xi. Pyl J..'+,M iy
[P P} =0. (34)

The algebra (34) is a slightly more general form of
the one proposed by Snyder [10] due to the scaling
by o in the right-hand sight. The pure form of Snyder
algebra [10] have appeared in [12] in a gauge fixed
reduced two-tume model. The algebra with Xy turns
out o be

Fl".

kX; k
{Xi, X0} = —, {Pi, Xo} = ——. (35)
o o
Notice that the spacetime, as obtamed in (34), (35), 15
not the x-spacetme that we set oul o generate. But
this is rectified by introducing the following set of
variables

L
x"EX,'—;{P.X}IH, p=sf (36)

in terms of which we obtain the following DBs

1xi. pj} = dij, {xi, x5} =0 (37)
Hence, we will obtain identical dynamics as in (19),
(200 if in the general covarant framework we take the
Hamiltonian

H=H=1" 4 d25.9% (38)
2m

This can be obtained from (17) by replacing the set
(Xi, Pj) by (x;. pj) in the limit @ ~ 1.7

To get a representation of the time operator, we note
that

{xi, Xol = IXI - J::l—;{-‘_"- X)F;, X:]}

k o
=—(X.-+—{P.X}F:-). (39)
L1 m

However, the correct DB for « -spacetime is generated

with the time vanable

t=ka(P.X), (40)

for which we obtain

{xi. t} =kx;. (41)

The operator conjugate to the time is obtained below
1 o

t,— P =1 (42)

2u

This constitutes our final result. We also note that the
k=0 limit that redoces g-Mmkowski 10 commutative
spacetime 15 smooth everywhene.

5. Exotic *oscillator” in Snyder space

Because of the non-lineanty involved in the Snyder
algebra (34), probably one of the simplest but inter-
esting mechanical model in Sonyder space is the exolic
“oscillator”. Consider the Snyder algebra,

[Xi. Xjl=—p(XiP; — X;F)),
{Xi, Pi}=dij —y £ P}, [P Pi}=0 (43)
(where for later convenience we have taken the NC

sc-parameter to be —y ). For small 3 one finds the fol-
lowing set of equations of motion

X, =—2yHX;, Pi=-2yHP; (44)
for the Hamiltonian

1 ¥ "
H= ;XIXJ + 5 (X Fi). (45)

4 Another derivation of the Hamiltonian operator is provided
in Appendix B where the second stage DBs (induced by the pair
(ahep, gy ) ) are not needed.
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The above equations are valid up to Oy ). The choee
of the sign of p is tuned W get the dynamics in the
exolic oscillator form. Notice the difference between
the Hamiltonian (45) and the Hamiltonian (36) whene
{Xi, Pjl = & as in (11). Thus effectively the set
1 Xi. Pi}oas the canonical set {x;. p;}in our notation,
To (}y), one can recover the Hamilonian (38) from
(45) by exploiting the mapping (48) given below.

6. Symmetries

Symmetry principles are playimg increasingly ma-
jor moles in contemporary physics. The fate of con-
ventional spacetime symmelries in the context of NC
theories is an important issue since one is changing the
underlying spacetime structure itself. Poincard invari-
ance in the canonically NC field theories is explicitly
broken [19]. However, m x-spacetime, there appears
a deformation of Lorentz symmetry [9.20]. These is-
sues are more pertinent where relativistic field theo-
rigs are concemaed. Hence we will restrict ourselves
to the symmetres that are relevant for non-relativistic
( Hamiltonian) quantum mechanics. We will find non-
trivial differences from the results obtained in [21]
where a spacetime constant {i.e., canonical) form of
noncommutativity has been considered.

We stant with the angular momentum operator
Lij=XiPj — X ;F; and find
{LJ'_,h X.t = ‘!-'iJ'A X_,l' s ‘5_,1'1 XJ'~
{LJ'_,I'. Frt =dix P_,l' e ﬁj.{ Py (46)
With I; = x;jp; — x;pi this is isomorphic to the con-
ventional algebra
Uij, xe} = Sinxj — 80k,

Vij, pit =diep; —djpi. (47)
1t should be remembered that (X; . P;) obey the gener-
alized algebra (34) whereas (x;. p;) obey the commu-
Ltative spacetime algebra (37). This shows that Snyder
phase space behaves canonically under rotations. In
fact, exploiting the inverse mapping of (36)

koo
Xi=xi+—(p.x)pi. P;= pi, (48)

mao

it is easy Lo see that

Lij=XiPi—X;Pi=xipj —xjpi =lij. (49)

Interestingly, we find the time operator to be rotation-
ally invariant,

{Lij. Xot =1, {lij. 1} =0. (50)

Hence, unlike the case discussed in [21], Lj; can
regarded as the generator of spatial rolations in «-
spacelime.

