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Using the reductive perturbation technigue, nonlinear eylindnical and sphencal Koneweg—de Vnes
(KdV) and modified KdV equations are derved for ion acoustic waves in an unmagnetized plasma
consisting of warm adiabatic ions and nonthermal electrons. The effects of nonthermally distributed
electrons on cylindrical and spherical ion acoustic waves are investigated. It is found that the

nonthermality has a very significant effect on the nature of ion acoustic waves.

I. INTRODUCTION

lon acoustic waves in unmagnetized plasma have been
studied by a number of authors both experimentally and
theoretically. Existence of nonlinear waves, viz., solitons has
been studied in detail and the solitary waves have been ob-
served theoretically and in laboratory. i Recently these stud-
15 have been extended o dusty plusrm.';"” Generally the
solitons are stable but it has been found that other factors like
finite ion temperature play an important role'> ™" in deter-
mining the stability of ion acoustic waves. However most of
the studies done so far in jon acoustic waves were confined
to the unbounded planer geometry, though recently some
works have been published in which eylindrical and sphen-
cal 1on acoustic and dust-ion acoustic waves have been
discussed."™ ™" Sometime ago Maxon and Viecelli®' dis-
cussed this problem. It may be menboned that cyhindrical
and spl‘]}i;"riuul symmetric solitons have been observed in
plasma.”™ However in these stodies electrons were assumed
to be wsothemmal. Bul nonisothermality plays an important
role in determining the nature of solitary waves. Following
Cairns et al.” we take the electrons to be nonsothermally
distributed. The motvation for this came from the observa-
tons of solitary structures with density depletions made by
the Freja #nd Viking satellites.** Mamun™® and later Tang
and Xue™ also considered the nonthermal electrons and
warm ion effects on ion acoustic waves. In fact it has been
shown here that for cerain values of 8, the nonisothermal
parameter, cylindneal and sphencal Korteweg—de Vnes
i KdV) equations are not valid and one has o consider modi-
fied KdV (MKdV) equation. In this paper both eylindrical
and spherical KdV equations are derived for ion acoustic
waves in g nonmagnetized plasma consisting of warm ions
and nonthermal electrons. For the special case when the co-
efficient of nonlinearity vamshes, modified cylindrical and
spherical KAV equations are denved. Some exact solutions
are oblained for cylindrical KdV and MEdAVY equations. Nu-
merical solutions for both type of eguations are obtained
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using initial KAV and MKdV profiles. Effect of o, the ion
temperature, and &, the nonthermal electmon parameter, are
studied numerdeally. The paper is organized as follows. In
Sec. 11 the basic equations are given and cyhndrical and
spherical KdV and MKV equations are derived. In Sec. 111
numerical results are discussed. Section IV is kept for dis-
cussion and conclusion.

Il. BASIC EQUATIONS AND DERIVATION OF
CYLINDRICAL AND SPHERICAL KdV EQUATIONS

We consider an unmagnetized plasma consisting of
warm ions and nonthermal electrons. The normalized fluid
equations in cylindncal and sphencal geometry are
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where »=0 for one-dimensional geometry and v=1.2 for
cylindrical and sphernical geometnes, respectively. In the
above equations, the subscripts § and ¢ refer w on and elec-
tron, respectively, o=T,/T, 15 the 1on emperture ratio. n; s
the ion number density nomalized 0 its unperurbed equi-
librium plasma density my, u; is the ion fluid speed nommal-
ized to the ion acoustic velocity v, =(T,/m)'?, and ¢ is the
electrostatic wave potential normalized 1o T/ e, The tme and
space variables are in units of the ion plasma period ﬁu;i'
=(m/4mnyue’)'?  and  the  Debye radius  Ag,
=(T.ld7npe )", res pectively.

The electrons are assumed o be nonthermally distnb-
uted and therr distribution function 1s taken as
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AE)=ngyl + aENexp (- EM(1 + 3a). (5)

where E is the nonthermalized electron energy. Consequently
the electron number density is given by

n.=(1- B+ Bdexp (), (6)
where
dear
A= (7)

1 +3a

It is clear that Eg. (6) expresses the isothermally distib-
uted electrons when 8=0 (ie., a=0). The parmmeter o rep-
resents the nonthermality of electrons distibution, ie., deter-
mining the fast panticles present in our plasma model. Also it
15 assumed that g <= v, <04, %0 that Landaw damping can
be neglected, where wg; 15 the 1on thermal velocity and vy, 18
the electron themmal velocity.

To derive the cylindrical and spherical KdV equations
we use the stretched coordmates

E=r—uvyt), T=6&"r (&)

The dependent vardables are expanded as follows:
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Substituting Egs. (9)— I:I"]I into Egs. (1)-(4), we obtain from
the lowest order in & n' "'[1.!"[49,;—3:‘1’}]«3‘;'”I m"{uﬂ.f{u“
—3a) ], 1'1?"{31"(:.1“ )], Uy
=y[3a(1-g)+1]/(1-4).

To next higher order in e, we obtain a set of equations
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Combining Egs. (13)-(16), we get a modified
Korteweg-de Vries equation
r?qfr”:' v o " r;'qfl‘”:l r;ﬂqﬁll}l
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It can be shown™ that a suitable coordinate transforma-
tion reduces the cylindrical KAV equation into the ordinary
KdV equation which can be solved analytically. In this way
the exact solution of Eq. (17) can be wrilten as

A B
BT ()| N

where V is the solitary wave velocity and the solution is valid
for 7=0.