Let us now turn Lo the discrete symmetries of the
quantum theory where we dentfly {,} = —i[ .| and

pio= —f%. Considering parity transformations in -
- -

spacetime,

P: =t x——x, (51)

we lind the NC commutation relations

[x:.x;1=0, |xit] =ixx;. §—1i, (52)

are preserved under parnity, where P s a linear oper-
ator. AL the same tme, considering the tme reversal
operator T as an antilinear operator, we find that the
transformations

T: t— —r, i— —i, (53)

Xj —* Xi,

preservie (52) as well. Hence P and T symmetries re-
main intact in k-spacetime. For charge conjugation
myvanant models based on x-spacetime algebra, CPT
will remain a vahid symmetry. Once again we nole
the crucial difference with canonical NC spacetime re-
sults [21].

7. Conclusion and future outlook

We have succeeded in presenting a non-relativistic
particle model which eproduces the s-spacetime. The
spirl of owr work is in analogy with (the lowest level
projection of) Landau problem of charges moving in
a plane in a perpendicular magnetc where the parti-
cle positions become effecively noncommutative with
constant . In the process, we have found that physi-
cally our particle model yields a novel type of dynam-
ics that appears Lo be “oscillator™-like with a frequency
proportional to the square root of the energy. Surpris-
mgly the moton 1 not truly periodic which s revealed
in the sudy of the phase diagram. Subsequently a
generalization of the model w a generlly covariant
one leads 1o a definition of time that gives the full
i-Mmkowski algebra. Furthermore, we have shown
how a generally covariant reformulation of the model
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describes the (generalized) Snyder spacetime in a par-
teular gauge and eventoally leads wo the & -Minkowski
spacetime. Study of the continuous (rotational) and
discrete (parity and time reversal) symmetries reveal
that the w-Minkowski spacetime is probably a better
option than the constant spaceime noncommutativily,
as studied in [21]. This s prmarily because angular
momentum is the correct generator for rotations and
panty and tme reversal symmeries are kepl imtact.
Hence maintaining CPT-invadance will not pose any
problem.

We note some points that are to be studied in future.
In the exotic “oscillator”™ context, a physical interpre-
tation of the open phase diagram is required. One can
try o construct an extension of the model, with the
charactenstic features as we have noted, but having at
the same time a closed periodic motion. 1t will be very
mteresting o quantize the model. Also it would be in-
teresling Lo investigate the type of systems that can
mdoce quantum particle like dispersion and o study
the kind of spacetimes they represent. Similar analy-
sis, as has been pedformed here, for the general Lie
algebrae noncommutative spacetime 15 under study.

In the context of obtaining the «-Minkowski space-
time from ow model, one can exploit an aliernative
framework (see Baneee et al. [17]) where the iden-
tification of the time operator might be more direct.
There is the possibility that some familiar interacting
model, in a non-standard gauge, will be equivalent
to the particle model proposed here. As a more am-
bitious programme, taking a cue from the Landau
problem—string analogy in the context of noncom-
mutative spacelime, one can by 0 construct string
models yielding & -Minkowski spacetimes. Our exolic
“pscillator” model can help in the construction of the
latter. A positive indication in this direction 15 thal m
a relativistic generalization of the present model the
de Sitter metric plays a pivotal role and it 15 indeed
natural w extend the framework for strings moving in
de Sitter background. These mesults will be reported
elsewhere [22].
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Appendix A

For & more general form of the Hamiltonian, com-
prising of canonical (x;, p;) vanables

.‘;’—E+r{_’ x)" (A.1)
© 2m L ’

we obtain the following equation of motion

i =ncip. .?}I”_I|:{n - 1}% + neip .}}l”].r,-.
(A.2)

It 15 easy o see that only n = 2 reproduces the exotic
oscillator

Appendix B
From the weakly vanishing Hamiltonian

H = ugy (B.1)

and the explicitly time (1) dependent gauge condition
¢y =Xy — k(P X)— 7, time persistence of ¢ deter-
mines the multiplier w in (B.1) in the following way:

iy i) 1
= (g ol > u=—. (B.2)
dr ar o
The equations of motion (modulo constraint) are
. 1/ P ik
=% EI = _(—‘ + 2ck*(P _X}x,-),
o o\
. 2k - -
FF=- (P X)P. iB.3)
o

For low velocity (or large mass) o == | the dynamical
equations of {18) are reproduced.
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