Another analytical solution of the eylindrical and spheri-
cal KdV equations can be found by the group analysis
method. " By this method the solution of cylindical Kdv
equation is given by

£
= ; +— {a;,+m tanh” (.§~r £y M. (20)
whene
HE 128
===, = — 21)
@="0 A i21)

The solution of spherical KAV equation is given by
3 c

+
Arlnt 7lnt

4= @2)
For detailed discussion see Ref. 20.

It is seen that for o=[1-3(1-8)/12(1-8)°, A=0,
whence the coefficient of nonlinearity vanishes. Then one
has to consider the modified KdV iMKdV) equation. For
example if o=1/6 and 8=1/2 (e, a=1/5), then A=0.

For this we introduce the stretched coordinates &= e(r
—vpt), 7= €'t and expand n,, u;, p,, and ¢ in a power series of
€ as given by Egs. (9)-(12) and develop equations in various
powers of e To lowest order in e Egs. (1)}-(4) give n“:'
/w300, u=[vpld-3a)1¢", pM=[3/(v3
=3a) |, vy= [ 3l = B)+11/(1=8). To next higher order
in €, we obtain a set of equations, from which we get a
equation which is an identity if vy=+[3a(l-2)+1]1/(1-5)
and o=[1-3(1-8P)/[12(1-8)].

To next higher order in e, we obtain a set of equations
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Combining Egs. (23)-(26), & modified KdV equation is

obtained,
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By group analysis method it can be seen that the equa-
tion is invadant under the wansformation

1)

T— c'“"r, £— &'t

. f—ﬂl II.I_

This suggests that the MEAY equation can be reduced o a

separable form by the substitution

14
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ve £ for the solution (17) for different values of e, where
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FIG. 1. Plot af &' vs & for the solution (17) for di fferent values of @, where
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FIG. 3. Plot of &' vs & for the solution {17) for di fferent values of o, where
p=1, a=(l.
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FIG. 4. Plot af ¢"' vs & for the solution (17) for different values of , where
p=2 a=0.

However a nontrivial analytical solution of i) could
not be obtained.

lil. NUMERICAL SOLUTION OF THE CYLINDRICAL
AND SPHERICAL KdV AND MKdV EQUATIONS

Equation (17) has the following solitary wave solution
for v=0 (corresponding 1o one dimensional geometry):

i
g = kA sech?| - "iis— V) (30)
A Vag'=~ "7 |’ g

where V is the soliton velocity. With this initial profile at 7
=—0 we solve numencally the eylindrical and spherical KAy
equations. In Figs. 1 and 2 the solutons for »=1 and »=2 are
plotted for several values of o, the nonthermal electron pa-
rameler for =0 al 7=—>6, respectively. It s seen that amph-
tude of the soliton increases with the increase of a. In Figs.
3 and 4 the solutions for v=1 and »=2 are plotted for several
values of o, the on emperature pamameter for a=0 at 7
=—6, respectively. U s seen that amphtude of the soliton
decreases with the merease of 1on emperature parameler o.

P T a— 0 5 10 15

FIG. 5. Plot of ¢¢'"' vs £ for the solution {17) in different geometries, where
w={11, o={11.
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FIG. . Plot of &' vs & for the solution (17) for different values of 7, where
p=1, o={L1, or=(1.1.

So the amplimde of the soliton increases with the increase of
a whereas amplhitode decreases with the increase of a. The
dependence of the amplitude on a 15 very significant. Ths
shows that the nonthermal effect 1s very important. Figume 5
shows the evolution of solitary wave structure al 7=-6 in
different geometry. It is clear that the amplitude of the soli-
tary waves are different n different geometry. The amplitude
of the cylindrical solitary wave 18 larger than that of the
one-dimensional solitary wave but smaller than that of the
spherical solitary wave. In Figs. 6 and 7 the solutions for »
=1 and =2 are plotted for several values of 7in presence of
1on temperature parameter o and nonthermal electron param-
eter a, respectively. It is found that as the value of 7 de-
creases, the amphitude of the waves increases. Also the solu-
ton approaches o that of the wsual KAV equabon as
expected.

Equation (27) has the following solitary wave solution
for v=():

[ i 1 i
15 -1 -5 0 5 10 15 20
B

FIG. 7. Plot of &"! vs & for the solution (17) for different values of 7, where
pr=2 =01, o=(0.1.
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FIG. & Plot of 'Y vs & for the solution (27) for different values of 7, where
=1, o=1/6, =112 (ic, x=1/5).

o= \."i—fl’r seeh| /- (€=U7) . (31)
where 7 is the soliton velocity. With this initial profile at 7
=—0 we solve the eylindrical and sphernical MEKAY equations.
Figures § and 9, respectively, show the solutions of cylindri-
cal and spherical MKdAV equations for several values of 7
ranging from 7=—6 W 7=-9 I1 1% seen that as magnitude of
7 mereases the solution looks like that for one-dimensional
MEdAY solions.

=15
25k p=1/2

40
&

-05 " " a . . 5 ;
u—ﬁﬂl =15 =10 =5 0 3 10 15 20

FIG. 9. Plot of ¢'" vs £ for the solution (27) for different values of 7, where
=2 =106, =112 (ic, a=1/5).
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IV. DISCUSSION AND CONCLUSION

The cylindncal and sphencal KAV equations are derived
for ion acoustic waves in presence of nonthermal electrons
and warm adiabatic 1ons using redoctive perturbation tech-
nique. Also exact analytical solutions for cylindrical and
spherical KdV equations are found using group analysis
method. The effects of nonthermal electrons and warm ions
are studied in different geometry. Also here we use a numen-
cal method assuming an initial profile similar o the one-
dimensional soliton solution. It is found that nonisothermal-
ity has a very significant effect on the nature of ion acoustic
solitary waves. Also, as expected, for large values of 7 the
solution 15 similar to the one-dimensional KdV solitons.
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